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Abstract 

The concept of defining set has been studied in block designs and, under 
the name critical sets, in Latin squares and Room squares. Here we study 
defining sets for directed designs. A t-(v, k,'x) directed design (DD) is a 
pair (V, B), where V is a v-set and B is a collection of ordered blocks (or 
k-tuples of V), for which each t-tuple of V appears in precisely ,X blocks. 
A set of blocks which is a subset of a unique t-( v, k, 'x)DD is said to be a 
defining set of the directed design. 

As in the case of block designs, finding defining sets seems to be a 
difficult problem. In this note we introduce some lower bounds for the 
number of blocks in smallest defining sets in directed designs, determine 
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the precise number of blocks in smallest defining sets for some directed 
designs with small parameters and point out an open problem relating 
to the number of blocks needed to define a directed design as compared 
with the number needed to define its underlying undirected design. 

1 Introduction and some basic results 

Let v, k, t,). be integers such that 0 < t < k < v and), > 0, and let V be a set 
of v elements. In this note, by a k-tuple of V, we mean a k-subset of V, ordered 
in the sense that the k-tuple (aI, a2, ... ,ak) contains all and only the t-tuples of V 
(ail' ai2' ... , ait) with i1 < i2 < ... < it. Each k-tuple of V is called a block. In other 
words, a t-tuple is said to appear in a k-tuple if its components are contained in that 
block as a set, and if they are written in the same order. For example the ordered 
triples abc, abd, acd and bcd, but not the ordered triple acb, appear in the 4-tuple 
abed. 

A t-(v, k,).) directed design (or simply a t-(v, k, )')DD) is a pair (V, B), where V is 
a v-set, and B a collection of blocks, such that each t-tuple of V appears in precisely). 
blocks of B. Directed designs were introduced in 1973 by Hung and N. S. Mendelsohn 
[10] who dealt with the case where k = 3. For further information see the survey 
papers by Colbourn and Rosa [5], Bennett and Mahmoodi [1] and E. Mendelsohn 
[17]. 

If the ordering of the blocks of a t-( v, k, )')DD is ignored, then the unordered 
blocks form an underlying t-design. A straightforward counting argument shows 
that this t-design has parameters t-(v, k, ).t!). Thus the 2-(6,3,1), 2-(7,3,1) and 2-
(7,4,I)DDs (dealt with in Section 3) have underlying t-designs with parameters 
2-(6,3,2),2-(7,3,2) and 2-(7,4,2) respectively. 

Every t-(v, k, )')DD is a (t - 1)-(v, k, X)DD, where X = A.t(v - t + 1)/(k - t + 1) 
[1]. Consequently every t-(v,k,).)DD is an s-(v,k,A.s)DD, for 0 ~ s ~ t -1 where 

As = ).t! (v - s) / s! (k - s). 
t-s t-s 

(1) 

Equation 1 shows that necessary conditions for the existence of a t-(v, k, ).)DD are 
that each ).S is an integer. It has been shown (Bennett, Mahmoodi, Wei and Yin [2], 
Seberry and Skillicorn [18], D. J. Street and Seberry [22], D. J. Street and Wilson [23]) 
that when t = 2 and k = 3,4,5 or 6, these necessary conditions are also sufficient, 
except in two cases: neither a 2-(15,5, I)DD nor a 2-(21,6, I)DD exists. It has also 
been shown (Soltankhah [19], Grannell, Griggs and Quinn [8]) that when t = 3 and 
k = 4 the necessary conditions are again sufficient. 

A set of blocks which is a subset of a unique t-( v, k, A)DD is said to be a defining 
set of the directed design, denoted by d*(t-(v, k, A)). For example, the set of blocks 
R = {123,214} can be completed to a 2-(4,3, I)DD in two ways: by adjoining either 
{431, 342} or {341, 432}. Hence R is not a defining set of either design. But the set 
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of blocks 8 = {123, 431} is a defining set of a directed design with the blocks {123, 
431, 214, 342}. 

A minimal defining set is a defining set, no proper subset of which is a defining 
set. A smallest defining set, denoted by d:(t-(v, k, ..\)), is a defining set which has 
smallest cardinality. Every t-(v, k, ..\)DD has a defining set (the whole design) and 
hence a smallest defining set. A d*(t-(v, k, ..\)) consisting of blocks of a particular 
t- ( v, k, ..\) directed design D is denoted by d* D and a smallest defining set by d: D. 

