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Abstract 

Let QBn be the set of n x n (n > 8) non-symmetric primitive matrices 
with at least one pair of nonzero symmetric entries. For each positive 
integer 2 ::; k ::; n - 2, we give the kth upper generalized exponent set 
for Q Bn by using a graph theoretical method. 

1 Introduction 

An n x n nonnegative matrix A is called primitive if there exist some positive integer 
t such that At > O. The least such positive integer t is called the exponent of A, 
denoted by l'(A). 

In [1], Brualdi and Liu defined the kth upper generalized exponent F(A, k) as 
follows. 

Definition 1.1 ([1]) Let A be a primitive matrix of order nand 1 ::; k ::; n - 1. Set 

F(A, k) = min{p I no set of k rows of AP has a column of all zeros }. 

F(A, k) is called the kth upper generalized exponent of A. 

The kth upper generalized exponent is a generalization of the traditional concept 
of the exponent. Background can be found in [1]. 

It is well-known that for each nonnegative matrix A there exists an associ
ated digraph D(A) whose adjacency matrix has the same zero entries as A. A 
digraph D is primitive iff D is strongly connected and g.c.d(rl' 1'2,"', rA) = 1, where 
{rl 1 1'2,' ", rA } = L(D) is the set of distinct lengths of the directed cycles of D. A is 
primitive iff D(A) is primitive. 

Definition 1.2 ([1]) Let X be the vertex subset of a primitive digraph D. The 
exponent eXPD(X) is the smallest positive integer p such that for each vertex y of D, 
there exists a walk of length p from at least one vertex in X to y. 
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Definition 1.3 ([1]) Let D be a primitive digraph of order nand 1 ::; k ::; n - 1. 
Set 

F(D, k) = max{expD(X) 1 X ~ V(D), 1 X 1= k}. (1.1) 

F(D, k) is called the kth upper generalized exponent of D. 

It is obvious that 
F(A, k) = F(D(A), k). (1.2) 

Definition 1.4 Let al," " ak be positive integers. The Frobenius set S(al l "', ak) 
of the numbers aI, ... ,ak is defined as 

k 

S(al,' . " ak) = {L: Xiai 1 Xl,"', Xk are nonnegative integers }. 
i=l 

It is well-known, by a lemma of Schur, that if g.c.d(ab . ", ak) = 1, then 
S(al' .. " ak) contains all sufficiently large nonnegative integers. In this case we 
define the Frobenius number ¢(al,"', ak) to be the least integer ¢ such that m E 

S(al' .. " ak) for all integers m ~ ¢. 
For the case k = 2, it is well-known that if a and b are relatively prime positive 

integers, then the Frobenius number is 

¢(a, b) = (a - l)(b - 1). (1.3) 

It is easy to see the following result. 

Lemma 1.5 Let X be a set of k vertices of a primitive digraph D of order nand 
1 ::; k ::; n - 1. Let R = {ril"", riJ ~ L(D) such that g.c.d(ril' .. " rit) = 1. 
Let dR(i,j) be the length of the shortest walk from vertex i to vertex j in D which 
meets at least one cycle of each length rill' .. ,rit. Let dR(X) = .max rpin dR( i, j) 

JEV(D) ~EX 

and ¢R = ¢(ril" . " rit). Then we have 

eXPD(X) ::; dR(X) + ¢R. (1.4) 

Let QBn be the set of n x n (n > 8) non-symmetric primitive matrices with at 
least one pair of nonzero symmetric entries, Q B;t the set of matrices in Q Bn with 
nonzero trace and QB~ the set of matrices in QBn with zero trace. For each positive 
integer 1 ::; k ::; n - 1, let Enk be the set of kth upper generalized exponents of the 
matrices in QBn, E:k the set of kth upper generalized exponents of the matrices in 
QB;t and E~k the set of the kth upper generalized exponents of the matrices in QB~. 
In this paper, we give the complete characterizations of E:k and E~k' so that the kth 
upper generalized exponent set problem for Q Bn is settled. 

Notice that if k = 1, then F(A, k) = 1'(A). In this case, the exponent sets E:I 
and E~l have already been determined in [3]. So we will only consider the cases 
2 ::; k ::; n - 2. 

