Bicyclic Antiautomorphisms of Directed Triple Systems with 0 or 1 Fixed Points

Neil P. Carnes, Anne Dye and James F. Reed

Department of Mathematics, Computer Science & Statistics McNeese State University

P.O. Box 92340, Lake Charles, LA 70609-2340, USA

Abstract

A transitive triple, (a, b, c), is defined to be the set $\{(a, b), (b, c), (a, c)\}$ of ordered pairs. A directed triple system of order v, DTS(v), is a pair (D, β) , where D is a set of v points and β is a collection of transitive triples of pairwise distinct points of D such that any ordered pair of distinct points of D is contained in precisely one transitive triple of β . An antiautomorphism of a directed triple system, (D, β) , is a permutation of D which maps β to β^{-1} , where $\beta^{-1} = \{(c, b, a) | (a, b, c) \in \beta\}$. In this paper we give necessary and sufficient conditions for the existence of a directed triple system of order v admitting an antiautomorphism consisting of two cycles of equal length and having 0 or 1 fixed points.

1 PRELIMINARIES

A Steiner triple system of order v, STS(v), is a pair (S, β) , where S is a set of v points and β is a collection of 3-element subsets of S, called *blocks*, such that any pair of distinct points of S is contained in precisely one block of β . Kirkman [4] showed that there is an STS(v) if and only if $v \equiv 1$ or 3 (mod 6) or v = 0.

A transitive triple, (a, b, c), is defined to be the set $\{(a, b), (b, c), (a, c)\}$ of ordered pairs. A directed triple system of order v, DTS(v), is a pair (D, β) , where D is a set of v points and β is a collection of transitive triples of pairwise distinct points of D, called *triples*, such that any ordered pair of distinct points of D is contained in precisely one element of β . Hung and Mendelsohn [2] have shown that necessary and sufficient conditions for the existence of a DTS(v) are that $v \equiv 0$ or 1 (mod 3).

For a DTS(v), (D, β) , we define β^{-1} by $\beta^{-1} = \{(c, b, a) | (a, b, c) \in \beta\}$. Then (D, β^{-1}) is a DTS(v) and is called the *converse* of (D, β) . A DTS(v) which is isomorphic to its converse is said to be *self-converse*. Kang, Chang, and Yang [3] have shown that a self-converse DTS(v) exists if and only if $v \equiv 0$ or 1 (mod 3) and $v \neq 6$. An *automorphism* of (D, β) is a permutation of D which maps β to itself. An *antiautomorphism* of (D, β) is a permutation of D which maps β to β^{-1} . Clearly, a

DTS(v) is self-converse if and only if it admits an antiautomorphism. Let (S, β') be an STS(v). Let $\beta = \{(a, b, c), (c, b, a) | \{a, b, c\} \in \beta'\}$. Then (S, β) is called the *corresponding* DTS(v), and the identity map on the point set is an antiautomorphism. This yields a self-converse DTS(v) for $v \equiv 1$ or 3 (mod 6).

An antiautomorphism, α , on a DTS(v), (D, β) , is called *cyclic* if the permutation defined by α consists of a single cycle of length d and v-d fixed points. Necessary and sufficient conditions for the existence of a DTS(v) admitting a cyclic antiautomorphism have been given by Carnes, Dye, and Reed [1]. We call an antiautomorphism α on a DTS(v), (D, β) , *bicyclic* if the permutation defined by α consists of two cycles each of length N = (v - f)/2 and f fixed points. In this paper we consider bicyclic antiautomorphisms of directed triple systems with 0 or 1 fixed points.

