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Abstract 

Galvin ([7]) proved that every k-edge-colorable bipartite multigraph is k
edge-choosable. Slivnik ([11]) gave a streamlined proof of Galvin's result. 
A multigraph G is said to be nearly bipartite if it contains a special vertex 
Vs such that G - Vs is a bipartite multigraph. We use the technique in 
Slivnik's proof to obtain a list coloring analog of Vizing's theorem ([12]) 
for nearly bipartite multigraphs, and to obtain an extension (suggested 
by Woodall ([13])) of Galvin's result to multigraphs whose underlying 
simple graph is bipartite 'plus one edge'. We also prove that for any 
nearly bipartite multigraph G with special vertex Vs of degree at most 
six, if G is k-edge-colorable then G is k-edge-choosable. 

1 Introduction 

We refer the reader to ([1]) or ([8]) for all terminology and notation that is not 
defined in this paper. 

Let G be a multigraph with vertex set V(G) and edge set E(G). A proper edge 
coloring of G is an assignment of colors to the edges of G in such a way that no 
two adjacent edges are assigned the same color. Multigraph G is said to be k-edge
colorable if there exists a proper edge coloring of G in k colors. Given a family of 
sets of colors C = {C (e): e E E( G)}, G is said to be C -list-colorable if there exists 
a proper edge coloring of G such that for each edge e E E ( G), e is assigned a color 
from C(e). Multigraph G is said to be k-edge-choosable if G is C-list-colorable for 
any family of sets of colors C = {C(e): e E E(G)} satisfying IC(e)1 ~ k for every 
e E E ( G) . The chromatic index of G (denoted by X' ( G)) is the minimum k for 
which G is k-edge-colorable. The list chromatic index of G (denoted by X~ (G)) is the 
minimum k for which G is k-edge-choosable. 

For a multigraph G, we denote the degree of vertex v E V(G) by degc(v), the 
maximum degree of G by ~(G), and, the maximum edge-multiplicity of G by J.L(G) 
respectively. The following theorems of Konig ([9]), Vizing ([12]), and Shannon ([10]) 
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are well-known. 

Theorem 1 (Konig [9]). For any bipartite multigraph G, X'(G) = ,6.(G). 

Theorem 2 (Vizing [12]). For any multigraph G, X'(G) :::; ,6.(G) + j.L(G). 

Theorem 3 (Shannon [10]). For any multigraph G, X'(G) ::; ~,6.(G). 

Dinitz ([6]) asked the following question. 

Dinitz's Question. Given an n x n array of n-sets, is it always possible to choose 
one element from each set, keeping the chosen elements distinct in every row, and 
distinct in every column? 

It is clear that Dinitz's question asks whether it is true that xf (Kn,n) = n, where Kn,n 
is the complete bipartite graph with n vertices in each of its partite sets. Galvin ([7]) 
obtained the following list-coloring analog of Konig's Theorem 1, and settled Dinitz's 
question in the affirmative by proving that (more generally) the list chromatic index 
of any bipartite multigraph is equal to its maximum degree. 

Theorem 4 (Galvin [7]). For any bipartite multigraph G, X~(G) ,6.(G). 

Borodin, Kostochka, and, Woodall ([2]) strengthened Galvin's Theorem 4 as fol
lows to Theorem 5, and, used this strengthening to obtain a list-coloring analog of 
Shannon's Theorem 3 as follows in Theorem 6. 

Theorem 5 (Borodin, Kostochka, Woodall [2]). For any bipartite multigraph G, if 
C {G(e): e E E(G)} is any family of sets of colors such that for each e = (u, v) E 

E(G), we have that IG(e)1 ;::: max{degc(u),degc(v)} then, G is C-list-colorable. 

Theorem 6 (Borodin, Kostochka, Woodall [2]). For any multigraph G, xHG) :::; 
~Ll( G). 

Clearly, we have that Xl(G) ;::: X'(G) for any muitigraph G. Note that since by 
Theorem 1, X'(G) = .6..(G) for any bipartite multi graph G, Galvin's theorem implies 
that Xl (G) = x' (G) for any bipartite multigraph G. It has been conjectured (see 
([4]) for a history of this conjecture and results leading up to Galvin's Theorem) 
that Xl(G) = X'(G) for any multigraph G. This conjecture has become known as the 
List Chromatic Conjecture (LCC). 

Conjecture 1 (List Chromatic Conjecture (LCC)). For any multigraph G, Xl (G) = 
x'(G). 

For any multigraph G, it is clear that X'(G) is the minimum number of match
ings of G that are required to cover E( G), and that the maximum degree of G is a 
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lower bound for X' (G). Another lower bound for X' (G) can be derived as follows. We 
first note that if H is a multigraph of odd order at least 3 then, X'(H) ~ t(l0~~~1) 
since any matching in H contains at most ~(I V(H) I -1) edges. We denote this 
lower bound on X'(H) by t(H). Now, for 8 ~ V(G), denote by (8) the subgraph of 
G induced by the vertices in 8. 

Define r (G) by 

reG) = max{t((8)) : 8 ~ V(G), I 8 I~ 3, 18 I odd}. 

