# On the Non-Existence of Some Generalized Hadamard Matrices 

Charlie H. Cooke and Iem Heng<br>Department of Mathematics and Statistics<br>Old Dominion University<br>Norfolk, Virginia 23508, USA


#### Abstract

A conjecture for generalized Hadamard matrices over group $G$ of order $p$ states that Hadamard matrix $G H(p, h)$ exists only if the matrices $I_{n}$ and $n I_{n}$ are Hermitian congruent [1], where $n=p h$ and $p$ is prime. References $[4,5]$ document many parameter values for which non-existence is known to occur. Here, methods for establishing non-existence based upon a fundamental necessary condition of Brock [2] are considered. Several parameter sequences for which non-existence occurs are identified. The methods exploited complement de Launey's [6] approach via number theoretic properties of the Hadamard determinant. Neither investigation is exhaustive of all possibilities.


## 1 Introduction

Let $C_{s}$ be the multiplicative group of all complex $s^{\text {th }}$ roots of unity. The square matrix $H=\left[h_{i j}\right]$ of order $r$ over $C_{s}$ is said to be a "Butson Hadamard matrix", briefly a $B H(s, r)$ matrix, if and only if $H H^{*}=r I_{r}$. Here, $H^{*}$ is the conjugate transpose of H .
$B H(2, r)$ matrices are referred to simply as Hadamard matrices (or $\pm 1$ matrices). Such matrices exist only if $r=1,2$ or else $r=4 k$, where $k$ is a positive integer. Existence has been verified for at least each and every $k \leq 106$, and the classical Hadamard conjecture states that existence occurs for each integer $k>0$.

For primes $p>2$, the situation is quite different. A necessary condition for the existence of $B H(p>2, r)$ is that $r=p t$, where $t$ is a positive integer. This condition is also sufficient, for the case of $B H\left(p>2,2^{m} p^{k}\right)$, provided $0 \leq m \leq k$, where $k$ is an integer [3].

It has been conjectured [1] that $B H(p, p t)$ exists, for primes $p>2$ and all positive integers $t$. However, instances have been discovered where this conjecture fails [4].

The most recent generalized Hadamard conjecture[6] is that $H(p, n)$ exists only if $I_{n}$ is Hermitian congruent to $n I_{n}$, where $n=p t$.

In this paper techniques are explored for proving non-existence of infinite sequences of potential $B H\left(s, r_{k}\right), k \in K$, where $K$ is a countably infinite set of positive integers. Sets $K$ are identified for which $\left\{B H\left(s, r_{k}\right): k \in K\right\}=\phi$. These techniques consist chiefly of methods for proving non-existence of non-trivial solutions to homogeneous Diophantine equations

$$
a x^{2}+b y^{2}+c y^{2}=0 .
$$

## 2 Hadamard Matrices Over Groups

Definition 1: Let $(G, \odot)$ be a group of order $g$. A $(g, k ; \lambda)$-difference matrix is a $k \times g \lambda$ matrix $D=\left(d_{i j}\right)$ with entries from $G$, such that for each $1 \leq i<j \leq k$, the multiset

$$
\left\{d_{i l} \odot d_{j l}^{-1}: 1 \leq l \leq g \lambda\right\}
$$

contains every element of $G \lambda$ times. When $G$ is Abelian, typically, additive notation is used, so that differences $d_{i l}-d_{j l}$ are employed.

Consider the additive group $G=\{0,1,2\}$ with modulo three arithmetic. Two inequivalent $(3,6 ; 2)$-difference matrices over $G$ are

$$
A=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 2 & 2 \\
0 & 1 & 0 & 2 & 2 & 1 \\
0 & 1 & 2 & 0 & 1 & 2 \\
0 & 2 & 2 & 1 & 0 & 1 \\
0 & 2 & 1 & 2 & 1 & 0
\end{array}\right]
$$

and

$$
B=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 2 & 0 & 2 & 0 & 1 \\
1 & 0 & 2 & 2 & 1 & 0 \\
0 & 2 & 2 & 0 & 1 & 1 \\
2 & 2 & 0 & 1 & 1 & 0 \\
2 & 0 & 2 & 1 & 0 & 1
\end{array}\right]
$$

Definition 2: A generalized Hadamard matrix $G H(g, \lambda)$ over group $G$ is a $(g, g \lambda ; \lambda)$ difference matrix [4].

A number of authors have studied these matrices [7], [8], [11], [12], [13], and [14]. For a summary of the known matrices, see Theorem A of Street [14].