If N is the length of a cycle, we let the cycles be $(0_i, 1_i, 2_i, \ldots, (N-1)_i)$, $i \in \{0, 1\}$, and let ∞ be the fixed point for the 1 fixed point case. Let $\Delta = \{0, 1, 2, \ldots, (N-1)\}$. We shall use all additions modulo N in the triples. For $a_i, b_j, c_k \in D - \{\infty\}, i, j, k \in \{0, 1\}, (a_i, b_j, c_k) \in \beta$, let *orbit* $(a_i, b_j, c_k) = \{((a+t)_i, (b+t)_j, (c+t)_k) | t \in \Delta, t \text{ even}\} \cup \{((c+t)_k, (b+t)_j, (a+t)_i) | t \in \Delta, t \text{ odd}\}$. If ∞ is a fixed point and $a_i, b_j \in \Delta - \{\infty\}, i, j \in \{0, 1\}, (a_i, \infty, b_j) \in \beta$, let *orbit* $(a_i, \infty, b_j) = \{((a+t)_i, \infty, (b+t)_j) | t \in \Delta, t \text{ even}\} \cup \{((b+t)_j, \infty, (a+t)_i) | t \in \Delta, t \text{ odd}\}$. Clearly the orbits partition β .

LEMMA 1: A DTS(v) admitting a bicyclic antiautomorphism with 0 or 1 fixed points, where v = 2N or v = 2N + 1, N being the length of each of the cycles, has no orbits of length less than N, except possibly orbits of length N/2. If an orbit of length N/2 occurs it is only in the 1 fixed point case with $N \equiv 2 \pmod{4}$.

Proof: Suppose that a DTS(v) exists with a bicyclic antiautomorphism α having an orbit of length l < N. Let (a, b, c) be a triple of the short orbit with b not a fixed point. Then $\alpha^l(a, b, c) = (a, b, c)$, thus $\alpha^l(b) = b$, a contradiction to l < N. If ∞ is a fixed point, clearly the only orbit of length l < N is orbit $(0_i, \infty, (N/2)_i), i \in \{0, 1\}$, for $N \equiv 2 \pmod{4}$.

We say that a collection of triples, $\overline{\beta}$, is a collection of *base triples* of a DTS(v) under α if the orbits of the triples of $\overline{\beta}$ produce β and exactly one triple of each orbit occurs in $\overline{\beta}$. Also, we say that the *reverse* of the transitive triple (a, b, c) is the transitive triple (c, b, a).

2 BICYCLIC ANTIAUTOMORPHISMS WITH 0 FIXED POINTS

LEMMA 2: Let (D,β) be a DTS(v) admitting a bicyclic antiautomorphism with 0 fixed points, where v = 2N, N being the length of each of the cycles. Then $v \equiv 16 \pmod{24}$.

Proof: Suppose N is odd. Let $a, b, c \in D$. Then $\alpha^N(a, b, c) = (c, b, a)$ and we have an STS(v) so that $v \equiv 1$ or 3 (mod 6), which implies that v is odd. Hence N is even.

So $v \equiv 0 \pmod{4}$. Let $(0_i, 1_i, 2_i, ..., (N-1)_i), i \in \{0, 1\}$, be one of the cycles.

 $(0_i, (N/2)_i)$ occurs in a triple, say $(0_i, (N/2)_i, a_i), (0_i, a_i, (N/2)_i),$ or $(a_i, 0_i, (N/2)_i),$ $j \in \{0,1\}$. If N/2 is odd then $\alpha^{N/2}(0_i, (N/2)_i, a_j) = ((a + N/2)_j, 0_i, (N/2)_i),$ $\alpha^{N/2}(0_i, a_j, (N/2)_i) = (0_i, (a+N/2)_j, (N/2)_i), \text{ or } \alpha^{N/2}(a_j, 0_i, (N/2)_i) = (0_i, (N/2)_i)$ $(a + N/2)_i$ which leads to the contradiction that the ordered pair $(0_i, (N/2)_i)$ is contained in two distinct triples. Therefore N/2 is even so that $N \equiv 0 \pmod{4}$, which implies that $v \equiv 0 \pmod{8}$. The facts that $v \equiv 0$ or 1 (mod 3) and that $v \equiv 0$ (mod 8) together imply that $v \equiv 0$ or 16 (mod 24).

If $v \equiv 0 \pmod{24}$, the number of triples will be [24k(24k-1)]/3 = 8k(24k-1), and the number of orbits will be [8k(24k-1)]/12k = 16k-2/3. Because this quantity cannot be an integer, we must have a short orbit, a contradiction to Lemma 1.

