Equitable Partial Cycle Systems

Michael E. Raines
Western Michigan University Department of Mathematics and Statistics
Kalamazoo, Michigan, USA 49008-5152
Zsuzsanna Szaniszló
University of South Dakota
Department of Mathematical Sciences
Vermillion, South Dakota, USA 57069

Abstract

In this paper, we give necessary and sufficient conditions for the existence of equitable partial 4 -cycle and 5 -cycle systems. Furthermore, we construct equitable partial 4 -cycle and 6 -cycle systems of $K_{n, n}$.

1 Introduction

A (partial) m-cycle system of order n is an ordered pair (V, C), where V is a set of n vertices and C is a collection of m-cycles defined on V such that every pair of vertices in V is adjacent in exactly (at most) one m-cycle of C. In graph theoretical terms, a (partial) m-cycle system is a decomposition of (a subset of) the edges of K_{n} into m-cycles. We define a (partial) bipartite m-cycle system of order n to be a partition of (a subset of) the edges of $K_{a, n-a}$ into m-cycles.

Let $c(i)$ denote the number of m-cycles which contain a vertex $i \in V$. A partial m-cycle system is said to be equitable if $|c(i)-c(j)| \leq 1$, for all $i, j \in V$.

The leave of an m-cycle system (V, C) of order n is the graph on n vertices which contains the edges of K_{n} that are not found in any m-cycle of C. A maximum packing of K_{n} with m-cycles is a (partial) m-cycle system whose leave contains the fewest number of edges possible. Let $M(m, n)$ denote the number of m-cycles in a maximum packing of K_{n}. It has been shown by Schönheim and Bialostocki [7] that

$$
M(4, n)= \begin{cases}\left\lfloor\frac{n}{4}\left\lfloor\frac{n-1}{2}\right\rfloor\right\rfloor & \text { if } n \not \equiv 5 \text { or } 7(\bmod 8) \\ \left\lfloor\frac{n}{4}\left\lfloor\frac{n-1}{2}\right\rfloor\right\rfloor-1 & \text { otherwise. }\end{cases}
$$

Furthermore, it has been shown by Rosa and Znám [6] that

$$
M(5, n)= \begin{cases}\left(n^{2}-n-\delta_{n}\right) / 10 & \text { if } n \text { is odd, } \\ \left(n^{2}-2 n-\delta_{n}\right) / 10 & \text { if } n \text { is even },\end{cases}
$$

where

$$
\delta_{n}= \begin{cases}0 & \text { if } n \equiv 0,1,2,5(\bmod 10) \\ 4 & \text { if } n \equiv 6(\bmod 10) \\ 6 & \text { if } n \equiv 3(\bmod 10) \\ 8 & \text { if } n \equiv 4,8(\bmod 10) \\ 12 & \text { if } n \equiv 7,9(\bmod 10)\end{cases}
$$

Andersen, Hilton, and Mendelsohn considered equitable partial Steiner triple systems of order $n(\operatorname{EPSTS}(n) \mathrm{s})$ [1]. They found that if there exists a $\operatorname{PSTS}(n)$ with t triples, then there exists an $\operatorname{EPSTS}(n)$ with t triples. In particular, $\operatorname{EPSTS}(n) \mathrm{s}$ with t triples exist when $1 \leq t \leq \mu(n)$, where $\mu(n)$ denotes the number of triples in a maximum $\operatorname{PSTS}(n)$. This result was crucial in obtaining the smallest known embedding for partial Steiner triple systems. Subsequently, Rodger and Stubbs [5] generalized the result in [1] for partial triple systems of all indices. They found that if there exists a partial triple system of order n and index $\lambda(\operatorname{or} \operatorname{PTS}(n, \lambda))$ with t triples, then there exists an equitable $\operatorname{PTS}(n, \lambda)$ with t triples. Recently, Raines and Rodger [4] found necessary and sufficient conditions for the existence of $\operatorname{EPSTS}(n) \mathrm{s}$ whose leave contains a particular matching. This result was crucial in obtaining small embeddings of partial extended triple systems and partial totally symmetric quasigroups $[2,3]$. In this paper we extend the result in [1] for 4 -cycle and 5 -cycle systems and include results for equitable partial bipartite 4 -cycle and 6 -cycle systems of $K_{n, n}$.

2 The Constructions

We start by generalizing the result in [1] for partial 4-cycle systems.
Theorem 2.1 Let n and t be positive integers where $1 \leq t \leq M(4, n)$. If there exists a partial 4 -cycle system of order n which contains t cycles, then there exists an equitable partial 4 -cycle system of order n which contains t cycles.