We will make use of the following notations. Let D be an primitive digraph with 
D = (V(D), E(D)). Let Cr be a cycle of length r ( called an r-cycle). We denote the 
distance from vertex x to vertex y of D by d(x,y). Ifi,j E V(D), then (i,j) denotes 
an arc from vertex i to vertex j and [i, j] denotes a edge between two vertices i and 
j, i.e. a 2-cycle. 
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2 The generalized exponent set E~k 

In this section we will determine the generalized exponent set E:};k' 

Theorem 2.1 Let n, k be positive integers with 2 :::; k :::; n - 2 and A E QB;t. Then 

F(D(A), k) :::; 2n - k - 2. (2.1) 

Proof. Let X be any k-vertex subset of D(A), w a loop of D(A) and [u, v] a edge 
of D(A). 

Case 1: w E X. Then eXPD(A)(X):::; max d(w, y) :::; n - 1 :::; 2n - k - 2. 
YEV(D(A)) 

Case 2: {u,v} ~ X. Then expD(A) (X) :::; max min{d(u, y),d(v, y)} :::; n-2 < 
yEV(D(A)) 

2n - k - 2. 
Other cases: Let 1 = max d(w, y) and h = mind(x, w). Then 1 :::; n - 1 and 

yEV(D(A)) xEX 

h:::; n- k. 
(1) 1 :::; n - 2 or h:::; n - k - 1. Then eXPD(A)(X) :::; h + 1 :::; 2n - k - 2. 
(2) 1 = n - 1 and h = n - k. Then eXPD(A)(X) :::; n :::; 2n k 2. 
The proof of the theorem is completed. II 

Theorem 2.2 Let n, k be positive integers with 2 :::; k :::; n - 2. Then 

{k + 1, k + 2"", 2n - k - 2} ~ E:};k' (2.2) 

Proof. Suppose k + 1 :::; m :::; n - 1. Firstly, we consider Dl = D(A) with ver
tex set V(D1) = {1,2,"',n} and arc set E(D1) = {(1,1),[1,2],(2,3),(3,4),···, 
(m - 1, m), (m, m + 1), (m, m + 2)"", (m, n), (m + 1,1), (m + 2, 1)"", (n, I)}. 

It is obvious that A E QB;t. Take Xo = {3, 4, ... ,k + 2}. It is not difficult to 
verify that there is no walk of length 2m - k -1 from any vertex of Xo to the vertex 
m + 1. So we have 

(2.3) 

On the other hand, let X be any k-vertex subset of D1. If {I, 2} n X =J 0, then 

(2.4) 

If {I, 2} n X = 0, letting i be the vertex of X which is closest to 1, then d(i, 1) :::; 
m + 1 - k - 2 + 1 = m - k and so 

eXPDl (X) :::; m - k + m = 2m - k. (2.5) 

Combining (2.3), (2.4) and (2.5) we have 

F(Dl' k) = 2m - k. (2.6) 

Next, we consider D2 = D(A) with vertex set V(D2) = {I, 2,"', n} and arc set 
E(D2 ) = {(I, 1), (2, 2), [1,2], (2,3), (3,4)" ", (m - 1, m), (m, m + 1), (m, m + 2), . ", 
(m, n), (m + 1,1), (m + 2, 1)" ", (n, 1), (m + 1,2), (m + 2, 2)" ", (n, 2)}. 
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It is obvious that A E QB;. Take Xo {3, 4"", k + 2}. It is not difficult to 
verify that there is no walk of length 2m - k 2 from any vertex of Xo to the vertex 
m + 1. Then F(D2' k) 2:: eXPD2(XO) ~ 2m - k 1. 

On the other hand, let X be any k-vertex subset of D2 . If {I, 2} n X -=f. 0, then 
eXPD2 (X) ~ m ~ 2m - k -1. If {I, 2} n X = 0, letting j be the vertex of X which is 
closest to 2, then d(j,2) ~ m+l-k-2+1 m-k and eXPD2(X) ~ m-k+m-l = 
2m - k-1. 