Therefore, we must have $v \equiv 16 \pmod{24}$.

LEMMA 3: If $v \equiv 16 \pmod{24}$ there exists a DTS(v) which admits a bicyclic antiautomorphism with 0 fixed points.

Proof: Let v = 24k + 16, N = 12k + 8.

For k = 0 the base triples are $(0_0, 0_1, 4_1)$ and $(0_1, 0_0, 4_0)$, along with the following and their reverses:

 $(0_0, 1_1, 2_1), (0_0, 3_1, 6_1), (0_0, 5_1, 7_1), (0_0, 1_0, 3_0).$

For k = 1 the base triples are $(0_0, 0_1, 10_1)$ and $(0_1, 0_0, 10_0)$, along with the following and their reverses:

 $(0_0, 2_1, 8_1), (0_0, 3_1, 7_1), (0_0, 4_1, 6_1), (0_0, 12_1, 19_1), (0_0, 13_1, 18_1), (0_0, 14_1, 17_1),$

 $(0_1, 4_0, 5_0), (0_1, 9_0, 15_0), (0_1, 11_0, 19_0), (0_0, 2_0, 5_0), (0_0, 4_0, 11_0), (0_1, 1_1, 9_1).$

For k = 2 the base triples are $(0_0, 0_1, 16_1)$ and $(0_1, 0_0, 16_0)$, along with the following and their reverses:

 $(0_0, 2_1, 14_1), (0_0, 3_1, 13_1), (0_0, 4_1, 12_1), (0_0, 5_1, 11_1), (0_0, 6_1, 10_1), (0_0, 7_1, 9_1),$

 $(0_0, 18_1, 31_1), (0_0, 19_1, 30_1), (0_0, 20_1, 29_1), (0_0, 21_1, 28_1), (0_0, 22_1, 27_1),$

 $(0_0, 23_1, 26_1), (0_1, 7_0, 8_0), (0_1, 15_0, 24_0), (0_1, 17_0, 31_0),$

 $(0_0, 2_0, 15_0), (0_0, 3_0, 11_0), (0_0, 4_0, 10_0), (0_0, 5_0, 12_0), (0_1, 1_1, 15_1).$

For $k \ge 3$ the base triples are $(0_0, 0_1, (6k+4)_1)$ and $(0_1, 0_0, (6k+4)_0)$, along with the following and their reverses:

 $(0_0, 2_1, (6k+2)_1), (0_0, 3_1, (6k+1)_1), \dots, (0_0, (3k+1)_1, (3k+3)_1),$ $(0_0, (6k+6)_1, (12k+7)_1), (0_0, (6k+7)_1, (12k+6)_1), \dots, (0_0, (9k+5)_1, (9k+8)_1),$ $(0_1, (3k+1)_0, (3k+2)_0), (0_1, (6k+3)_0, (9k+6)_0), (0_1, (6k+5)_0, (12k+7)_0),$ $(0_0, (2k+3)_0, (4k+1)_0), (0_0, (2k+4)_0, (4k)_0), \dots, (0_0, (3k)_0, (3k+4)_0),$ $(0_0, (4k+4)_0, (6k-1)_0), (0_0, (4k+5)_0, (6k-2)_0), \dots, (0_0, (5k)_0, (5k+3)_0),$ $(0_0, 2_0, (6k+3)_0), (0_0, (2k-3)_0, (6k)_0), (0_0, (2k-1)_0, (5k+1)_0),$ $(0_0, (2k)_0, (4k+2)_0), (0_0, (2k+1)_0, (5k+2)_0), (0_1, 1_1, (6k+3)_1).$

By the previous two lemmas we have the following theorem.

THEOREM 1: There exists a DTS(v) admitting a bicyclic antiautomorphism with 0 fixed points if and only if $v \equiv 16 \pmod{24}$.