Clearly, both difference matrices $A$ and $B$ are generalized Hadamard matrices $G H(3,2)$, each having an associated Butson Hadamard matrix $B H(3,6)$. This association will now be clarified.

Theorem 1 For primes $p>2$, there exists a generalized Hadamard matrix $B H(p, p \lambda)$ over the cyclic group $C_{p}$ if and only if there exists a generalized Hadamard matrix $G H(p, \lambda)$ over the additive group $Z_{p}=\{0,1,2, \ldots, p-1\},(+)$.

A generalization of this result is stated by Drake [7], whose proof follows from results of Butson [3]. This association will be illustrated by example.

Let $C_{3}=\left\{1, x, x^{2}\right\}$, where $x=e^{2 \pi i / 3}$ is a primitive cube root of unity. Consider the BH-matrices

$$
H=B H(3,6)=x^{E}
$$

where $E$ is one of the difference matrices $A, B$ above. The notation means that matrix elements obey $h_{i j}=x^{e_{i j}}$.

By calculation, $H H^{*}=6 I$; therefore, $H$ is a generalized Hadamard matrix in the classical sense. Also, by calculation $H$ is a $G H(3,2)$ matrix with respect to $C_{3}, \odot$. The Hadamard exponent forms (matrices $A, B$ above) have already been cited as $G H(3,2)$ with respect to the group $Z_{3}, \oplus$.

The next theorem provides a necessary condition for the existence of $G H(g, \lambda)$ over group $G,|G|=g$ :

Theorem $2 A G H(g, \lambda)$ with $n=g \lambda$ odd exists over Abelian group $G$ of order $|G|=$ $g$ only if a nontrivial solution in integers $x, y, z$ exists to the quadratic Diophantine equation

$$
z^{2}=n x^{2}+(-1)^{(t-1) / 2} t y^{2}
$$

for every order, $t$, of a homomorphic image of $G$.
The proof of this theorem can be found in Brock [2], and it is discussed in Colbourn and Dinitz [4].

Corollary 1 For primes $p>2$, and $\lambda>0$ an odd integer, $B H(p, p \lambda)$ exists only if there are nontrivial solutions in integers to both equations

$$
z^{2}=p \lambda x^{2}+(-1)^{(p-1) / 2} p y^{2}
$$

and

$$
z^{2}=p \lambda x^{2}+y^{2} .
$$

Proof. If $G$ is an Abelian group of order $p>2$, where $p$ is prime, there exist homomorphic images of $G$ of orders $t=1, p$.

## 3 The Imbedding Problem

Definition 3: Let $G$ be an Abelian group of order $g$, with $n=g \lambda$, where $\lambda$ is a positive integer. For $0<k<n$, a $k \times n$ difference matrix $D$ over the group $G$ is "completable" if and only if there exists a $G H(g, \lambda)$ matrix having $D$ as its first $k$ rows.

The Hadamard imbedding problem concerns the question of whether the matrix $D$ can be extended by the process of row addition so as to be completable. This problem has been studied variously by Beder [1], Brock [2], Drake [7] and others.

Definition 4: Difference matrix $D$ of dimension $k \times n$ is "locally maximal" (in dimension) if there is no ( $k+1$ ) $\times n$ difference matrix which reduces to $D$ by deletion of a single row. If $D$ is a $G H(g, \lambda)$, then it is globally maximal [4].

It is interesting to note that there may exist locally maximal $(g, k ; \lambda)$-difference matrices for which $k<g \lambda$, even in cases where a $(g, g \lambda ; \lambda)$-difference matrix exists. For $g=2$ and $\lambda=10$, Beder [1] constructs such ( $\pm 1$ ) matrices, characterized by $k=8,12,16$.

With respect to the group $G=\{0,1,2\},(+)$, the present authors have discovered locally maximal difference matrices $D_{k \times 15}$ with $k=7,8$ (see Tables I and II). The observation that $\operatorname{gcd}(7,15)=\operatorname{gcd}(8,15)=1$ appears a stark contrast to what may be observed in Beder's ( $\pm 1$ ) difference matrices; namely, in cases where locally maximal difference matrices of dimension $D_{k \times n}$ and $D_{n \times n}$ simultaneously exist, $\operatorname{gcd}(k, n) \neq 1$ (for $n=20 ; k=8,12,16$ ).

This contrasting behaviour leads to the likely conjecture that $G H(3,15)$ does not exist. Actually, this has been known for several years. However, following up this conjecture in absence of this knowledge motivated the present research on non-existence of certain $G H(g, \lambda)$.