So we have 
F(D2' k) = 2m - k - 1. (2.7) 

Notice that k + 1 ::; m ~ n - 1. Combining (2.6) and (2.7) we obtain (2.2). I 

Theorem 2.3 Let n, k be positive integers with 2 ~ k ~ n - 2. Then 

(2.8) 

Proof. Suppose 2 ::; m ::; k. We consider D2 = D(A) in theorem 2.2. 
Take Xo = {n, n - 1, ... , n - k + I}. Then IXo I = k. Since n - k + 1 ~ 3, it is 

not difficult to verify that there is no walk of length m - 1 from any vertex of Xo to 
the vertex m + 1. Then F(D2' k) ~ eXPD2(XO) ~ m. 

On the other hand, let X be any k-vertex subset of D2 . If 1 E X, then 
eXPD2(X) ::; m. If 1 ¢ X, then X n {m+ 1, m+ 2"", n} -=f. ° and so eXPD2(X) ::; m. 

So we have F(D2' k) = m. Noticing that 2::; m ::; k, we obtain (2.8). I 

Theorem 2.4 Let n, k be positive integers with 2 ~ k ~ n - 2. Then 

E::k = {1,2,3,···,2n-k-2}. (2.9) 

Proof. We consider D = D(A) with vertex set V(D) = {I, 2,"" n} and arc set 
E(D) = {(i,j) I i,j = 1,2,"" n} \ {(2, I)}. 

It is obvious that A E QB; and F(D, k) 1. So 1 E E::k • 

Combining (2.1), (2.2) and (2.8) we obtain (2.9). III 

3 The generalized exponent set E~k 

In this section we will determine the generalized exponent set E~k' 

Lemma 3.1 ([2]) Suppose r is primitive digraph of order nand s is the length of 
the shortest directed cycles of r. Then 

F (r, k) ~ (n - k) s + (n - s), (1::; k ::; n - 1). 

Theorem 3.2 Let n, k be positive integers with 2 ~ k ~ n - 2. 
(1) If n is even, then 

{ll, 12, .. " 3n - 2k - 3} ~ E~k' 

(2) If n is odd, then 

(3.1) 

(3.2) 

{II 12 ... 3n - 2k - 5 3n - 2k - 4 3n - 2k - 2} C E O
k (3.3) , " , , - n' 
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Proof. Firstly, let 4 ~ 8 ~ m ~ n - 1 and m - 8 = 0 (mod 2). We consider 
Dl(m) = D(A) with vertex set V(Dl(m)) = {1,2,"',n} and arc set E(D1 (m)) = 
([I, 2], (2,3), (2,4), ... , (2,8 -1), (3,8), (4,8), ... , (8 -1,8), (8,8+ 1), (8+ 1,8+ 2), ... , 
(m I,m), 
(m, m + 1), (m, m + 2)"", (m, n), (m + 1, 1), (m + 2, 1)"", (n, I)}. 

It is obvious that A E QB~. Let R = {2, m - 8 + 5}. We consider two cases. 
Case 1: k ~ n - 4 and max{4, 2k - m + 4} ~ 8 ~ k + 3 ~ m ~ n - 1. In this 

case, we will prove that 

F(Dl(m), k) = 3m - 2k - 8 + 5. (3.4) 

Take Xo = {3,4,·· ',8 - 1,8 + 1,8 + 3"" ,2k - 8 + 5}. Then IXol = k and 
2k - 8 + 5 ~ m + 1. It is not difficult to verify that there is no walk of even 
length 3m - 2k - 8 + 4 from any vertex of Xo to the vertex m + 1. So we have 
F(Dl(m), k) ~ eXPD1(m)(XO) ;::: 3m - 2k - 8 + 5. 

On the other hand, let X be any k-vertex subset of Dl(m). If {I, 2} n X -I 0, 
then by (1.4) we have eXPD1(m) (X) ~ d(l, m+ 1) +4>(2, m- 8+ 5) ~ 3m- 2k - 8+ 5. 
If there are vertices i,j E X such that (i,j) E E(D1(m)), then eXPD1(m)(X) :::; 

max d(j, y) ~ 3m - 2k - 8 + 5. In addition, letting 1 be the vertex of X which 
yEV(Dl(m» 

is closest to 1, we have 1 ~ d(l, 1) ~ m + 1 2k + 8 - 5 + 1 = m + 8 - 2k - 3 and 
eXPD1(m)(X) ~ d(l, 1) + m - 8 + 4 + 4>(2, m - 8 + 5) ~ 3m - 2k - 8 + 5. 