Clearly, rr ( G) 1 provides another lower bound for X' ( G). 
Combining the two lower bounds, .6.(G) and rr(G)l for X'(G) we get an improved 

lower bound, <p(G) = max{.6.(G), rr(G)l} for X'(G). We have that, 

X'(G) ~ <p(G). 

A multigraph G is said to be nearly bipartite if it contains a special vertex Vs such 
that G - Vs is a bipartite multigraph. Eggan and Plantholt ([5]) extended Theorem 
1 to nearly bipartite multigraphs in the following way. 

Theorem 7 (Eggan and Plantholt [5]) For any nearly bipartite multigraph G, X'(G) = 
<p(G). 

In this paper we study the list chromatic index of nearly bipartite multigraphs. 
Slivnik ([11]) has given a streamlined proof of Theorem 4. In Section 2 we give a 
sketch of Slivnik's proof of Theorem 4, and use his proof technique to obtain the 
following list coloring analog of Theorem 2 for nearly bipartite multigraphs. 

Theorem 8 For any nearly bipartite multigraph G, xf(G) ~ .6.(G) + M(G). 

In Section 3 we show that if G is a nearly bipartite multigraph with special ver
tex VS, C = {G(e) : e E E(G)} is a family of sets of colors satisfying IG(e)1 ~ X'(G) 
for each e E E(G), and the colors in U{G(e): e is incident to vs} can be partitioned 
in a certain way, then G is C-list-colorable. In Section 3 we also obtain an extension 
(suggested by Woodall ([13])) of Galvin's result to multigraphs whose underlying 
simple graph is bipartite 'plus one edge'. Although we have not been able to prove 
the LCC for nearly bipartite multigraphs in general, in Section 3, we obtain the fol
lowing theorem for nearly bipartite multigraphs for which the degree of the special 
vertex is at most six. 

Theorem 9 Let G be any nearly bipartite multigraph with special vertex VS' If 
degG (vs ) ~ 6, and if G is k-edge-colorable, then G is k-edge-choosable; 

2 Slivnik's proof and bounds on the list chro
matic index of nearly bipartite multigraphs 

In this section we give an outline of Slivnik's proof of Theorem 4 by Galvin, 
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and then use the proof technique to obtain a list coloring analog (Theorem 8 in 
the Introduction) of Vizing's theorem (Theorem 2 in the Introduction) for nearly 
bipartite multigraphs. 

Let G be a bipartite multigraph G with vertex partition V(G) = L U R, and let 
A : E (G) -+ N be a proper edge coloring of G. For e E E (G) we denote by Le 
and Re the end vertices of e in Land R respectively. A dominating matching in G 
with respect to A is a matching M ~ E(G) such that, for every edge e E E(G) \ M, 
there exists an edge! E M with either Le = L, and AU) > A(e) or Re = R, and 
AU) < A(e). Slivnik ([11]) proved that there exists a dominating matching in any 
bipartite multigraph with respect to any proper edge coloring. This result is also 
implicit in [7]. 

Theorem 10 (Slivnik [11], Galvin [7]). For any bipartite multigraph G, and any 
proper edge coloring, A : E(G) -+ N, there exists a dominating matching in G with 
respect to A. 

We refer the reader to (Slivnik [11]) for details of the proof of this theorem. 
Given a multigraph G and a function B : E(G) -+ N, G is said to be B-edge

choosable if G is C-list-colorable for every family of sets of colors C = {G(e): (e E 
E(G))} satisfying IO(e)1 ~ B(e), for every e E E(G). Note that G is k-edge choosable 
if G is B-edge-choosable for the constant function B(e) k for each edge e E E(G). 
Given a bipartite multigraph G and a proper edge coloring, A : E(G) -+ N, Slivnik 
defined the following function T(G,)..) : E(G) -+ N. 

T(G,)..) (e) = I{! E E(G) : Le = L" AU) > A(e)}1 
+ I{! E E(G) : Re = R" AU) < A(e)}1 

Slivnik then used Theorem 10 to show constructively that any bipartite multi graph 
with proper edge coloring, A : E(G) -+ N, is (T(G,)..) + 1)-edge-choosable. For com
pleteness, we give an outline of Slivnik's proof of this result below. 

Theorem 11 (Slivnik [11]). Any bipartite multigraph G with any proper edge col
oring, A : E(G) -+ N, is (T(G,)..) + l)-edge-choosable, where the function T(G,)..) is as 
defined above. 

Proof. Suppose that we are given any family of sets of colors C = {O (e): e E E( G)} 
satisfying IG(e)1 ~ T(G,)..)(e) + 1, for every e E E(G). Slivnik proves constructively 
that G is C-list-colorable by iterating the following procedure, SLIVNIK CG, 0, A). 
When edge e is assigned a color from its list 0 (e), we will say that edge e is list
colored. 

SLIVNIK C G, 0, A) : 
(1) Select some color c E U{O(e) : e E E(G)}, and let Ec = {e E E(G) : c E G(e)}. 

(2) Find a dominating matching M (guaranteed to exist by Theorem 10) in the 
bipartite multigraph Gc = (V(G), Ec) with respect to the proper edge coloring 
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A. List color the edges in M by the color c. 