Tables I and II show the previously referred to locally maximal difference matrices with respect to group $G=\{0,1,2\},(+)$ :

$$
\left[\begin{array}{lllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 2 \\
0 & 0 & 1 & 1 & 1 & 2 & 2 & 0 & 0 & 0 & 1 & 1 & 2 & 2 & 2 \\
0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 2 & 0 & 2 & 2 & 1 & 1 & 0 \\
0 & 0 & 1 & 2 & 2 & 0 & 1 & 1 & 2 & 2 & 1 & 0 & 2 & 0 & 1 \\
0 & 1 & 2 & 0 & 2 & 1 & 2 & 0 & 1 & 2 & 1 & 0 & 1 & 2 & 0 \\
0 & 1 & 0 & 2 & 2 & 2 & 1 & 2 & 1 & 0 & 0 & 1 & 1 & 0 & 2
\end{array}\right]
$$

Table I
A (3,7,15)-difference matrix

$$
\left[\begin{array}{lllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 1 & 2 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 1 & 1 & 1 & 1 & 2 & 0 & 2 & 0 & 2 & 2 & 0 & 0 \\
0 & 1 & 2 & 2 & 2 & 0 & 1 & 2 & 1 & 0 & 0 & 1 & 1 & 2 & 0 \\
0 & 2 & 1 & 1 & 0 & 2 & 1 & 0 & 2 & 0 & 2 & 1 & 0 & 2 & 1 \\
0 & 1 & 2 & 0 & 1 & 2 & 0 & 2 & 0 & 1 & 1 & 2 & 0 & 2 & 1 \\
0 & 2 & 0 & 0 & 1 & 2 & 2 & 1 & 1 & 0 & 2 & 2 & 1 & 1 & 0 \\
0 & 1 & 0 & 2 & 1 & 2 & 1 & 0 & 2 & 1 & 0 & 0 & 2 & 1 & 2
\end{array}\right]
$$

## Table II

A (3,8,15)-difference matrix

## 4 Quadratic Diophantine Equations

We now consider methods for establishing non-existence of nontrivial integer solutions to the homogeneous Diophantine equation

$$
\begin{equation*}
a x^{2}+b y^{2}+c z^{2}=0 \tag{1}
\end{equation*}
$$

Lemma 1 If $a$ and $b$ are integers, then the equation

$$
z^{2}=a b x^{2} \pm a y^{2}
$$

has nontrivial integer solutions only if the reduced equation

$$
a \ell^{2}=b x^{2} \pm y^{2}
$$

has nontrivial integer solutions.
Proof. The result is obvious. If $(x, y, z)$ is a solution, of necessity $a \mid z$. Therefore, let $z=a \ell$, where $\ell$ is an integer if $z$ is.

## Method I:

Legendre's Theorem: [10]
Let $a, b, c$ be pairwise relatively prime integers which are squarefree and not all of the same algebraic sign. Then equation (1) has a nontrivial solution in the integers if and only if $-b c,-a c,-a b$ are quadratic residues of $a, b, c$, respectively.

Warwick de Launey [6] has approached the non-existence question for generalized Hadamard matrices by means of number theoretic properties of the Hadamard determinant. Basically, he proves the non-existence of many generalized Hadamard matrices for groups whose orders are divisible by 3,5 or 7 ; for example, $\operatorname{GH}\left(15, C_{15}\right)$, $G H\left(15, C_{3}\right)$, and $G H\left(15, C_{5}\right)$.

That his work is non-exhaustive is evidenced by the following result:

Theorem 3 For Abelian groups of order p, and for odd primes $p \equiv \pm 3(\bmod 5), G H(p, 5)$ does not exist.

Proof. Consider the problem of finding integer solutions to the equation

$$
\begin{equation*}
z^{2}=5 p x^{2} \pm p y^{2} \tag{2}
\end{equation*}
$$

where $p \equiv \pm 3$ (mod 5 ). This can be done only if one can find integer solutions of

$$
\begin{equation*}
p q^{2}=5 x^{2} \pm y^{2} \tag{3}
\end{equation*}
$$

As $x^{2} \equiv \pm 3(\bmod 5)$ has no solutions, by Legendre's theorem neither does (2) or (3) have nontrivial integer solutions.
Note. Clearly, theorem 3 generalizes some of de Launey's results.