So we obtain (3.4). By hypotheses we also have the following. 
(i) If 3 ~ k ~ n;\ then 

{i I i is odd and 3m-3k+2 ~ i:::; 4m-4k+ I} ~ E~k' (k+3 ~ m ~ 2k). (3.5) 

(ii) If n;-l ~ k :::; n - 4, then 

{i I i is odd and 3m-3k+2 ~ i ~ 4m-4k+l} ~ E~k' (k+3 ~ m ~ n-l). (3.6) 

(iii) If 2 ~ k ~ n;-l, then 

{iliisoddand 3m-3k+2~i:::;3m-2k+l}~E~k' (2k~m~n-1). (3.7) 

Case 2: m = n - 1, n~l :::; k ~ n - 2 and 4 ~ 8 ~ 2k - n + 3. In this case, we 
will prove that 

F(D1(n - 1), k) = 3n - 2k - 8 + 2. (3.8) 

Take Xo = {2, 3, 4"", 2k - n + 1, 2k - n + 2, 2k - n + 4,,,,, n}. Then IXol = k 
and it is not difficult to verify that there is no walk of even length 3n - 2k - 8 + 1 from 
any vertex of Xo to the vertex n. So we have F(DI (n - 1), k) ~ eXPD!(n-l) (Xo) ;::: 
3n - 2k - 8 + 2. 

On the other hand, let X be any k-vertex subset of Dl(n - 1). There are ad
jacent vertices of D1(n - 1) in X. Let l = min{d(j,l) I j E X and there exist i E 
X such that (i,j) E E(D1(n - I))}, which implies that 1 ~ 2n - 2k - 1. Then 
eXPD1(n-l)(X) ~ 1 + n - 8 + 3 ~ 3n - 2k - 8 + 2. 
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We obtain (3.8). Noticing that 4 ::; S ::; 2k - n + 3, we also have 

{i I i is odd and 4n-4k-l::; i ::; 3n-2k-2} ~ E~k' (n; 1 ::; k ::; n-2). (3.9) 

Next, let 4 ::; S < m ::; n -1 and m - S = 1 (mod 2). We consider D2(m) = D(A) 
with vertex set V(D2(m)) = {I, 2"", n} and arc set E(D2(m)) = ([I, 2], (2,3), (2,4), 
.. ·,(2,s 1),(3,s),(4,s), .. ·,(s - 1,s),(s,s + 1),(8 + Ijs + 2), .. ·,(m - I,m), 
(m, m + 1), (m, m + 2), ... , (m, n), (m + 1,2), (m + 2, 2)"", (n, 2), (m, I)}. 

It is obvious that A E QB~. Let R = {2, m - s + 4}. We consider two cases. 
Case 1: k ::; n - 5 and max{ 4, 2k - m + 5} ::; s ::; k + 3 < m ::; n - 1. In this 

case, we will prove that 

F(D2(m), k) = 3m - 2k - s + 3. (3.10) 

Take Xo {3, 4,"" s - 1, s + 1, s + 3,"" 2k - s + 5}. Then IXol = k and 
2k s + 5 ::; m. It is not difficult to verify that there is no walk of odd length 
3m-2k s+2 from any vertex of Xo to the vertex m+1. So we have F(D2 (m), k) 2:: 
eXPD2(m) (Xo) ~ 3m - 2k - s + 3. 