A (v, k, t) directed trade (or simply a (v, k, t)DT) of volume s consists of two 
disjoint collections Tl and T2, each of s blocks, such that every t-tuple of V is covered 
by precisely the same number of blocks of Tl as of T2 . Such a DT is usually denoted 
by T = Tl - T2. Blocks in Tl (T2) are called the positive (respectively, negative) 
blocks of T. If D = (V, 8) is a directed design, and if Tl ~ 8, we say that D contains 
the directed trade T. We often find it convenient to call a block of D which contains 
the element x an x-block. 

In 1984, Curtis [6] found a smallest defining set for the unique Witt design with 
parameters 5-(24,8,1) but the concept of defining sets for block designs in general 
was introduced by K. Gray [9]; recent surveys include [20], [21]. A similar idea 
has been studied in Latin squares and Room squares under the name critical sets; 
see for example Donovan and Hoffman [7], van Rees and Bate [24], the survey by 
Keedwell [11], Chaudhry and Seberry [3]. Defining sets for vertex colourings and 
edge colourings of graphs have also been studied; see for instance [11], Mahmoodian 
[13] and Mahmoodian, Naserasr and Zaker [14]. 

Here we consider defining sets for directed designs (as suggested by A. P. Street 
in [15]) beginning with propositions similar to those of K. Gray [9] for block designs. 

Proposition 1. Let D = (V,8) be a t-(v, k,..\) directed design and let S ~ 8. Then 
8 is a defining set of D if and only if 8 contains a block of every (v, k, t) directed 
trade T = Tl - T2 such that T is contained in D. 

Proof. First, suppose that 8 is a defining set of D and that T = Tl - T2 is a 
directed trade such that Tl ~ 8 and 8 n Tl = 0. Then 8 ~ 8 \ Tl and the directed 
designs (8 \ T1 ) UTi, for i = 1,2, are a pair of distinct t-(v, k, "\)DDs containing 8. 
This contradicts the assumption that 8 is a defining set. 

Next, suppose that 8 intersects every directed trade T contained in D, and that 
8 is not a defining set of D. Then 8 ~ D' for some t-( v, k,..\) directed design D' = 
(V,8') distinct from D. Hence R = 8\8 must contain the same t-tuples as R' = 8'\8 
and there must exist a directed trade T = Tl - T2, where Tl ~ R, T2 ~ R'. But 
now 8 n Tl = 0, contradicting the assumption that 8 intersects every directed trade 
contained in D. 0 

We also have the following related result. 

Proposition 2. Let D = (V, 8) be a t-( v, k,..\) directed design and let Tl ~ 8. If Tl 
contains a block of every defining set of D then, for some T2, T = Tl - T2 contains 
a directed trade. 
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Proof. Since 13 \ Tl contains no defining set of D, it can be completed in at least 
two ways to directed designs with the same parameters as D: first, to D itself by 
taking (13 \ T1) UTI; secondly, to D' by taking (13 \ Td U T2 = Bf. But now Tl and 
T2 contain the same t-tuples, and T = Tl - T2 contains a directed trade. 0 

Now every permutation on the elements of V induces a mapping from one k-tuple 
to another. An automorphism of a set of blocks X is a permutation of the elements 
of V which induces a permutation of the blocks of X. Let Aut(X) denote the group 
of all automorphisms of X. 

Proposition 3. Suppose S is a particular defining set of a t-(v, k, A) directed design 
D, and a E Aut(D). Then a(S) is a defining set of D and Aut(S) is a subgroup of 
Aut(D). 

Proof. Let a be an automorphism of D, so that a(D) = D. Clearly, if S is a 
defining set of D then a(S) is also a defining set of D. 

Suppose a* is any automorphism of S. Since S ~ B, we have a*(S) ~ a*(B). So 
a*(S) = S is a subset of B and of a*(B). But, since D is a t-(v, k, A)DD, so is a*(D), 
and since S is a defining set, a*(D) = D. Hence a* is an automorphism of D. 0 

Proposition 4. For k > 2, no automorphism of a 2-(v, k, l)DD consists of a single 
transposition. 

Proof. Without loss of generality, suppose we have a 2-( v, k, l)DD on {I,···, v}, 
and that this design is fixed under the permutation (12). The element 1 belongs to 
some block, say B, where 2 rJ. B. For some elements x and y, both different from 1, 
B must contain the ordered pair xy. Since (12) is an automorphism, Band (12)B 
are two distinct blocks, each containing the ordered pair xy. This contradicts the 
fact that A = 1. 0 

Corollary. For k > 2, any d*(2-(v, k, 1)), S, has at least v-I elements occurring in 
its blocks. 