Proof: Let (V, C) be a partial 4 -cycle system of order n which contains t cycles, and let $c(i)$ denote the number of 4 -cycles which contain a particular vertex $i \in V$. If (V, C) is equitable, then there is nothing to prove, so we assume that $c(1) \leq c(2) \leq$ $\cdots \leq c(n)$ and $c(1) \leq c(n)-2$. Let C^{\prime} denote the set of 4 -cycles of C which do not contain both vertices 1 and n. Form a graph G on the vertex set $\{2, \ldots, n-1\}$ in which: for every cycle of the form $1, y_{1}, y_{2}, y_{3}, 1 \in C^{\prime}$, let G contain the 2-path y_{1}, y_{2}, y_{3}, and color the edges of this 2 -path with color 1 ; and for every cycle of the
form $n, z_{1}, z_{2}, z_{3}, n \in C^{\prime}$, let G contain the 2 -path z_{1}, z_{2}, z_{3}, and color the edges of this 2 -path with the color n. Since no cycle in C^{\prime} contains both vertices 1 and n, there are no edges in G corresponding to 4 -cycles that contain both vertices 1 and n. Now the number of 2 -paths colored n exceeds the number colored 1 by at least 2 . Therefore, there must be at least two trails $T_{1}=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{4 k+3}$ and $T_{2}=\beta_{1}, \beta_{2}, \ldots, \beta_{4 m+3}$ of 2 -paths, alternately colored 1 and n, which start and end with a 2 -path whose edges are colored n (since T_{1} and T_{2} are maximal, it follows that the edges $1 \alpha_{1}$ and $1 \alpha_{4 k+3}$ occur in no cycle in C^{\prime}). Notice that the first and last vertices in each 2-path in T_{1} and the first and last vertices in each 2-path in T_{2} are adjacent to an edge colored n. Now each vertex $\alpha_{i} \in T_{1}$ and each vertex $\beta_{j} \in T_{2}$ is the beginning or end of at most one 2-path of each color; otherwise, the edge $1 \alpha_{i}$ or the edge $n \alpha_{i}$ would be included in more than one 4 -cycle. Similarly, we can show that the edges $1 \beta_{j}$ and $n \beta_{j}$ would be included in more than one 4 -cycle (though it is possible that a vertex can be the middle vertex of more than one 2-path).

The edges $1 \alpha_{1}$ and $1 \alpha_{4 k+3}$ occur in no cycle in C^{\prime} since α_{1} and $\alpha_{4 k+3}$ are vertices which are the beginning or end of no 2-paths colored 1 . However, the possibility remains that the edge $1 \alpha_{1}$ is contained in some cycle of $C \backslash C^{\prime}$. If such a cycle exists, it must be of the form $1, \alpha_{1}, \gamma, n, 1$, where γ is either a middle vertex of some 2 -path in T_{1} or not in T_{1} at all. Vertex γ cannot be the beginning vertex of some 2-path in T_{1} since this would mean that the edge $n \gamma$ would appear in more than one 4 -cycle (recall that each vertex that is the beginning of some 2-path in T_{1} is adjacent to an edge colored n). In addition, there may be any number of cycles in $C \backslash C^{\prime}$ of the form $1, x, n, y, 1$, where each vertex x and y will either be a middle vertex of some 2-path in T_{1} or not in T_{1} at all. Certainly, neither x nor y can be the beginning vertices of any 2 -path in T_{1}.