On the other hand, let X be any k-vertex subset of D2(m). If {I, 2} n X i- 0, 
then by (1.4) we have eXPD2(m) (X) ::; d(l, m + 1) + 1>(2, m - s + 5) ::; 3m - 2k - s + 3. 
If there are vertices i,j E X such that (i,j) E E(D2 (m)), then eXPD2(m)(X) ::; 

max d(j, y) < 3m - 2k - s + 3. In addition, letting l be the vertex of X which 
yEV(D2(m)) 

is closest to 2, we have 1 ::; d(l,2) ::; m + 1 - 2k + s - 5 + 1 = m + s - 2k - 3 and 
eXPD2(m)(X) ::; d(l, 2) + m - s + 3 + 1>(2, m s + 4) ::; 3m - 2k - s + 3. 

So we obtain (3.10). By hypotheses we also have the following. 
(i) If 3 ::; k :::; n;2, then 

{i I i is even and 3m - 3k ::; i ::; 4m- 4k - 2} ~ E~k' (k +4 :::; m ::; 2k + 1). (3.11) 

(ii) If n;2 ::; k ::; n - 5, then 

{i I i is even and 3m-3k::; i::; 4m-4k-2} ~ E~k' (k+4:::; m::; n-l). (3.12) 

(iii) If 2 ::; k ::; n;2, then 

{i I i is even and 3m-3k::; i ::; 3m- 2k -I} ~ E~k' (2k+ 1 ::; m ::; n-l). (3.13) 

Case 2: m = n - 1, % ::; k ::; n - 2 and 4 ::; s ::; 2k - n + 4. In this case, we will 
prove that 

F(D2 (n - 1), k) = 3n - 2k - s. (3.14) 

Take Xo {2, 3, 4,"" 2k-n+2, 2k-n+3, 2k-n+5,···, n-1}. Then IXol = k 
and it is not difficult to verify that there is no walk of odd length 3n - 2k - s -1 from 
any vertex of Xo to the vertex n. So we have F(D2(n - 1), k) ~ eXPD2(n-l)(XO) 2:: 
3n - 2k - s. 

On the other hand, let X be any k-vertex subset of D2(n - 1). There are ad
jacent vertices of D2 (n - 1) in X. Let l = min{ d(j, 2) I j E X and there exist i E 
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X such that (i,j) E E(D2(n - I))}, which implies that 1 ::; 2n - 2k - 2. Then 
eXPD2(n-l)(X) ::; l + n - s + 2::; 3n - 2k - s. 

So we obtain (3.14). Noticing that 4 ::; s ::; 2k - n + 4 we also have 

n 
{i\iisevenand 4n-4k-4::;i::;3n-2k-4}~E~k' ("2::;k::;n-2). (3.15) 

The theorem now follows from (3.5)-(3.7), (3.9) and (3.11)-(3.13), (3.15). I 

Theorem 3.3 Let n be odd and 2 ::; k ::; n - 2. Then 

3n - 2k - 3 E E~k' (3.16) 

Proof. We consider D = D(A) with vertex set V(D) = {I, 2"", n} and arc set 
E(D) = ([I, 2], [2,3]' (3,4), (4,5)", " (n - 1, n),"', (n, In. 

It is obvious that A E QB~. Let R = {2, n}. We will prove that 

F(D, k) = 3n - 2k - 3. (3.17) 

Case 1: 2:S; k ::; Take Xo = {4, 6"", 2k + 2} (if k = n;-l, then Xo = 
{4, 6" ", n - 1,1}). Then IXol = k and there is no walk of odd length 3n - 2k - 4 
from any vertex of Xo to the vertex n. So F(D, k) 2: 3n 2k - 3. 

On the other hand, let X be any k-vertex subset of D. If {I, 2, 3} n X #- 0, then 
by (1.4) we have eXPD(X) ::; n - 1 + n - 1 ::; 3n - 2k - 3. If {I, 2, 3} n X = 0 and 
there are adjacent vertices of D in X, then eXPD(X) ::; n - 5 + n < 3n - 2k - 3. If 
{I, 2, 3} n X = 0 and there are not adjacent vertices of D in X, then k ::; n;-3. By 
(1.4) we have eXPD(X) ::; n - 2k - 2 + n + n 1 = 3n - 2k - 3. 

So we obtain (3.17) for 2 ::; k ::; n;-l. 
Case 2: n!l::; k ::; n-2. Take Xo = {I, 3, 4, 5"", 2k-n+3, 2k-n+5,"', n-1}. 