Proof. If two elements x and y do not appear in any block of S, then we have (xy) E 

Aut(S). By Proposition 3, (xy) E Aut(D), where D is the unique 2-(v, k, l)DD 
containing S. This contradicts Proposition 4. 0 

Proposition 5. Let Dl = (V, Bd and D2 = (V, 132) be directed designs with param­
eters t-(v, k, Ad and t-(v, k, A2) respectively, and let D = (V,131 U B2) = Dl U D2 
which is a directed design with parameters t-(v, k, Al + ),2). If S is a defining set of 
D, then 

182 



Proof. Suppose that 181 < Id:D1 1 + Id:D21; we show there is a contradiction. The 
blocks of Dl and D2 partition the blocks of D and consequently of 8, with nj blocks 
of 8 in D j , for j 1,2. Then nj < Id:Djl for at least one value of j = 1 or 2, and 
for this value of j (by the definition of smallest defining set) these nj blocks belong 
to two distinct designs, say D j and Dj, with the same parameters as the design D j. 
So S is a subset of two distinct t-(v, k, Al + A2)DDs, namely D£ U D j and D£ U Dj, 
where e E {I, 2} \ {j}. Hence S is not a defining set of D. 0 

Corollary. If each Di is a t-{v, k, Ai)DD for i = 1"", n and if D = Ui=lDi, then 

n 

Id:DI 2: L Id:Dd· 
i=l 

2 The case k == 3 

In this section we introduce a lower bound for Id:DI, where D is a directed design 
with k = 3. First we prove some lemmas which will be useful in our discussion. 

Lemma 1. Let D be a 2-(v, 3,1) directed design based on the set V and let x E V. 
Then x appears in every positive block of some directed trade contained in D. 

Proof. Let x E V and consider all the x-blocks of D. Two cases may occur. 
(a) First, there may be an element appearing next to x in two of these blocks, say 
for example xab and bax, or xab and axe for some elements a, b, c E V. (There are 
six possibilities altogether.) Then we have a directed trade of x-blocks, such as 

Tl = {xab, bax }, T2 = {xba, abx} 

or 
Tl = {xab, axe}, T2 = {axb, xac}. 

(b) Otherwise no other element appears next to x in more than one x-block of D. In 
this case some of the x-blocks have a structure such as 

which forms a directed trade with the blocks 

In either case the lemma is true. o 

Corollary. If 8 is a defining set for a 2-(v, 3,1) directed design D, then all the 
elements of V appear in the blocks of 8. 

Proof. This follows from Lemma 1 by Proposition 1. o 
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Lemma 2. Let S be a defining set of a 2-(v, 3,1) directed design, D. If an element 
x appears only once in S, then x is the second element of at most one block in D \ S. 

Proof. Suppose that a and b are the elements which appear in the sole x-block in 
S, and that cxd is a block in D \ S in which x appears in the second place. 
As in the proof of Lemma 1, consider when two elements may appear next to each 
other in the x-blocks of D \ S. The block dxc would form, with cxd, a trade disjoint 
from S and thus cannot occur. Neither can there be any other pair of elements 
which occur next to each other in more than one x-block of D \ S. Hence all the 
other x-blocks in D \ S have the form 

and 
dYIX, XY2Yb Y2Y3 X ,"', Yk-lYk X , XZYk' 

Suppose that {a, b} n {c, d} = 0. Since V is finite, the elements wand z must be 
chosen from the set {a, b}. So x appears in at most one block as a second element. 

The cases in which c or d, or both, belong to the set {a, b} can be dealt with similarly. 
o 

Lemma 3. Let S be a defining set of a 2-(v, 3,1) directed design D. If two elements 
x and Y appear only once each in S, then they must appear in different blocks of S. 

Proof. Suppose that x and y occur in the same block of S, together with the 
element z. Then the elements x andy must appear together in a block B of D \ S. 
We show that there exists a directed trade T= T1-T2 , with Tl ~ D\S, contradicting 
the fact that S is a defining set. There are two cases to be considered. 
(a) The other element in B is z. Then without loss of generality some of the blocks 
in D \ S are of the form 

where f S v - 3. As in the proof of Lemma 1, this implies that D \ S contains all 
the positive blocks of a directed trade. 
(b) The other element of B is w i= z. Then without loss of generality the following 
four cases must be investigated: 

(i) xyz E S, yxw E D \ Sj 
(ii) xzyES, yWXED\Sj 
(iii) xyz E S, ywx E D \ Sj 
(iv) xzy E S, yxw E D \ S. 

We note that the cases with zxy E S are similar to cases (i) and (iii), and so on, 
since interchanging the first and last elements of each block gives another directed 
design with the same parameters. Again the case of xy z E S, wyx E D \ S is similar 
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to case (i), and the case of xzy E S, wyx E D \ S is similar to case (iv). We show 
that each case leads to a contradiction. 