(3) Replace G by G \ M, C(e) by C(e) \ {c}, for each edge e E E(G), and return 
to (1). 

The justification for being able to iterate the above procedure SLIVNIK(G, C, A) 

is that since the set of edges in M that get list colored in step (2) form a dominat
ing matching in G with respect to A, if in step (3), IC(e)1 reduces by one for some 
e E E(G), then T(G,)..)(e) also reduces by one in step (3), and hence the inequality 
IC(e)l2: T(G,)..) (e) + 1 for every e E E(G), continues to hold for the updated bipartite 
multigraph G, the associated function T(G,)..) : E(G) --t N, and the updated family 
of sets of colors {C(e) : e E E(G)}. 

Theorem 11 implies Galvin's Theorem 4 as follows. Let A : E(G) -t {1,2, 
3, ... , II (G)} be a proper edge coloring (guaranteed by Theorem 1) of a bipartite 
multigraph G. Then, it is easy to see that T(G,)..) (e) + 1 ::; ll(G), for each e E E(G). 
Now, Theorem 11 implies that G is (T(G,)..) + l)-edge-choosable, and hence G is 
,6.( G)-edge-choosable. 

We will now use the technique in Slivnik's proof of Galvin's theorem to obtain 
list coloring analogs of Vizing's theorem ([12]) and Shannon's theorem ([10]) for 
nearly bipartite multigraphs. Let G be a nearly bipartite multigraph with special 
vertex vs, and, let the bipartition of G - Vs be given by L U R. The edges of G 
naturally partition into E(G) = E1UErUEb, where, EI = {(u,vs ) E E(G): U E L}, 
Er = ((u,vs ) E E(G) : u E R}, and Eb = {(u,v) E E(G) : u E L,v E R}. We 
denote by G l the bipartite subgraph ofG with edge set E(G1) = E1UEb, and vertex 
bipartition V(G1) = L U(RU{vs}); we denote by Gr the bipartite subgraph ofG with 
edge set E(Gr ) = Er UEb, and vertex bipartition V(Gr ) = (LU{vs}) URi finally we 
denote by Gb the bipartite multigraph G - vS' We denote by PG(u, v) the number 
of parallel edges between vertices u and v in the multigraph G. We now prove the 
following analog of Vizing's theorem ([12]) for nearly bipartite multigraphs. Note 
that this theorem is stronger than Theorem 8 promised in the Introduction. 

Theorem 12 Let G be a nearly bipartite multigraph with special vertex VS) and 
let L U R be the vertex partition of the bipartite multigraph G - VS' Define ml and 
m2 by ml = max{PG(u,vs ) : u E L}, and m2 = max{PG(u,vs ) : u E R}. Then, 
X~(G) ::; ll(G) + min{ml' m2}. 

Proof. We first show that xl(G) ::; ll(G) + mI, and then note that a similar 
method of proof will give that X~(G) ::; ll(G) + m2, thus proving the theorem. Sup
pose that we are given a family of sets of colors C = {C (e) : e E E (G)} satisfying 
IC(e)l2: ll(G) +ml for each edge e E E(G). We will show that Gis C-list-colorable 
by successively applying Slivnik's procedure to two subgraphs of G. 

Since Gr is a bipartite multigraph with ll(Gr) ::; ll(G), Theorem 1 implies that 
the edges of Gr can be properly colored in II (G) colors. We can assume (by renaming 
the colors if necessary) that in this proper edge coloring of Gr, the edges in Er are 
assigned colors from the set {I, 2, ... , IErl}. Now there is a proper edge coloring, 
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A : E(G) ~ {I, 2, ... , IErl, IErl + 1, ... , ~(G), ~(G) + 1, ... , ~(G) + IEII}, of G, 
where for e E Er, A(e) E {I, 2, ... , IErl}, for e E Eb, A(e) E {I, 2, ... , ~(G)}, and for 
e E Ell A(e) E {~(G) + 1, ~(G) + 2, ... , ~(G) + IEII}. We now intend to invoke the 
procedure SLIVNIK(Gz, G, A) with some modifications. Clearly, T(Gr,A) (e) ::; ~(G)-l 
for each edge e E Eb , so that T(GZ,A)(e) ::; ~(G) - 1 + ml for each edge e E Eb• 

Also, T(Gr,A)(e) ::; IErl - 1 for each edge e E Er. We now run lEt! iterations of 
the procedure SLIVNIK(Gz, G, A) with two modifications: (a) In step (1) we select 
c E U{G(e) : e EEl, e not yet list-colored}, and, (b) In step (3) we replace G(e) 
by G(e) \ {c} for each edge e E E(GI) UEr. Note that since A(e) ::; ~(G) for each 
e E Eb, and A(e) ~ ~(G) + 1 for each e EEL, the dominating matching M found 
each time step (2) of SLIVNIK(GI , G, A) is executed, must contain precisely one edge 
from El . Hence, each edge e E El will be list-colored after precisely lEI I iterations of 
SLIVNIK(GI , G, A). 