Then IXol = k and there is no walk of odd length 3n - 2k - 4 from any vertex of Xo 
to the vertex n. So F(D, k) 2: 3n - 2k - 3. 

On the other hand, let X be any k-vertex subset of D. There are adjacent vertices 
of D in X. Let 1 = min{d(j, I) I j E X and there exist i E X such that (i,j) E 
E(Dn, which implies that l::; 2n-2k-2. Then eXPD(X)::; l+n-1::; 3n-2k-s. 

So we obtain (3.17) for n!l ::; k ::; n - 2. 
Now it is straight forward to obtain (3.16) from Case 1 and Case 2. III 

Lemma 3.4 ([4]) Let digraph Dt be the digraph with the same vertex set as D in 
which there is an arc from x to y iff there is a walk of length t from x to y in D. If 
D is a primitive digraph, then for any positive integer t, Dt is a primitive digraph. 

Theorem 3.5 Let n be even. 
(1) If n~4 ::; k ::; n - 2, then 

3n - 2k - 2 E E~k' 

(2) If 2 ::; k ::; n!2 and A E QB~, then 

F(A,k) ::; 3n - 2k - 3. 
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Proof. (1) ::; k ::; n - 2. We consider D = D(A) with vertex set V(D) = 
{1,2,···,n} and arc set E(D) = {(n - 2,n - 1),(n - l,n),(n,n - 4),(n - 3, 
n - 4), (n - 4, n - 5)"", (4,3), (3,2), (3, n - 2), [2, 1], (1, n - 3)}. 

It is obvious that A E QB~. Take Xo = V(D)\{2, 4"", 2(n-k)}. Then IXol = k 
and it is not difficult to verify that there is no walk of length 3n - 2k - 3 from any 
vertex of Xo to the vertex n. By (3.1) we have F(D, k) = 3n - 2k - 2. This implies 
that 3n 2k 2 E E~k' 

(2) 2 ::; k ::; nt2 and A E QB~. Let D be the associated digraph of A whose 
shortest odd cycle length is r (3 ::; r ::; n - 1) and C2 = [u, v] the 2-cycle of D. Let 
X be any k-vertex subset of D and y any vertex of D. In the following we only need 
to prove that there is a vertex x E X and a walk of length 3n - 2k - 3 from x to y. 

Let q min{ d( u, y), d( v, y n. If q ::; n - 3, then we can take a vertex v of C2 such 
that there is a walk of length n - 3 from v to y. Consider that digraph D2. Since 
v is a loop of D2, there is a vertex x in X such that there exists a walk of length 
n - k from x to v in D2. Hence there is a walk of length 2(n k) from x to v in D. 
According to above arguments, there is a walk of length 2( n - k) + n - 3 = 3n - 2k - 3 
from x to y. 

If q = n 2. Let d(v, y) = n - 2. We consider two cases. 
Case 1: There are not adjacent vertices of Din X. Let Xo be the vertex of X which 

is closest to v. Then for each positive integer p with p ~ d(xo, v) + n - 2 + ¢(2, r), 
there exists a walk of length p from Xo to y. 

Subcase 1: {u, v} nX f=. 0. If u E X, then for each positive odd integer p 2:: n -1, 
there is a walk of length p from u to y. This implies that there is a walk of length 
3n-2k-3 from u to y. Ifv EX, noticing that n-2+¢(2,r) ::; n-2+2(n-k)-2 = 
3n - 2k - 4, then there is a walk of length 3n - 2k - 3 from v to y. 

Subcase 2: {u, v} n X = 0 and there exists Cr such that V (Cr ) n X = 0. Then 
r ::; n - k. Since d(xo, v) + n - 2 + ¢(2, r) ::; n - k + n - 2 + n - k -1 = 3n - 2k - 3, 
there is a walk of length 3n - 2k - 3 from Xo to y. 

Sub case 3: {u,v} n X = 0 and there exists Cr such that V(Cr ) n X f=. 0. Let 
IV(Cr ) n XI = m (2 ::; m ::; k). Then d(xo, v) ::; n - k - (m - 1). When m < k we 
have n - k - (r m) 2:: k - m - 1, namely, r ::; n - 2k + 2m + 1. 