(i) In this case, by Lemma 2, x does not appear as a second element in any other 
block of D \ S. Thus x appears once as the second element of a block of D, and 
(r - 1)/2 times each as the first element of a block and as the third element, where 
r is the replication number of each element in D. But r = v -1, so v is even. Now if 
y also appears as the second element in a block of D \ S, then a similar count shows 
that v must be odd, which is a contradiction. So neither x nor y appears as the 
second element in any other block of D \ S. This implies that all the blocks in D \ S 
which contain either x or y (but not both) form the positive blocks of a directed 
trade (since applying the permutation (xy) to those blocks gives the negative blocks 
of the trade). 

(ii) In this case x does not appear as a second element in any block of D \ S. For 
then, as in the proof of Lemma 2, D \ S contains either the block axw or the block 
xwb, which is impossible. The same is true for the element y. Thus neither x nor 
y appears as the second element in any other block of D \ S. Now a directed trade 
can be constructed in D \ S as follows: to any of the other v - 3 x-blocks, say xab 
or abx, we take aby or yab respectively as negative blocks of the trade, and similarly 
for any of the other v - 3 y-blocks. 

(iii) As in case (ii), neither x nor y appears as the second element in any other block 
of D \ S. Thus x appears as the first element of a block (v - 1)/2 times, implying 
that v is odd. But y appears (v - 2)/2 times as the first element of a block, implying 
that v is even, a contradiction. 

(iv) As in case (i), x does not appear as a second element in any other block of D \ S, 
so v must be even. Thus the other x-blocks are 

If £ < v - 4, then as in the second part of Lemma 1, a directed trade can be 
constructed in the remaining x-blocks of D \ S. So £ = v - 4, and all v - 3 x-blocks 
not initially assumed have appeared in the set of blocks given above. Now if y does 
not appear as a second element in any other block of D \ S, then v must be odd which 
is impossible. Thus y must appear as a second element in one block of D \ S, the 
other y-blocks are the same as those in Lemma 2 and the elements y and z appear 
next to each other in a block of D \ S. 

Now a directed trade can be constructed in D \ S as follows: for each of the other 
v - 3 x-blocks, take a corresponding block in which x is replaced by y; for each of the 
other v - 3 y-blocks, take a corresponding block in which y is replaced by x; finally, 
for the block Xv-4ZX take the corresponding block X v-4YZ, and for the block which 
contains yz, say ayz, take the corresponding block azx. 0 

The following theorem gives a lower bound for the number of blocks in a defining 
set of a 2-( v, 3, l)DD. 

Theorem. Let D be a 2-(v, 3, I)DD, then Id:DI ~ v/2. 
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Proof. Let S be a defining set of D and let lSI = s. Then by the Corollary to 
Lemma 1, there exist at most s elements each of which appears in precisely one 
block of S. By Lemma 1, each of the other (v - s) elements appears in at least two 
blocks of S. Since there are only 3s entries in the blocks we have 

8 + 2(v - 8) ~ 38, 

and the result follows. o 

Note that the Lemmas of this section are not necessarily true if k > 3 as shown 
in the case of the 2-(7,4, I)DD of the next section. 

3 Defining sets of some small directed designs 

In this section we discuss the defining sets for small directed designs, starting with 
the smallest nontrivial case. For all the examples in this section, the method for 
finding the lower bound on the cardinality of a smallest defining set is similar to the 
techniques of integer programming used for example by Khodkar [12]. The upper 
bound on the cardinality of a smallest defining set is found by taking a subset of the 
set of blocks of the design and showing that it completes uniquely. In each table, the 
blocks of the defining sets are shown in boldface. 

2-( 4,3,1 )DDs 
It is easily shown that, up to isomorphism, there are three 2-(4,3,1)DDs, each 

having automorphism group of order 4 and smallest defining set of cardinality 2. 
Examples of each design are given in Table 1, together with generators of their 
automorphism groups. 