Let us denote by E~ the set of edges in Eb that remain to be list-colored, and by 
G'(e), the updated list of colors for edge e after the IEII iterations of the procedure 
SLIVNIK(G1, G, A) performed above. Now consider the bipartite multigraph G' with 
vertex set V(G), edge set E~UEr, vertex bipartition (LU{vs}) UR, and proper edge 
coloring A. We now intend to invoke the procedure SLIVNIK(G', G', A) to obtain a 
list coloring of the remaining edges of G. We first verify that T(G',A)(e) ::; IG'(e)I-1 
for each edge e E E(G'). For e E E~, it is clear that T(GI,A)(e) ::; IC'(e)l- 1, because 
the matching M found each time step (2) was executed during the lEt! iterations of 
SLIVNIK( Gz, G, A) was a dominating matching in Gl with respect to the proper edge 
coloring A. For e E Er , since in the beginning we had that IG(e)1 ~ ~(G) + ml, we 
have that IC'(e)1 > ~(G)-IEzI+ml-1 ~ IErl+ml-1 ~ IErl 1 ~ T(GI,A) (e). Thus, 
we can now invoke SLIVNIK (G', Gf

, A) to obtain a C-list-coloring of the remaining 
edges of G. This proves that xHG) ::; ~(G) +ml' We note that the above proof with 
the roles of Ez and Er interchanged gives that x~( G) ::; ~(G) + m2, thus proving the 
theorem. 

We mention here that the referee has pointed out that the list-coloring analog of 
Vizing's Theorem for nearly bipartite multigraphs (Theorem 8 in the Introduction) 
can be derived easily from Theorem 5 in the Introduction as follows: first list color 
the edges incident with Vs, and then apply Theorem 5 to the bipartite multigraph 
G - Vs with color lists reduced as needed. In fact, this argument proves a weak form 
of Theorem 12 above, with min{ml,m2} replaced by max{ml,m2}' Theorem 12 
itself, however, does not seem to follow from Theorem 5. 

We also point out here that the list coloring analog of Shannon's theorem (The
orem 3 in the Introduction) for nearly bipartite multigraphs can be independently 
(without recourse to Theorem 6 in the Introduction) obtained as a direct consequence 
of Theorem 12 since we have that minim!, m2} ::; ~~(G) for any nearly bipartite 
graph G, where mI, and m2 are as defined in the statement of Theorem 12. 
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3 The list chromatic index of nearly bipartite 
multigraphs with special vertex of degree at 
most six 

Let G be a nearly bipartite multigraph that is k-edge-colorable with special vertex 
Vs of degree d ::; k, with the vertex bipartition of G - Vs given by L U R, and with 
El, Er, and Eb as defined before. We prove that if C = {C (e) : e E E (G)} is a family 
of sets of colors such that U{ C (e) : e E El U Er} can be partitioned in a certain way, 
then G is C-list-colorable. 

Theorem 13 Let G be a nearly bipartite multigraph that is k-edge-colorable, with 
special vertex Vs of degree d::; k, and let C = {C(e): e E E(G)} be any family of sets 
of colors satisfying IC(e)l2:: d for each e E El UEr, and IC(e)l2:: k for each e E Eb. 
Let A = U{ C (e) : e E El U Er}· If A can be partitioned into A = Az U Ar such that 
IAz n C(e)1 ~ lEd for each e EEl, and IAr n C(e)1 2:: IErl for each e E Er, then G is 
C -list-colorable. 

Proof. We split the special vertex Vs into two vertices VI and Vr and construct 
a bipartite multigraph G' with vertex set V(G') = V(Gb)U{VI,Vr} and edge set 
E(G') = U E; U E~, where E; = {(u, vr) : u E L, (u, Vs) EEL}, and, E~ = {(u, Vl) : 
u E R, (u, Vs) E E r }. Consider a proper k-edge-coloring ..\ : E( G) -+ {I, 2, ... ,k} 
of G, and assume (by renaming the colors if necessary) that for e E ..\ (e) E 

{I, 2, ... , IErl}, and that for e EEL, ..\(e) E {k -IEll + 1, k IEll + 2, ... , k - 1, k}. 
N ow consider the proper k-edge-coloring X : E (G') -+ {I, 2, ... , k} of G', in 

which, for e E Ebl X(e) = ..\(e); for e' = (u,vr) E Ef, X(e') = ..\(e) , where e = 
(u,v s ) E Ell and finally for e' = (U,VI) E E~, X(e') ..\(e) , where e = (u,vs ) E Er. 
Suppose that we are given any family of sets of colors {C(e): e E E(G)} satisfying 
IC(e)l2:: dforeach e E El UEr, and IC(e)1 ~ k for each e E Eb. Let A = U{C(e) : e E 

El U Er}· Also suppose that as in the statement of the theorem, A can be partitioned 
into A = Al U Ar such that IAt n C( e) I 2:: lEI I for each e E Ell and IAr n C( e) I 2:: IErl 
for each e E Define a family of sets of colors C' { c' (e): e E E (G')} as 
follows: for e E Eb, C'(e) = C(e), for e' = (u,vr) E C'(e') = C(e) nAl, where 
e = (u,vs) E Ell and for e' = (U,Vl) E E~, C'(e') = C(e)nAr, wheree = (u,vs) E Er. 
Note that since C'(el) nC'(e2) = 0 for each el E Ef and each e2 E E~, a C'-list
coloring of the edges of G' naturally translates into a C-list-coloring of the edges of 
G. 