Assume, without loss of generality, that $C \backslash C^{\prime}$ contains some cycle $1, \alpha_{1}, \gamma, n, 1$. We first observe that the edges $1 \beta_{1}$ and $1 \beta_{4 m+3}$ are contained in no 4 -cycle of C^{\prime}, so now we must show that the edge $1 \beta_{1}$ is contained in no 4 -cycle of $C \backslash C^{\prime}$ (a similar argument shows that the edge $1 \beta_{4 m+3}$ is contained in no 4 -cycle of $C \backslash C^{\prime}$). If the edge $1 \beta_{1}$ is contained in a 4 -cycle of $C \backslash C^{\prime}$, then this cycle must be of the form $1, \beta_{1}, z, n, 1$ (since the edge $n \beta_{1}$ is already contained in some 4 -cycle of C^{\prime}), but this implies that $\beta_{1}=\alpha_{1}$ and $z=\gamma$ since the edge $1 n$ is contained in at most one 4 -cycle, namely $1, \alpha_{1}, \gamma, n, 1$. However, this implies that $T_{1}=T_{2}$ since any vertex is the beginning or end of at most one 2 -path of a particular color, but we have assumed that $T_{1} \neq T_{2}$. Therefore, there is no edge of the form $1 \beta_{1}$ or $1 \beta_{4 m+3}$ in any cycle of C. Now we define a new partial 4 -cycle system $\left(V, C^{*}\right)$ in which $C^{*}=C \backslash\left(\left\{n, \beta_{1}, \beta_{2}, \beta_{3}, n\right\} \cup\left\{n, \beta_{4 i+1}, \beta_{4 i+2}, \beta_{4 i+3}, n\right\} \cup\left\{1, \beta_{4 i-1}, \beta_{4 i}, \beta_{4 i+1}, 1\right\}\right) \cup$ $\left(\left\{1, \beta_{4 i+1}, \beta_{4 i+2}, \beta_{4 i+3}, 1\right\} \cup\left\{n, \beta_{4 i-1}, \beta_{4 i}, \beta_{4 i+1}, n\right\} \cup\left\{1, \beta_{1}, \beta_{2}, \beta_{3}, 1\right\}\right)$, for $1 \leq i \leq m$. Let $c^{*}(i)$ denote the number of cycles in C^{*} which contain a vertex $i \in V$. Certainly, $c^{*}(1)=c(1)+1, c^{*}(n)=c(n)-1$, and $c^{*}(j)=c(j)$, for $2 \leq j \leq n-1$. Repetition of this process among all pairs of vertices produces the desired equitable partial 4-cycle system.

We can also use Theorem 2.1 to prove the following theorems.
Corollary 2.2 Let n and t be positive integers. An equitable partial 4 -cycle system
of order n containing $t 4$-cycles exists if and only if $1 \leq t \leq M(4, n)$.
Proof: Certainly, since $M(4, n)$ is the number of 4 -cycles in a maximum packing of K_{n} with 4-cycles, there cannot exist an equitable partial 4-cycle system with more than $M(4, n) 4$-cycles, so $1 \leq t \leq M(4, n)$. Furthermore, there exists a partial 4 -cycle system of order n which contains t cycles for all values of t between 1 and $M(4, n)$ since we can always start with a partial 4 -cycle system with $M(4, n) 4$-cycles and arbitrarily throw out $M(4, n)-t$ of these 4-cycles to form a partial 4-cycle system of order n which contains t cycles. So by Theorem 2.1 there exists an equitable partial 4 -cycle system of order n which contains $t 4$-cycles if $1 \leq t \leq M(4, n)$.

Theorem 2.1 also allows us to obtain a nice construction of equitable partial bipartite 4-cycle systems of $K_{n, n}$.

Corollary 2.3 Let n and t be positive integers. If there exists a partial bipartite 4 -cycle system of $K_{n, n}$ which contains t cycles, then there exists an equitable partial bipartite 4 -cycle system of $K_{n, n}$ which contains t cycles.

Proof: Let (V, C) be a partial 4-cycle system of order $2 n$ with t cycles on $K_{n, n}$, and again let $c(i)$ denote the number of 4 -cycles which contain a particular vertex $i \in$ V. We assume that (V, C) is not equitable. Suppose that the sets $X=\{1, \ldots, n\}$ and $Y=\{n+1, \ldots, 2 n\}$ form the partition of the vertices of $K_{n, n}$. Apply the technique in the proof of Theorem 2.1 separately to vertices in X until $|c(i)-c(j)| \leq 1$, for all $i, j \in X$. Then apply the same technique to vertices in Y until $|c(i)-c(j)| \leq 1$, for all $i, j \in Y$. Clearly, this gives an equitable partial bipartite 4 -cycle system of $K_{n, n}$ which contains t cycles.

Now that we have constructed equitable partial 4-cycle systems and equitable partial bipartite 4 -cycle systems, we proceed by considering equitable partial 5 -cycle systems and equitable partial bipartite 6 -cycle systems. We have the following theorem regarding equitable partial 5 -cycle systems.

Theorem 2.4 Let n and t be positive integers. If there exists a partial 5 -cycle system of order n which contains t cycles, then there exists an equitable partial 5-cycle system of order n which contains t cycles.

Proof: Let (V, C) be a partial 5 -cycle system of order n which contains t cycles, and let $c(i)$ denote the number of 5 -cycles of C which contain vertex $i \in V$. We suppose, without loss of generality, that $c(1) \leq c(2) \leq \cdots \leq c(n)$. If $c(n)-c(1) \leq 1$, then there is nothing to prove, so we assume that $c(n) \geq c(1)+2$.