## 5 Reciprocity

Definition 5: For groups $G, H$ with $|G|=g$ and $|H|=\lambda$, potential generalized Hadamard matrices $G H(g, \lambda)$ and $G H(\lambda, g)$ satisfy a reciprocity relation provided both exist or both do not exist.
Example. $G H(3,5)$ and $G H(5,3)$ are reciprocally non-existent, as in each case the pertinent reduced equation is of the form

$$
5 a^{2}=3 b^{2}+c^{2}
$$

By Legendre's theorem, this equation has no nontrivial integer solutions ( $a, b, c$ ), since $\pm 3$ is a quadratic non-residue of 5 .
By the same approach, the following result can be established:
Theorem 4 Let $\lambda$ be a prime number. If $(-1)^{\frac{5+1}{2}} \lambda$ and $(-1)^{\frac{\lambda-1}{2}} \lambda$ are both quadratic non-residues of 5 , or if $(-1)^{\frac{5+1}{2}} 5$ and $(-1)^{\frac{\lambda-1}{2}} 5$ are both quadratic non-residues of $\lambda$, then $G H(5, \lambda)$ and $G H(\lambda, 5)$ constitute a reciprocally non-existent pair.

Corollary 2 If $7+5 k$ is a prime number, then $G H(5,7+5 k)$ and $G H(7+5 k, 5)$ constitute a reciprocally non-existent sequence of potential generalized Hadamard matrices.

Theorem 5 Let $p=4 k+3$ and $q=4 k+5$ be prime numbers, where 2 is a quadratic non-residue of $p$. Then $(p, q)$ is a reciprocal pair.

Proof. Since $p, q$ are squarefree and relatively prime, Legendre's theorem applies to determine integer solutions of the equations

$$
z^{2}=p q x^{2}-p y^{2}
$$

and

$$
z^{2}=p q x^{2}+q y^{2} .
$$

Existence of a nontrivial integer solution of either equation can happen only if there exists a nontrivial integer solution $(\ell, m, n)$ for equations of the following type

$$
p \ell^{2}=q m^{2}-n^{2} .
$$

No solution for this equation exists, as

$$
x^{2} \equiv 2(\bmod p)
$$

has no solution.
A more general method for finding reciprocal pairs employs a result of Euler:
Euler's Theorem: [15]
If $p$ is an odd prime which does not divide $a$, then $x^{2} \equiv a(\bmod p)$ has a solution or no solution according as

$$
a^{(p-1) / 2} \equiv 1(\bmod p)
$$

or

$$
a^{(p-1) / 2} \equiv-1(\bmod p) .
$$

Reciprocity Theorem: Let $p=4 k+3$ and $a=4 l+5$ be odd primes which satisfy Euler's condition

$$
a^{(p-1) / 2} \equiv-1(\bmod p) .
$$

Then $G H(a, p)$ and $G H(p, a)$ constitute a reciprocal non-existent pair of generalized Hadamard matrices over groups $G, H$ of order $p, a$.
Proof. Under the hypotheses of the theorem, Euler's condition guarantees the non-existence of non-trivial integer solutions $(x, y, z)$ to both equations

$$
z^{2}=a p x^{2}-p y^{2}
$$

and

$$
z^{2}=a p x^{2}+a y^{2},
$$

whose reduced equation is of the form

$$
p \ell^{2}=a x^{2}-y^{2} .
$$

Several reciprocal pairs are given by Table III:
$\left[\begin{array}{ll}3 & 5 \\ 3 & 17 \\ 3 & 29 \\ 11 & 13 \\ 11 & 17 \\ 11 & 29 \\ 19 & 29 \\ 19 & 59 \\ 19 & 79 \\ 59 & 61 \\ 111 & 113\end{array}\right]$

## Table III

## Method II:

When the hypotheses of Legendre's theorem fail, an analysis of last digit [9] of separate members of equation (1) is sometimes fruitful. Here, if $x$ is a nonzero integer, the last digit of $x$ is denoted by $[x]$. For instance, the last digit of $x^{2}$ is in the set

$$
\begin{aligned}
& {\left[x^{2}\right]=\{0,1,4,5,6,9\}, \text { and }} \\
& {\left[3 x^{2}\right]=\{0,2,3,5,7,8\}=\left[7 x^{2}\right],} \\
& {\left[(10 k+1) x^{2}\right]=\left[x^{2}\right], k \geq 0 \text { an integer }} \\
& {\left[5 x^{2}\right]=\{0,5\},} \\
& {\left[9 x^{2}\right]=\{0,1,4,5,6,9\} .}
\end{aligned}
$$

These facts are useful in proving some non-existence theorems below.
Lemma 2 The equation

$$
\begin{equation*}
z^{2}=3 \cdot 5 \cdot(2 k+1) x^{2}-3 y^{2} \tag{4}
\end{equation*}
$$

where $k$ is a non-negative integer satisfying $(2 k+1) \not \equiv 0(\bmod 5)$, does not possess a nontrivial solution in integers.