3 BICYCLIC ANTIAUTOMORPHISMS WITH 1 FIXED POINT

LEMMA 4: Let (D, β) be a DTS(v) admitting a bicyclic antiautomorphism with 1 fixed point, where v = 2N + 1, N being the length of each of the cycles. Then $v \equiv 3 \pmod{6}$, with $v \neq 3$.

Proof. Clearly, since v = 2N + 1, v must be odd. Also, we must have $v \equiv 0$ or 1 (mod 3). Thus $v \equiv 1$ or 3 (mod 6).

If $v \equiv 1 \pmod{6}$, the number of triples will be [(6k + 1)6k]/3 = 2k(6k + 1), and the number of orbits will be [2k(6k + 1)]/3k = 4k + 2/3. Because this quantity cannot be an integer, we must have a short orbit of length $l \neq N/2$, a contradiction to Lemma 1.

Clearly, if v = 3, we have three fixed points; therefore, we must have $v \equiv 3 \pmod{6}$, with $v \neq 3$.

LEMMA 5: If $v \equiv 3 \pmod{12}$, $v \neq 3$, there exists a DTS(v) which admits a bicyclic antiautomorphism with 1 fixed point.

Proof: Let v = 12k + 3, N = 6k + 1, $k \ge 1$.

Peltesohn [5] proved that a cyclic STS(v) exists if and only if $v \equiv 1$ or 3 (mod 6) with $v \neq 9$. Let (S,β) be a cyclic STS(N) with its cyclic automorphism $(0_0, 1_0, 2_0, \ldots, (6k)_0)$. Let β' be a set of base blocks of (S, β) .

The base triples are the following: $(0_0, \infty, 0_1)$, $(0_0, 1_1, (6k)_1), (0_0, 2_1, (6k-1)_1), \dots, (0_0, (3k)_1, (3k+1)_1)$, and all triples (a, b, c) where $\{a, b, c\} \in \beta'$.

LEMMA 6: If $v \equiv 9 \pmod{24}$ there exists a DTS(v) which admits a bicyclic antiautomorphism with 1 fixed point.

Proof: Let v = 24k + 9, N = 12k + 4.

For k = 0 the base triples are the following and their reverses: $(0_0, \infty, 2_0), (0_1, \infty, 2_1), (0_0, 0_1, 1_1), (0_1, 1_0, 2_0).$

For $k \ge 1$ the base triples are the following and their reverses: $(0_0, \infty, (6k+2)_0), (0_1, \infty, (6k+2)_1),$ $(0_0, 0_1, (6k+1)_1), (0_0, 1_1, (6k)_1), \dots, (0_0, (3k)_1, (3k+1)_1),$ $(0_0, (6k+2)_1, (12k+2)_1), (0_0, (6k+3)_1, (12k+1)_1), \dots, (0_0, (9k+1)_1, (9k+3)_1),$ $(0_1, (3k+2)_0, 1_0),$ $(0_0, (2k+1)_0, (4k+1)_0), (0_0, (2k+2)_0, (4k)_0), \dots, (0_0, (3k)_0, (3k+2)_0),$ $(0_0, (4k+2)_0, (6k+1)_0), (0_0, (4k+3)_0, (6k)_0), \dots, (0_0, (5k+1)_0, (5k+2)_0).$

LEMMA 7: If $v \equiv 21 \pmod{24}$ there exists a DTS(v) which admits a bicyclic antiautomorphism with 1 fixed point.

Proof: Let v = 24k + 21, N = 12k + 10. For k = 0 the base triples are $(0_0, 0_1, 4_0)$, $(0_0, 5_1, 6_0)$, $(0_1, 0_0, 4_1)$, $(0_1, 1_0, 8_1)$,