Ifm::; k-2, then d(xo,v)+n-2+¢(2,r) ::; 3n-3k+m-l ::; 3n-2k-3. Ifm = k, 
then d(xo, v)+n-2+¢(2, r) ::; n-k-(k-l)+n-2+n-2 = 3n-2k-3. Ifm = k-l, 
noticing r f=. n -1, then d(xo, v) + n - 2 + ¢(2, r) S n - k - (k - 2) + n - 2 + n - 4 < 
3n - 2k 3. Hence, there is a walk of length 3n - 2k - 3 from Xo to y. 

Case 2: There are adjacent vertices of Din X. Let 1 = min{d(j, v) I j E X and 
there exist i E X such that (i,j) E E(D)}. 

Subcase 1: 1 S 2(n - k) - 1. Since v E V(C2 ), there is a vertex x in X such that 
there exists a walk of length 2(n - k) - 1 from x to v. Therefore there is a walk of 
length 3n 2k - 3 from x to y. 

Sub case 2: 1 = 2(n - k) and r S 2(n - k) - 1. Then v E X and there is a walk of 
length p from v to y for each positive integer p with p 2:: n - 2 + </>(2, r). Therefore 
there is a walk of length 3n - 2k - 3 from v to y. 

Subcase 3: 1 = 2(n - k) and r ~ 2(n - k) + 1. Then v E X,U tf. X, k = nt2,r = 
n - 1 and 3n - 2k - 3 = 2n - 5. It is obvious that at least one of u and v is on 
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Cn- I for each odd cycle Cn-I. If there exists a vertex x in X such that d(x, y) is 
even and 2 ::; d(x, y) ~ n - 4, since x is in V(Cn-r), then there is a walk of length 
p from x to y for each positive odd integer p 2': d(x, y) + n - 1. This implies that 
there is a walk of length 2n - 5 from x to y. Otherwise, it is obvious that y E X and 
X = V(D)\{u, i I d(i, y) is even and 2::; d(i, y) ~ n - 4}. We consider two cases. 

(a) If there exists Cn-I, such that y E V(Cn- I ). Noticing that y E X, there is a 
walk of length p from y to y for each positive odd integer p 2': n - 1. Therefore there 
is a walk of length 2n - 5 from y to y. 

(b) If y ~ V (Cn- I ) for each odd cycle Cn-I' Since D is a strongly connected 
digraph, there exists Cm (4 ::; m ~ n), such that y E V(Cm). If m = n, letting x be 
vertex such that d(x, y) = n - 5, then x E X and there is a walk of length 2n - 5 
from x to y. If m = n - 2, letting x be vertex such that d(x, y) = n - 3, then x E X 
and there is a walk of length 2n - 5 from x to y. If m ~ n - 4, then there is a walk 
of length p from y to y for each positive odd integer p 2': m + n - 1. Therefore there 
is a walk of length 2n - 5 from y to y. 

This completes the proof of the theorem. III 

Theorem 3.6 Let n, k be positive integers with 2 ::; k ::; n - 2. Then 

{4 5 ... 2n - k - 2} C E O
k '" - n' 

(3.20) 

Proof. Suppose 4 ~ m ::; n. Let D3(m), D4{m) be the digraphs of order n 
with vertex sets V(D3(m)) = V(D4(m)) = {1,2, .. ·,n} and arc sets E(D3(m)) = 

{[I, 2], [1, 3J, [2, 3], (3, 4), (4, 5)"", (m -1, m),"', (m, m+ 1), (m, m+2),"', (m, n), 
(m + 1,1), (m + 2,1), .. ·, (n, I)}, E(D4(m)) = ([I, 2], [1,3], [2,3], (3,4), (4,5),·", 
(m - 1, m),"', (m, m + 1), (m, m + 2)"", (m, n), (m + 1,1), (m + 2,1)"", (n, 1), 
(m + 1,3), (m + 2,3), .. " (n, 3)}. 