We complete the proof by showing that G' is C'-list-colorable. We first ver
ify that T(GI,)..')(e) ::; IC'(e)1 - 1 for each e E E(G'). For each e E Ebl we have 
T(GI,.\')(e) ::; k 1::; IC(e)I-1 = IC'(e)l-l. For each e' E Ef, we have T(G1,N) (e') ::; 
IE;I 1::; IC'(e)l- l. For each e' E E~, we have T(GI,.\')(e') ::; IE~I- 1 ::; IC'(e)l-l. 
We can now invoke the procedure SLIVNIK(G', C', X) to obtain a C'-list-coloring of 
the edges of G' which as noted earlier naturally translates into a C-list-coloring of 
the edges of G. 
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We note here that the following example given by Bryant ([3]) shows that for 
A = U{ C (e) : e E El U Er }, A cannot always be partitioned into A = Al U Ar such 
that IAlnC(e)l2: IEzi for each e EEl, and IArnC(e)l2: IErl for each e E Er. Let 
d = 6 with El = {eI,e2,e3}, Er = {e4,e5,e6}, and C(el) = C(e4) = {1,2,3,4,5,6}, 
C(e2) = C(e5) = {I, 2, 3, 7, 8, 9}, C(e3) = C(e6) = {4, 5, 6, 7, 8, 9}. We have 
A = {I, 2, 3, 4,5,6,7,8, 9}, and it is easy to see that in order to satisfy IAI n C(e)1 2: 3 
for each e EEl, Az must contain at least 5 elements from A. If Al contains at least 
5 elements of A then Ar must contain at most 4 elements from A, and the condition 
I Ar n C (e) I 2: I Er I for each e E Er cannot be satisfied. 

We now prove Theorem 9 promised in the introduction. We will follow the ter
minology for nearly bipartite multigraphs established immediately before Theorem 
12 in section 2. We first prove a Lemma that will be repeatedly used in the proof of 
Theorem 9. 

Lemma 1 Let G be any k-edge-colorable nearly bipartite multigraph with special 
vertex Vs of degree d, and Ez, En Eb, and Gl as defined in section 2. Let'\: 
E(G) ~ {1,2, ... ,k} be a proper k-edge-coloring of G, and assume without loss 
of generality that for e E En '\(e) E {I, 2, ... , IErl- 1, IErl}, and for e EEl, '\(e) E 
{k -IEII + 1, k -IEII + 2, ... , k -1, k}. Let Co = {Co(e) : e E E(G)} be any family of 
sets of colors satisfying ICo(e)1 2: d for e E El U En and ICo(e)1 2: k(2: d) for e E Eb. 
Let Cu ~ U{ Co( e) : e E E( Gl)} be the set of colors used in list coloring some subset of 
the edges in EI by running an appropriate number of iterations of SLIVNIK(Gl , C, ,\), 
where initially, C(e) = Co(e) for each e E E(G). For each e E Erl replace C(e) by 
C(e) \ Cu' 

(i) If e E EI is an edge that is not yet list colored, then the updated set of colors 
C(e) for edge e must satisfy IC(e)1 2: d - IEzi + 1. 

(ii) If all edges in El have been list colored, and, if the updated sets of colors {C (e) : 
e E Er} satisfy IC(e)1 2: IErl for each e E Erl then G is Co-list-colorable. 

Proof. 

(i) This follows immediately because we have that initially IC(e)1 :2: d, and, 
T(G/,).)(e) :::; IEzI- 1 for each e EEL. 

(ii) Denote by E~ the set of edges in Eb that remain to be list-colored after an ap
propriate number of iterations of SLIVNIK( Gl , C,'\) that result in a list coloring 
of the edges in E l . Now consider the bipartite multigraph G' with vertex set 
V( G), edge set E~ U En vertex bipartition (L U{ vs }) U R, and proper edge col
oring,\. For e E E~, it is clear that T(G/,).) (e) :::; IC(e)l-l, because the matching 
M found each time step (2) is executed during SLIVNIK(GI , C,'\) is a domi
nating matching in Gl with respect to the proper edge coloring,\. For e E En 
we have that T(G/,).)(e) :::; IErl- 1 :::; IC(e)l- 1. Hence, T(GI,).)(e) :::; IC(e)l- 1 
for each e E E(G'). Now, invoking the procedure SLIVNIK(G', C,'\) yields a 
Co-list-coloring of the remaining edges of G. 
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Before proving Theorem 9, we mention here that the referee has pointed out a recent 
result by Woodall ([13]) that proves the LCC (Conjecture 1 in the Introduction) for 
'multicircuits' (multigraphs whose underlying simple graphs are cycles). Woodall 
([13]) also observes in his paper that the underlying simple graphs of multicircuits 
have the form 'bipartite plus one edge', and asks for an extension of his result to 
multigraphs having this form. Lemma 1 above immediately yields a proof of the 
LCC for multigraphs whose underlying simple graphs have the form 'bipartite plus 
one edge' as follows in Theorem 14 below. 