 $(0_1, 2_0, 3_1), (0_1, 3_0, 6_1), (0_1, 6_0, 2_1), (0_1, 8_0, 1_1), (1_1, 0_0, 2_1)$ and $(1_1, 6_0, 4_1)$, along with the following and their reverses: $(0_0, \infty, 5_0), (0_1, \infty, 5_1), (0_0, 1_0, 3_0).$ For k = 1 the base triples are $(0_0, 4_0, 12_0)$, $(0_0, 5_0, 10_0)$, $(0_0, 7_0, 14_0)$ and $(0_0, 9_0, 18_0)$, along with the following and their reverses: $(0_0, \infty, 11_0), (0_1, \infty, 11_1),$ $(0_0, 0_1, 10_1), (0_0, 1_1, 9_1), \ldots, (0_0, 4_1, 6_1),$ $(0_0, 12_1, 21_1), (0_0, 13_1, 20_1), \dots, (0_0, 16_1, 17_1),$ $(0_1, 11_0, 17_0), (0_0, 1_0, 3_0).$ For k = 2 the base triples are $(0_0, 4_0, 12_0)$, $(0_0, 11_0, 22_0)$, $(0_0, 13_0, 26_0)$ and $(0_0, 15_0, 30_0)$, along with the following and their reverses: $(0_0, \infty, 17_0), (0_1, \infty, 17_1),$ $(0_0, 0_1, 16_1), (0_0, 1_1, 15_1), \ldots, (0_0, 7_1, 9_1),$ $(0_0, 18_1, 33_1), (0_0, 19_1, 32_1), \ldots, (0_0, 25_1, 26_1),$ $(0_1, 17_0, 26_0), (0_0, 1_0, 6_0), (0_0, 2_0, 16_0), (0_0, 3_0, 10_0).$ For k = 3 the base triples are $(0_0, 4_0, 20_0)$, $(0_0, 13_0, 26_0)$, $(0_0, 15_0, 30_0)$ and $(0_0, 21_0, 42_0)$, along with the following and their reverses: $(0_0, \infty, 23_0), (0_1, \infty, 23_1),$ $(0_0, 0_1, 22_1), (0_0, 1_1, 21_1), \dots, (0_0, 10_1, 12_1),$ $(0_0, 24_1, 45_1), (0_0, 25_1, 44_1), \ldots, (0_0, 34_1, 35_1),$ $(0_1, 23_0, 35_0), (0_0, 1_0, 19_0), (0_0, 2_0, 11_0), (0_0, 3_0, 10_0), (0_0, 5_0, 22_0), (0_0, 6_0, 14_0).$ For k = 4 the base triples are $(0_0, 4_0, 12_0)$, $(0_0, 23_0, 46_0)$, $(0_0, 25_0, 50_0)$ and $(0_0, 27_0, 54_0)$, along with the following and their reverses:

- $(0_0, \infty, 29_0), (0_1, \infty, 29_1),$
- $(0_0, 0_1, 28_1), (0_0, 1_1, 27_1), \dots, (0_0, 13_1, 15_1),$
- $(0_0, 30_1, 57_1), (0_0, 31_1, 56_1), \dots, (0_0, 43_1, 44_1),$
- $(0_1, 29_0, 44_0), (0_0, 1_0, 14_0), (0_0, 2_0, 24_0), (0_0, 3_0, 21_0),$
- $(0_0, 5_0, 16_0), (0_0, 6_0, 26_0), (0_0, 7_0, 17_0), (0_0, 9_0, 28_0).$

For k = 5 the base triples are $(0_0, 4_0, 12_0)$, $(0_0, 29_0, 58_0)$, $(0_0, 31_0, 62_0)$ and $(0_0, 33_0, 66_0)$, along with the following and their reverses:

- $(0_0, \infty, 35_0), (0_1, \infty, 35_1), \dots$
- $(0_0, 0_1, 34_1), (0_0, 1_1, 33_1), \ldots, (0_0, 16_1, 18_1),$
- $(0_0, 36_1, 69_1), (0_0, 37_1, 68_1), \ldots, (0_0, 52_1, 53_1),$
- $(0_1, 35_0, 53_0), (0_0, 1_0, 23_0), (0_0, 2_0, 30_0), (0_0, 3_0, 19_0), (0_0, 5_0, 20_0),$
- $(0_0, 6_0, 32_0), (0_0, 7_0, 21_0), (0_0, 9_0, 34_0), (0_0, 10_0, 27_0), (0_0, 11_0, 24_0).$