The first goal is to form a partial 5 -cycle system $\left(V, C^{\prime}\right)$ which contains t cycles and in which $\left|c^{\prime}(n)-c^{\prime}(1)\right| \leq 1$ (where $c^{\prime}(i)$ denotes the number of 5 -cycles in C^{\prime} which contain vertex $i \in V$). We do this by first forming a multigraph G with vertex set $V(G)=V \backslash\{1, n\}$. For each 5 -cycle of the form $1, x_{1}, x_{2}, x_{3}, x_{4}, 1$, where $x_{1} \neq n$ and $x_{4} \neq n$, we form the edge $x_{1} x_{4}$ in G and color it with the color 1 . For each 5 -cycle of the form $n, y_{1}, y_{2}, y_{3}, y_{4}, n$, where $y_{1} \neq 1$ and $y_{4} \neq 1$, we form the edge $y_{1} y_{4}$ in G and color it with the color n. So in G, a particular pair i and j of vertices is joined by at most one edge colored 1 and by at most one edge colored n because the

2-paths $i, 1, j$ and i, n, j occur in at most one 5 -cycle of C. Furthermore, since the edge $1 i$ (resp. $n i$) occurs in at most one cycle of C, it follows that there is at most one edge colored 1 (resp. colored n) incident with each vertex i in G. Therefore, each vertex in G has degree at most 2 , and the edges of G are properly 2 -edge-colored. Now C may contain a cycle which contains the edge $1 n$, say $1, n, z_{1}, z_{2}, z_{3}, 1$. If such a cycle exists, then there can be no edge in G colored 1 that is incident with z_{3}, and there can be no edge in G colored n that is incident with z_{1}. Otherwise, C would contain at least one of the edges $n z_{1}$ and $1 z_{3}$ in more than one cycle..

Consider the components of G. Each vertex of G has degree at most 2 , and G is properly 2 -edge-colored, so each component must either be a doubled edge, an even cycle, or a path. Since $c(n) \geq c(1)+2$, the number of edges colored n exceeds the number of edges colored 1 by at least 2 . Therefore, G must contain at least two paths of odd length which start and end with edges colored n. Suppose C contains the cycle $1, n, z_{1}, z_{2}, z_{3}, 1$. Then one of the paths of odd length may contain z_{3} as an endpoint, but at least one path does not. Notice also that any path which starts and ends with an edge colored n and which does not contain z_{3} as an endpoint does not contain z_{1}, for each vertex along the path is incident with an edge colored n. Select such a path $P=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{2 k}$. Switch colors along the edges of P so that it now starts and ends with an edge colored 1. We use this new coloring of G to define a new partial 5 -cycle system which contains t cycles.

We trace back the edges of the path P to the cycles of C from which they came. We form a new partial 5 -cycle system $\left(V, C^{\prime}\right)$ from (V, C) by modifying the cycles from which we produce the path P. On each of these cycles we perform a cycle switch by replacing 1 with n and n with 1 (see Figure 1). Notice that if n and 1 both appear in some cycle, say $1, a, n, b, c, 1$, then a is adjacent to both b and c in G, so if a is in the recolored path, then so are b and c. Hence our coloring does not duplicate vertices in any cycle. We replace the cycle $1, a, n, b, c, 1$ with the cycle $n, a, 1, b, c, n$ (see Figure 2). After having performed the necessary cycle switches, the number of cycles containing vertex 1 will increase by one, and the number of cycles containing n will decrease by one. Each other vertex is contained in exactly the same number of cycles.

For $2 \leq i \leq n-1, c^{\prime}(i)=c(i), c^{\prime}(1)=c(i)+1$ and $c^{\prime}(n)=c(n)-1$. Repetition of this process yields a partial 5 -cycle system $\left(V, C^{*}\right)$ with t cycles in which $\mid c^{*}(1)-$ $c^{*}(n) \mid \leq 1$ and in which $c^{*}(i)=c(i)$ for $2 \leq i \leq n-1$ (where $c^{*}(i)$ denotes the number of 5 -cycles in C^{*} which contain vertex $v \in V$). Furthermore, repetition of the process on each other pair of vertices in V produces an equitable partial 5 -cycle system which contains $t 5$-cycles.

Corollary 2.5 Let n and t be positive integers. There exists an equitable partial 5 -cycle system of order n which contains t cycles if and only if $1 \leq t \leq M(5, n)$.