Theorem 14 Let G be a multigraph that contains two vertices) u and v) such that 
deleting all edges between u and v results in a bipartite multigraph. If G is k-edge
colorable) then G is k-edge-choosable. 

Proof. We can view G as a nearly bipartite graph with special vertex Vs = v, edge 
set Ez consisting of all edges between vertices u and v, and, edge sets Er and Eb given 
by Er = {e : e = (v, w) E E (G), w i- u}, and, Eb = E (G) \ (Ez U Er). As in the state
ment of Lemma 1, let ). : E (G) -+ {I, 2, ... , k} be a proper k-edge-coloring of G, and 
assume without loss of generality that for e E ETl ).(e) E {I, 2, ... , IErl-l, IErl}, and 
fore E Ez,).(e) E {k-IEd+l,k-IEzI+2, ... ,k-l,k}. Let Co {Go(e): e E E(G)} 
be any family of sets of colors satisfying IGo(e)1 :2: k for each e E E(G). We run IEll 
iterations of SLIVNIK(GI,C,).) (where initially, C(e) = Co(e) for each e E E(G)) 
with two modifications: (a) In step (1) we select c E U{C(e) : e EEL, e not 
yet list-colored}, and, (b) In step (3) we replace C ( e) by C ( e) \ {c} for each edge 
e E E(G1) U It is clear that after these IEII iterations of SLIVNIK(Gz, C, ).), each 
edge e E Ez is list colored, and that the updated sets of colors {C (e) : e E Er} 
satisfy IC(e)1 :2: k IEt!:2: IErl. Hence, part (ii) of Lemma 1 implies that G is 
Co-list-colorable. 

Theorem 9 Let G be any nearly bipartite multigraph with special vertex Vs of degree 
d ~ 6. If G is k-edge-colorable) then G is k-edge-choosable. 

Proof. We will prove the stronger result that if Co = {Co (e) : e E E (G)} is any 
family of sets of colors satisfying ICo(e)1 :2: d for e E El U ETl and ICo(e)1 :2: k(:2: d) 
for e E Eb, then G is Co-list-colorable. In what follows, we give details of the proof 
in the case when d = 6, and point out that the cases when d < 6 can be similarly 
(but more easily) handled. 

Suppose that d = 6. Let Co = {Co(e) : e E E(G)} be any family of sets of colors 
satisfying IGo(e)1 :2: 6 for e E EzUETl and ICo(e)1 :2: k(:2: 6) for e E Eb. Label 
the edges of G so that Er = {ei : i = 1,2, ... , IErl - 1, IErl}, and, Ez = {ei : i = 
k -IEII + l,k IEzi + 2, ... ,k -1,k}. Let).: E(G) -+ {1,2, ... ,k -1,k} be a 
proper k-edge-coloring of G, and assume (by renaming the colors if necessary) that 
).(ei) = i for each ei E El U Er. Since the roles of El and Er are interchangeable, 
the following cases exhaust all possibilities. In each case below, we will run an 
appropriate number of iterations of SLIVNIK(Gz, C,).) (with C(e) = Co(e) initially 
for each edge e E E(G), and, careful choices of the color c in step (1)) to obtain a 
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list coloring of the edges in El . We then let Gu ~ {G(e) : e E E(Gln be the set of 
colors used in list coloring the edges in El by this process, and for each e E Er, we 
replace G(e) by G(e) \ Gu . In each case below, we will ensure that the choices of 
the color c in step (1) of SLIVNIK(GI , G, A) are such that the updated set of colors 
G(e) satisfy IG(e)1 ~ 6 lEd for each e E Er . Then, Lemma 1 will imply that Gis 
Co-list-colorable. 

Case (a): IEII = 0, IErl = 6. In this case, G is bipartite and Galvin's Theorem 4 
and Theorem 1 imply that X~(G) = X'(G) = .6.(G) ~ k. 

Case (b): IEII = 1,IErl = 5. We run one iteration of SLIVNIK(GI , G, A) with the 
modification that in step (1) we select C E G(ek)' Because '\(ek) = k, it is clear 
that ek will be in the dominating matching found in Step (2) of SLIVNIK(GI , G, A). 
Clearly, the updated set of colors G(e) satisfies IG(e)1 ~ 5 for each edge e E Er , and, 
Lemma 1 implies that G is Co-list-colorable. 

Case (c): IEII = 2,IErl = 4. Suppose first that GO(ek) nGO(ek-l) =1= 0. We run 
one iteration of SLIVNIK(G/, G j A) with the modification that in step (1) we select 
C E G(ek) nG(ek-l). Since A(ek) = k, and A(ek-d = k - 1, it is clear that exactly 
one of the edges ek and ek-l must be in the dominating matching, M found in step 
(2) of this first iteration of SLIVNIK(GI , G, A). 