123 431 214 342 
123 341 214 432 
123 314 241 432 

(1324) 
(12)(34), (13)(24) 

(1243) 

Table 1: The three 2-(4,3,1) DDs: smallest defining sets and group generators 

2-(6,3,I)DDs 
Given a 2-(6,3, I)DD on the set V = {l,.'., 6}, consider the positions of each 

element in the 10 blocks of this design. For the element x, let Xi be the number of 
appearances of X in position i, where 1 ~ i ~ 3. Counting the number of ordered 
pairs containing x gives 2XI + X2 = 5 = X2 + 2X3, so that Xl = X3 E {O, 1, 2}, 
X2 E {I, 3, 5}. This leads to three possible solutions: 

(Xb X2, X3) = (0,5,0) or (1,3,1) or (2,1,2). (2) 
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Clearly for each fixed position i we have 

L Xi = 10, i = 1,2,3. 
lsxS6 

For j E {1, 2, 3}, let aj be the number of elements with frequencies as in the jth 
solution of Equation 2 above. Then 

and we have for the first and third positions 

and for the second position 

These three equations together give two solutions: 

(3) 

Colbourn and Colbourn [4] showed that there are 32 2-(6,3,1)DDs. We find that 30 
of these, all with trivial automorphism groups, correspond to the first solution of 
Equation 3, and that the remaining two, both with automorphism groups of order 
5, correspond to the second. Of those corresponding to the first solution, designs 
1" .. , 28 in Table 2 have smallest defining sets of cardinality 5, whereas designs 29 
and 30 have smallest defining sets of cardinality 4. Both of those corresponding to 
the second solution (designs 31 and 32) have smallest defining sets of cardinality 4. 
We note that the automorphism groups of designs 31 and 32 are generated by the 
permutations (13564) and (12463) respectively. 

2-(7,3,I)DDs 

Up to isomorphism, there are 2368 2-(7,3,1) directed designs [4] of which only 
221 have non-trivial automorphism groups. As an example, we show one of them 
(the first listed with non-trivial automorphism group), with automorphism group 
generated by (16)(23)(47), and smallest defining set of cardinality 6. 

123 214 315 416 517 265 427 632 734 367 453 752 564 761. 

2-(7,4,I)DDs 

It is shown in [16] that, up to isomorphism, there exist two 2-(7,4,1)DDs. Each has 
automorphism group of order 7 and smallest defining set of cardinality 2. Examples 
of each design are given in Table 3, together with generators of their automorphism 
groups. 

Open question 

The unique 2-(6,3,2) design has smallest defining set of cardinality three, but 
each of the 2-(6,3,1)DDs needs at least four blocks to form a defining set. The 
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# 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

123 214 315 416 425 326 534 643 561 652 
123 214 315 416 425 326 534 643 651 562 
123 214 315 416 425 526 362 534 643 651 
123 214 315 416 425 526 362 634 543 651 
123 214 315 416 425 526 632 364 543 651 
123 214 315 416 256 362 534 452 643 651 
123 214 315 416 256 362 634 452 543 651 
123 214 315 416 256 362 634 542 453 651 
123 214 315 416 256 632 364 452 543 651 
123 214 315 416 256 632 364 542 453 651 
123 214 315 416 265 362 534 452 643 561 
123 214 315 416 265 362 634 452 543 561 
123 214 315 416 265 362 634 542 453 561 
123 214 315 416 265 632 364 452 543 561 
123 214 315 416 265 632 364 542 453 561 
123 214 315 416 625 326 534 452 643 561 
123 214 315 416 625 326 634 452 543 561 
123 214 315 416 625 326 634 542 453 561 
123 214 315 516 265 362 534 461 452 643 
123 214 315 516 265 362 534 641 452 463 
123 214 315 516 265 632 534 436 641 452 
123 214 315 516 265 632 346 641 452 543 
123 214 315 516 625 326 534 461 452 643 
123 214 315 516 625 326 534 641 452 463 
123 214 315 516 625 326 634 461 452 543 
123 214 315 516 625 326 634 461 542 453 
123 214 156 . 625 326 351 634 461 542 453 
123 214 156 625 326 531 634 435 461 542 
123 145 316 241 325 526 634 462 543 651 
123 145 316 241 256 352 634 462 543 651 
123 145 316 421 624 325 526 534 463 651 
123 154 316 241 256 352 634 462 453 651 

Table 2: Smallest defining sets of the 32 2-(6,3,I)DDs 

1234 3156 2617 7541 5372 6425 4763 
1234 4156 5317 2761 6473 7542 3625 

Id;1 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
5 
4 
4 
4 
4 

Table 3: The two 2-(7,4,I)DDs: smallest defining sets and group generators 
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unique 2-(7,4,2) design has smallest defining set of cardinality three, but each of 
the 2-(7,4,1)DDs needs only two blocks to form a defining set. On the other hand, 
each of the four 2-(7,3,2) designs has smallest defining set of cardinality six, and 
so does the 2-(7,3,1)DD considered above. In general, how does the cardinality of 
the smallest defining set of a directed design compare with that of its underlying 
undirected design? 
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