For k = 6 the base triples are $(0_0, 1_0, 2_0)$, $(0_0, 6_0, 4_0)$, $(0_0, 39_0, 78_0)$ and $(0_0, 79_0, 76_0)$, along with the following and their reverses:

- $(0_0, \infty, 41_0), (0_1, \infty, 41_1),$
- $(0_0, 0_1, 40_1), (0_0, 1_1, 39_1), \dots, (0_0, 19_1, 21_1),$
- $(0_0, 42_1, 81_1), (0_0, 43_1, 80_1), \ldots, (0_0, 61_1, 62_1),$
- $(0_1, 41_0, 62_0), (0_0, 5_0, 34_0), (0_0, 7_0, 30_0), (0_0, 8_0, 36_0), (0_0, 9_0, 26_0),$
- $(0_0, 10_0, 32_0), (0_0, 11_0, 31_0), (0_0, 12_0, 37_0), (0_0, 13_0, 40_0), (0_0, 14_0, 38_0),$
- $(0_0, 15_0, 33_0), (0_0, 16_0, 35_0).$

For $k \geq 7$ the base triples are $(0_0, 1_0, 2_0)$, $(0_0, 3_0, 6_0)$, $(0_0, 4_0, (12k + 8)_0)$ and $(0_0, (6k + 3)_0, (12k + 6)_0)$, along with the following and their reverses:

 $\begin{array}{l} (0_0,\infty,(6k+5)_0),(0_1,\infty,(6k+5)_1),\\ (0_0,0_1,(6k+4)_1),(0_0,1_1,(6k+3)_1),\ldots,(0_0,(3k+1)_1,(3k+3)_1),\\ (0_0,(6k+6)_1,(12k+9)_1),(0_0,(6k+7)_1,(12k+8)_1),\ldots,(0_0,(9k+7)_1,(9k+8)_1),\\ (0_1,(6k+5)_0,(9k+8)_0),\\ (0_0,(2k+6)_0,(4k-1)_0),(0_0,(2k+7)_0,(4k-2)_0),\ldots,(0_0,(3k-1)_0,(3k+6)_0),\\ (0_0,(4k+4)_0,(6k)_0),(0_0,(4k+5)_0,(6k-1)_0),\ldots,(0_0,(5k-2)_0,(5k+6)_0),\\ (0_0,5_0,(5k+4)_0),(0_0,(2k-5)_0,(5k)_0),(0_0,(2k-3)_0,(4k+2)_0),\\ (0_0,(2k-2)_0,(5k+2)_0),(0_0,(2k-1)_0,(5k+1)_0),(0_0,(2k)_0,(6k+1)_0),\\ (0_0,(2k+1)_0,(6k+4)_0),(0_0,(2k+2)_0,(6k+2)_0),\\ (0_0,(2k+3)_0,(5k+3)_0),(0_0,(2k+4)_0,(5k+5)_0).\end{array}$

By the previous four lemmas we have the following theorem.

THEOREM 2: There exists a DTS(v) admitting a bicyclic antiautomorphism with 1 fixed point if and only if $v \equiv 3 \pmod{6}$, with $v \neq 3$.

References

- N.P. Carnes, A. Dye, and J.F. Reed, Cyclic antiautomorphisms of directed triple systems, J. Combin. Designs 4 (1996), 105-115.
- [2] S.H.Y. Hung and N.S. Mendelsohn, Directed triple systems, J. Combin. Theory A 14 (1973), 310-318.
- [3] Q. Kang, Y. Chang, and G. Yang, The spectrum of self-converse DTS, J. Combin. Designs 2 (1994), 415-425.
- [4] T.P. Kirkman, On a problem in combinations, Cambridge and Dublin Math. J. 2 (1847), 191-204.
- [5] R. Peltesohn, Eine Lösung der beiden Heffterschen Differenzenprobleme, Compositio Math. 6 (1939), 251-257.

(Received 17/3/98)