If ek-l E M, we now run another (second) iteration of SLIVNIK(GI , G, A) (with 
updated Gl and G) with the modification that in step (1) we select c E G(ek)' It 
is clear that the edge ek must be in the dominating matching found in step (2) of 
this second iteration of SLIVNIK(GI , G, A). Clearly, the updated set of colors, G(e) 
satisfies IG(e)1 ~ 4 for each e E ETl and, Lemma 1 implies that G is Co-list-colorable. 

If ek is in the dominating matching M found in the first iteration of SLIVNIK( Gl , G, A), 
then there must be an edge e* E M, with A(e*) = k, and L ek _ 1 = Leo. We now run 
another (second) iteration of SLIVNIK(GI , G, A) (with updated G l and G) with the 
modification that in step (1) we select c E G(ek-d. Note that since e* was in the 
matching M found in the first iteration of SLIVNIK(GI, G, A), and since A(e*) = k, 
after the first iteration of SLIVNIK(GI, G, A), there does not exist e E E(GI) with 
Le = Lek _

1 
and A(e) = k. Hence, A(ek-l) = k - 1 implies that the dominating 

matching found in step (2) of this second iteration of SLIVNIK( G l , G, A) must contain 
the edge ek-l. As before, Lemma 1 implies that G is Co-list-colorable. 

Now, suppose that GO(ek) n GO(ek-I) = 0. We run one iteration of SLIVNIK(GI , G, A) 
with the modifications that in step (1) we select c = Cl E G(ek)' It is clear that ek 
must be in the dominating matching M found in step (2) of this first iteration of 
SLIVNIK(GI , G, '\). We now run another (second) iteration of SLIVNIK(GI , G, A) with 
the modification that in step (1) we select c = C2 E G(ek-l)' If ek-l is in the dom
inating matching M found in step (2) of this second iteration of SLIVNIK( Gl , G, A), 
then Lemma 1 implies that G is Co-list-colorable. So, suppose now that ek-l tJ. M. 
Since '\(ek-l) = k - 1, there must exist e* E M with L ek _ 1 = L e*, and A(e*) = k. 
We now run another (third) iteration of SLIVNIK(GI , G,'\) (with updated Gl and G) 
with the modification that in step (1) we select C = C3 E G(ek-l). It is clear that ek-l 
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must be in the dominating matching M found in step (2) of this third iteration of 
SLIVNIK(GI, G, "\). Let G' be the bipartite multigraph with edge set (E(G I ) U Er)\M 
(with Gl updated). At this point, we have used up the set of colors Gu = {Cl' C2, C3} 

with Cl E CO(ek), C2 E GO(ek-l), and C3 E GO(ek-l) in order to list color the edges 
ek and ek-I. Since IGo(ek)1 2: 6, and IGo(ek-dl ~ 6, the number of ways in which 
Gu can be chosen is at least 6 (~) = 90. A 6-set which has k elements in common 
with GO(ek) has at most 6 - k elements in common with GO(ek-I), and, hence the 
number of ways of choosing Gu such that the updated set of colors G (e) satisfies 

IG(e)1 ::; 3 for some e E Er is at most mpx 4ie;i) = 48. Hence any of the other 

42 ways of choosing Gu gives that IG(e)1 ~ 4 for each e E En and Lemma 1 implies 
that Co-list-colorable. 

Case (d): lEd = 3, IErl = 3. 

Subcase (dl): GO(ek) nGO(ek-l) nGO(ek-2) # 0. We run one iteration of 
SLIVNIK(G I , G,"\) (with G(e) = Go (e) for each e E E(G) initially) with the 
modification that in step (1) we select C E G(ek) n G(ek-d n G(ek-2). Since 
"\(ek) = k, "\(ek-l) = k - 1, and "\(ek-2) = k 2, it is clear that exactly one 
of the edges ek, ek-I and ek-2 must be in the dominating matching found in step 
(2) of SLIVNIK(G/, G, "\). Now, a proof technique similar to the one in Case (c) 
above proves that G is Co-list-colorable. 

Subcase (d2): 

Go(e)nCo(f) = 0 for each e,f E El,e # f, or Go(e)nGo(f) = 0 for each e,f E 

Er , e # f. Without loss of generality assume that Go(e) n Go (f) = 0 for each 
e, f E En e # f. We run three iterations of SLIVNIK(GI, G,"\) (with G(e) = Go(e) 
for each edge e E E(G) initially) with the modification that at each iteration in 
step (1) we choose C to be in the current set of colors of the edge in El that has 
the highest index among those edges in El that have not yet been list colored. It 
is easy to verify that after these three iterations of SLIVNIK( Gl , G, "\), at most one 
edge in El remains to be list colored; if all the edges in El get list colored, then 
Lemma 1 implies that G is Co-list-colorable. Suppose that edge e* E El is not yet 
list colored after these three iterations of SLIVNIK(GI , G, "\). At this point, Lemma 
1 implies that the updated set of colors G(e*) has cardinality at least four. We 
now run an appropriate number p(~ 3) of iterations (till e* gets list colored) of 
SLIVNIK(GI , G,"\) (with updated Gl and G) with the modification that we choose 
C E G(e*) each time. Note that in this final iteration of SLIVNIK(G I , G, 'x), e* will 
be in the dominating matching found in step (2), and that we have four choices for 
the color C in step (1). Since Go(e) n Go (f) = 0 for each e, f E Er , e # j, in each 
of these last p iterations at least one choice of C E G(e*) is such that the updated 
set of colors G(e) satisfies IG(e)1 2: 3 for each e E Er . Now, Lemma 1 implies that 
G is Co-list-colorable. 