Proof: Since $M(5, n)$ is the number of 5 -cycles in a maximum packing of K_{n} with 5 -cycles, there cannot exist an equitable partial 5 -cycle system with more than $M(5, n) 5$-cycles, so $1 \leq t \leq M(5, n)$. Furthermore, there exists a partial 5 -cycle system of order n which contains t cycles for all values of t between 1 and $M(5, n)$

x

x

Figure 1: A cycle switch when the cycle contains exactly one of the vertices 1 and n

Figure 2: A cycle switch when the cycle contains both vertices 1 and n
since we can always start with a partial 5 -cycle system with $M(5, n) 5$-cycles and arbitrarily discard $M(5, n)-t$ of these 5 -cycles to form a partial 5 -cycle system of order n which contains t cycles. So by Theorem 2.4 there exists an equitable partial 5 -cycle system of order n which contains $t 5$-cycles if $1 \leq t \leq M(5, n)$.

Finally, we present a result concerning equitable partial bipartite 6 -cycle systems.
Theorem 2.6 Let n and t be positive integers. If there exists a partial bipartite 6 -cycle system of $K_{n, n}$ which contains t cycles, then there exists an equitable partial bipartite 6 -cycle system of $K_{n, n}$ which contains t cycles.

Proof: Let (V, C) be a partial bipartite 6 -cycle system of $K_{n, n}$ which contains $t 6$-cycles. We assume that $(X=\{1,2, \ldots, n\}, Y=\{n+1, n+2, \ldots, 2 n\})$ forms the bipartition of the vertex set of $K_{n, n}$. Let $c(i)$ denote the number of 6 -cycles in C which contain vertex $i \in V$. We can assume without loss of generality that $c(1) \leq c(2) \leq \cdots \leq c(n)$, that $c(n+1) \leq c(n+2) \leq \cdots \leq c(2 n)$, and that
$c(1) \leq c(n)+2$. The goal is to form a partial bipartite 6 -cycle system of $K_{n, n}$ such that $|c(i)-c(j)| \leq 1$ for each $i, j \in V$.

We begin by forming a partial bipartite 6 -cycle system in which $|c(i)-c(j)| \leq 1$ for each $i, j \in X$. Consider the vertices 1 and n. Now $c(n)-c(1) \geq 2$. Form a multigraph G with vertex set $V(G)=Y$. Place an edge $a b$ in G if and only if $a, 1, b$ or a, n, b is a 2 -path contained in a cycle of C. If $a, 1, b$ is contained in a 6 -cycle in C, then color the edge $a b$ in G with the color 1 , and if a, n, b is contained in a 6 -cycle, then color the edge $a b$ in G with the color n. Observe that neither a nor b can be 1 or n, since both 1 and n occur in X. So, in particular, the distance between vertices 1 and n will never be 3 in any cycle. So this graph G will have the same properties as the graph obtained when forming equitable partial 5 -cycle systems. That is, edges in G which are formed from cycles containing both vertices 1 and n will be adjacent to each other on some path. Furthermore, the number of paths of odd length in G which begin and end with edges colored 1 will be at least 2 less than the number of paths of odd length which begin and end with edges colored n. As before, we choose one of these paths which begin and end with an edge colored n and switch the colors. Subsequently, we perform the appropriate cycle switches. Repetition of this process on all pairs of vertices in X and then on all pairs of vertices in Y gives the desired partial bipartite 6 -cycle system.

3 Open Questions

It would be interesting to know if equitable cycle systems exist whenever nonequitable systems exist. In particular, is there a method other than construction to show the existence of equitable cycle systems with cycle length 6 or more? An affirmative answer for this question could also settle the existence of equitable bipartite systems, but it is possible that their existence could be shown independently.

References

[1] L. D. Andersen, A. J. W. Hilton, and E. Mendelsohn, Embedding partial Steiner triple systems, Proc. London Math. Soc. 41 (1980) 557-576.
[2] M. E. Raines, More on embedding partial totally symmetric quasigroups, Australas. J. Combin. 14 (1996) 297-309.
[3] M. E. Raines and C. A. Rodger, Embedding partial extended triple systems and totally symmetric quasigroups, Discrete Math. 176 (1997) 211-222.
[4] M. E. Raines and C. A. Rodger, Matchings in the leave of equitable partial Steiner triple systems, J. Combin. Math. Combin. Comput. 24 (1997) 115-118.
[5] C. A. Rodger and S. J. Stubbs, Embedding partial triple systems, J. Combin. Theory (A) 44 (1987) 241-252.
[6] A. Rosa and Š. Znám, Packing pentagons into complete graphs: how clumsy can you get?, Discrete Math. 128 (1994) 305-316.
[7] J. Schönheim and A. Bialostocki, Packing and covering of the complete graph with 4-cycles, Canad. Math. Bull., 18 (1975) 703-708.