It is obvious that the adjacency matrices of D3(m) and D4(m) belong to QB~. 
(1) Firstly, we will prove that if 4 ~ m ::; k + 2 then 

F(D3(m), k) = m. (3.21) 

Take Xo = {3, 4,5, . ", k + 2}. Then IXol = k and it is not difficult to verify that 
there is no walk of length m - 1 from any vertex of Xo to the vertex n. So we have 
F(D3(m), k) 2': m. 

On the other hand, let X be any k-vertex subset of D3(m). If {I, 2, 3} n X =I- 0, 
then eXPD3(m)(X) ::; m. If {I, 2, 3} nX = 0, then {m+ 1, m+ 2"", n} n X =I- 0 and 
exp D3(m) (X) ::; m. 

Hence (3.21) holds. 
(2) Secondly, we will prove that if k ~ n - 3 and k + 3 ::; m ::; n then 

F(D3(m), k) = 2m - k - 2. (3.22) 

Take Xo = {4, 5,' ", k + 3}. Then IXol = k and it is not difficult to verify that 
there is no walk of length 2m - k - 3 from any vertex of Xo to the vertex n. So we 
have F(D3(m), k) 2:: 2m - k - 2. 
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On the other hand, let X be any k-vertex subset of D3(m). If {I, 2, 3} n X =j:. 0, 
then eXPD3(m) (X) ~ m. If {I, 2, 3}nX = 0, then eXPD3(m) (X) ::; m+ 1- k -3+m = 
2m - k - 2. 

So (3.22) holds. 
(3) Thirdly, we will prove that if k ~ n - 3 and k + 3 ::; m ::; n then 

F(D4(m), k) = 2m - k - 3. (3.23) 

Take Xo = {4, 5, "', k + 3}. Then IXol = k and it is not difficult to verify that 
there is no walk of length 2m - k - 4 from any vertex of Xo to the vertex n. So we 
have F(D4(m), k) 2:: 2m - k - 3. 

On the other hand, let X be any k-vertex subset of D4(m). If {I, 2, 3} n X =j:. 0, 
then eXPD4(m) (X) ::; m. If {I, 2, 3}nX = 0, then eXPD4(m) (X) ::; m+l-k-3+m-l = 
2m - k - 3. 

So (3.23) holds. 
The theorem now follows from (3.21), (3.22) and (3.23). I 

Theorem 3.7 If k = 2, then {2, 3} ~ E~k' If 3 ~ k ~ n - 2, then {I, 2, 3} ~ E~k' 

Proof. (1) Suppose 2 ::; k ::; n - 2. Let D(A) be the digraph of order n with vertex 
set V(D(A)) = {I, 2, ... ,n} and arc set E(D(A)) = {[I, 2], [2,3]' [2,4]' .. " [2, n], 
(3,1), (4,1)" ", (n, In. 

It is obvious that A E QB~ and F(D(A), k) = 2. So 2 E E~k' 
(2) Suppose 2 ::; k ::; n - 2. Let D(A) be the digraph of order n with vertex set 

V(D(A)) = {I, 2, ... ,n} and arc set E(D(A)) = {[I, 2], (2, 3), (2,4), .. " (2, n), [3, 1], 
[4,1]'· ", [n, I]}. 

It is obvious that A E QB~ and F(D(A), k) = 3. So 3 E E~k' 
(3) Suppose 3 ::; k ::; n - 2. Let D(A) be the digraph of order n with vertex 

set V(D(A)) = {I, 2,"" n} and arc set E(D(A)) = {(i,j) I i,j = 1,2,,,,, nand 
i =j:. j} \ {(2, In. 

It is obvious that A E QB~ and F(D(A), k) = 1. So 1 E E~k' 
This completes the proof of the theorem. I 

Theorem 3.8 Let n, k be positive integers with 2 ::; k ~ n - 2. 
(1) If n is even and 2 ::; k ::; n!2, then 

E O
k = {I 2 ... 3n - 2k - 3}\S 

n '" • 

(2) If n is even and n!4 ::; k ~ n - 2 or n is odd, then 

E O
k = {I 2 ... 3n - 2k - 2}\S 

n '" . 

where S = {I} when k = 2, otherwise S = 0. I 
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