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Abstract

A digraph obtained by replacing each edge of a complete n-partite
(n > 2) graph by an arc or a pair of mutually opposite arcs with the same
end vertices is called a semicomplete n-partite digraph or semicomplete
multipartite digraph (abbreviated to SMD). In this paper we show the fol-
lowing result for a semicomplete multipartite digraph of order p with the
partite sets Vi, Va, ..., V. Let r = miny ;<o {|Vi|}. If for each pair of dom-
inated nonadjacent vertices {z,y}, d(z)+d(y) > min{2(p—r)+3,2p—1},
then 7T is Hamiltonian. This result is best possible in a sense.

1. INTRODUCTION

For the convenience of the reader we provide all necessary terminology and no-
tation in section 2.

There are some degree conditions that guarantee Hamiltonicity in strong digraphs
of order p:

Theorem 1.1 ([4]) If d(z) > p for each vertex x € V(D), then D is Hamiltonian.

Theorem 1.2 ([8]) If d™(z)+d ™ (y) > p for all pair of vertices x and y such that
there is no arc from z to y, then D is Hamiltonian.

Theorem 1.3 ([6]) If d(z) + d(y) > 2p — 1 for each pair of nonadjacent vertices
mn D, then D is Hamiltonian.

Theorem 1.4 ([1)) If min{d*(z) + d™(y),d"(z) + d*(y)} > p for every pair
of dominating nonadjacent and dominated nonadjacent vertices {z,y}. Then D is
Hamaltonian.
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Furthermore, in [1], Bang-Jensen, Gutin and Li conjectured that if d(x) + d(y) >
2p — 1 for every pair of dominating nonadjacent vertices {z,y}, then D is Hamilton-
ian. In this paper, we give a sufficient degree condition to guarantee Hamiltonicity
in SMDs. This result implies that the above conjecture is valid for semicomplete
multipartite tournaments. For surveys on SMDs, see [5] and [7].

2. TERMINOLOGY AND NOTATION

We shall assume that the reader is familiar with the standard terminology on
digraphs and refer to [2] for terminology not provided in this paper.

Let D denote a digraph of order p with vertex set V. D is strict if it has no
loops and no two arcs with the same ends having the same orientation, and strong
if, for any two vertices u and v, there is a directed path from u to v. If zy is an
arc of D, then we say that z dominates y, denoted by z — y. More generally, if 4
and B are two disjoint vertex set of D such that every vertex of A dominates every
vertex of B, then we say that A dominates B, denoted by A = B. Let z € V(D),
we define d*(z) (d(z)) to be the number of vertices dominated by (dominating) z,
and d(z) = d*(z) + d~(z). If there is u € V such that v = {z,y}, we call the pair
{z,y} dominated. If v € V and S C V, we denote the set of arcs between v and S
by E(v,S). An S-path is a directed path of length at least two having exactly its
origin and terminus in common with S. An (z,y)-path is a directed path from z to
Y.

A digraph obtained by replacing each edge of a complete n-partite (n > 2) graph
by an arc or a pair of mutually opposite arcs with the same end vertices is called
a semicomplete n-partite digraph or semicomplete multipartite digraph (abbreviated
to SMD). Let T" be an SMD and z € V(T'), we denote by V() the partite set of T
containing z.

3. MAIN RESULT

The following lemma is known.

Lemma 3.1. ([3]) Let P = vjvy...v; be a directed path in a strict digraph D,
and let v € V(D)\V(P). If D has no (vy,vy)-path with vertex set V(P) U {v}, then
|E(v, V(P))] < k+1.

Theorem 3.2. Let T be a strong semicomplete n-partite digraph of order p with
the partite sets Vi,Va,...,V,. Letr = 1r£11<n {IVil}. If for each pair of dominated
<i<n
nonadjacent vertices {x,y}, d(z) + d(y) > min{2(p — r) + 3,2p — 1}, then T is
Hamiltonian.

Proof. Assume that T is non-Hamiltonian and C' = 2,2, ...7,,7; is a longest
cyclein T

Suppose that there is no V(C)-path in 7". Since T is strong and C is a longest
cycle in T, T contains a directed cycle C' having precisely one vertex, say z;, in
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common with C. Let v denote the successor of z; in C'. If T contains a path of
the form 3 — y — v or v — y — Ty, where y € V(T)\V(C), then obviously we
get a contradiction to the assumption that 7' has no V(C)-path. So we can assume
that no such path exists. If m > 3, then E({zy,z3},v) # 0 since T is an SMD,
which contradicts that T has no V(C)-path. Hence we have |V(C)| = 2. Note that
V(zy) = V(v) and zy = {z,,v}, thus, we have

dw)+d(z2) <24+24+2(p—-2—-(r—1)) =2p—2r +2,
which also cotradicts the initial assumption.

Hence T contains a V(C)-path P = z,y1%2. .. YsTaty. Let the path be chosen so
that 7 is minimum. Then it is easy to verify that y; is not adjacent to any vertex
of {Zot1, Tot2, -+ s Taty—1} Hence v = 2 since T is an SMD. Thus, s = 1 since C
is a longest cycle of T. Let A = V(y) N V(C), B = V() N (V(TO\V(C)), then
|A]+|B| > r. Now, by the maximality property of C, T has no (£q42, Za)-path with
vertex set V(C) U {y1}\{Za+1}. Hence by Lemma 3.1, we get that:

(1) v is adjacent to the path Toi2%ats ... Te by at most m—1—(JA|-1)+1 =
m — |A| + 1 edges.

Because of the minimality of -y, we get:

(2) T contains no path of the form Zayy — ¥ — Y1, OF Y1 = Y — Taqy With
ye V(T\V(C). :

Also, by the maximality of C, there are no (2442, Zo)-paths with the vertex set V'(C).
By Lemma 3.1, we have |E(z441, V(C)\{Za+1})| < m—|A|+1. Combining this with
(1) and (2), we get:

d(@an) +dy) <2m - A+ 1)+ ¥ |E(y,{y1,Tas1})]
YEV(TI\V(C)

<2m-|Al+1)+2(p—-m—|B|)=2p-2(JA|+|B)+2<2p—-2r+2.
This contradicts the initial assumption.
This completes the proof of the theorem. O

4. REMARK

Let t = min{2p — 2r + 3,2p — 1}. Consider the following digraph D: V(D) =
{vi,v2,u3}, AD) = {v1 = v|2 < i <3}U{vi = 1n|2 < i <3} Thisisa
semicomplete bipartite digraph with r = 1, it satisfies the condiction that for any
pair of dominated nonadjacent vertices {z,y}, d(z) + d(y) > t — 1, but obviously it
is not Hamiltonian. So Theorem 3.2 is best possible in a sense.
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