Subcase (d3): 

Neither Subcase (d1) nor Subcase (d2) holds, but IGo(e) nGo(f)1 2: 2 for some 
e, fEEL, e # f, or IGo(e) n Go (f) I 2: 2 for some e, f E Er , e # f. Assume without 
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loss of generality that a, b E Go (ek-2) n Go(ek-d, and, a =I- b. Note that since 
we are not in Subcase (d1), a (j. GO(ek), and, b (j. GO(ek)' We run one iteration 
of SLIVNIK(G I , G,.\) (with G(e) = Go(e) for each e E E(G) initially) with the 
modification that in step (1) we choose e = a. We then run a second iteration 
of SLIVNIK(G I , G,.\) (with updated Gl and G) with the modification that in step 
(1) we choose e = b. If both edges ek-2 and ek-I get list colored in these two 
iterations of SLIVNIK(GI,G,.\), then a third iteration of SLIVNIK(GI,G,.\) with 
the modification that in step (1) we choose e E G(ek) will result in ek being list 
colored, and then, Lemma 1 implies that G is Co-Hst-colorable. So, suppose that 
one of the edges ek-2 and ek-l, call it e*, is not yet list colored after the first 
two iterations of SLIVNIK(GI, G, .\). Note that the updated set of colors for each 
edge in Er has cardinality at least four. If the updated sets of colors G(e) satisfy 
IG(e)1 ~ 5 for each e E En then a third iteration of SLIVNIK(G1, G,.\) with the 
modification that in step (1) we choose e E G(e*) will result in e* being list colored, 
and then, a fourth iteration of SLIVNIK(G1, G,.\) with the modification that in step 
(1) we choose e E G (ek) will result in ek being list colored. Lemma 1 then implies 
that G is Co-list-colorable. Hence, suppose that IG(e)1 = 4 for some e E Er . Note 
that since we are not in Subcase (d1), there exist at most two edges in Er whose 
updated color sets have cardinality four; suppose without loss of generality that 
these edges are el and e2. 
After the first two iterations of SLIVNIK(GI, G, .\), suppose that there exists e* E 
G(e*) such that IG(ei) \ e*1 ~ 4 for i = 1, or i = 2. In this case, we run a third 
iteration of SLIVNIK( Gl , G,.\) with the modification that in step (1) we choose 
e = e*, and this results in edge e* being list colored. Note that at this point, the 
updated set of colors G(ek) has cardinality at least five, and hence, there exists 
e' E G(ek) such that the updated sets of colors G(e) satisfy IG(e) \ e'l ~ 3 for each 
e E Er • We run a fourth iteration of SLIVNIK(Gl, G,.\) with the modification that 
in step (1) we choose e = e'. This results in edge ek being list colored, and, Lemma 
1 implies that G is Co-list-colorable. 

On the other hand, suppose that after the first two iterations of SLIVNIK(GI , G, '\), 
for each e E G(e*), we have that IG(ei) \ el = 3 for i = 1 and i = 2. This implies 
that Go(e*) ;;;2 GO(el) = GO(e2), and hence that there exists e" E GO(ek) such that 
e" (j. GO(ei), for i = 1,2. Now, a third iteration of SLIVNIK(GI , G,.\) with the 
modification that in step (1) e E G(e*), and a fourth iteration of SLIVNIK(GI , C,.\) 
with the modification that in step (1) e = e" results in edge ek being list colored. 
Lemma 1 now implies that G is Co-list-colorable. 

Subcase (d4): 

None of Subcases (d1), (d2), and (d3) holds. Since we are not in Sub case (d2), 
we can assume that there exists a E GO(ek-l) n GO(ek)' We run one iteration of 
SLIVNIK(GI , G,.\) (with C(e) = Go(e) initially for each e E E(G)) with the modifi
cation that we choose e = a in step (1), and a second iteration of SLIVNIK(Gz, C,.\) 
choosing a color that is not in C(ek-2) but is in the updated list of colors of the 
one edge from {ek-!, ed that is not yet list colored. After these two iterations, 
both ek-l and ek are list colored, and, C(ek-2) still has cardinality 6. 
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We now need to perform at most three more iterations (iterations 3, 4, and, 5) 
of SLIVNIK(Gl , C,.\) in order to list color ek-2 if we choose c E C(ek-2) at each 
iteration. We wish to do so, and still keep ICU) I ~ 3 for each f E En because 
then the result will follow from Lemma 1, part (ii). To see that this is possible, 
note that because of the minimal set overlap that results from our not being in 
Subcase (d1) or (d3), after iteration 3 or 4, the cardinality of at most one of the 
sets C(el), C(e2), and, C(e3) can be reduced to three. If one of these sets of colors 
is reduced to cardinality 3, we simply avoid picking those 3 colors when we choose 
c at iterations 4 and 5. The result now follows. 
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