Proof. By the method of contradiction, assume a nontrivial solution $(x, y, z)$ exists, where ( $x, y, z$ ) are non-negative integers. As the equation is homogeneous of degree two, $(x, y, z)$ is a solution if and only if $(t x, t y, t z)$ is a solution, where $t$ is an integer. Therefore, it can be assumed that $\operatorname{gcd}(x, y, z)=1$.

Clearly, $z$ is divisible by 3 . If $z=3 \ell$, where $\ell$ is an integer, then equation (4) reduces to

$$
\begin{equation*}
y^{2}=5(2 k+1) x^{2}-3 \ell^{2} \tag{5}
\end{equation*}
$$

As the last digit of each integer $\left(x^{2}, y^{2}, k^{2}\right)$ belongs to the set $L=\{0,1,4,5,6,9\}$, the last digits of $5(2 k+1) x^{2}$ and $3 \ell^{2}$ are members of $\{0,5\}$ and $\{0,2,3,5,7,8\}$, respectively. For compatibility with (5), the last digit of $y^{2}$ can only be zero or five; therefore, $y=5 m$, where $m$ is an integer.

Now equation (5) becomes

$$
\begin{equation*}
3 \ell^{2}=5(2 k+1) x^{2}-25 m^{2} \tag{6}
\end{equation*}
$$

Therefore, $\ell=5 p$, where $p$ is an integer. Equation (6) becomes

$$
(2 k+1) x^{2}=15 p^{2}+5 m^{2} .
$$

Since five does not divide $2 k+1$, it is necessary that $x=5 q$, where $q$ is an integer. The conclusions $5 \mid y$ and $5 \mid x$ imply that $5 \mid z$. As this contradicts $g c d(x, y, z)=1$, the assumption that (4) has a nontrivial solution in the integers must be false.

## Lemma 3 The equation

$$
\begin{equation*}
z^{2}=5 \cdot n \cdot(10 k+1) x^{2}+5 y^{2} \tag{7}
\end{equation*}
$$

has no nontrivial solution for integers $k \geq 0$ and $n=1,3,7$.
Proof. By the method of contradiction, assume a nontrivial solution $(x, y, z)$ exists, where $(x, y, z)$ are positive integers. As the equation is homogeneous of degree two, $(x, y, z)$ is a solution if and only if $(t x, t y, t z)$ is a solution, where $t$ is an integer. Therefore, it can be assumed that $\operatorname{gcd}(x, y, z)=1$.

Clearly, $z$ is divisible by 5 in equation (7).
Case 1: $n=1$
If $z=5 \ell$, where $\ell$ is an integer, then equation (7) reduces to

$$
\begin{equation*}
y^{2}=5 \ell^{2}-(10 k+1) x^{2} \tag{8}
\end{equation*}
$$

As the last digit of each integer $\left(x^{2}, y^{2}, \ell^{2}\right)$ belongs to the set $L=\{0,1,4,5,6,9\}$, the last digits of $5 \ell^{2}$ and $(10 k+1) x^{2}$ are members of $\{0,5\}$ and $\{0,1,4,5,6,9\}$, respectively. For compatibility with (8), the last digit of $x^{2}$ and $y^{2}$ can only be zero or five; therefore, $x=5 m$ and $y=5 p$, where $m, p$ are integers.

The conclusions $5 \mid y$ and $5 \mid x$ imply that $5 \mid z$. As this contradicts $\operatorname{gcd}(x, y, z)=1$, the assumption that (7) has a nontrivial solution in the integers must be false.

Case 2: $n=3$
If $z=5 \ell$, where $\ell$ is an integer, then equation (7) reduces to

$$
\begin{equation*}
y^{2}=5 \ell^{2}-3(10 k+1) x^{2} . \tag{9}
\end{equation*}
$$

As the last digit of each integer $\left(x^{2}, y^{2}, \ell^{2}\right)$ belongs to the set $L=\{0,1,4,5,6,9\}$, the last digits of $5 \ell^{2}$ and $3(10 k+1) x^{2}$ are members of $\{0,5\}$ and $\{0,2,3,5,7,8\}$, respectively. For compatibility with (9), the last digit of $y^{2}$ can only be zero or five; therefore, $y=5 m$, where $m$ is an integer.

Now equation (9) becomes

$$
3(10 k+1) x^{2}=5 \ell^{2}-25 m^{2}
$$

Since five does not divide $3(10 k+1)$, it is necessary that $x=5 p$, where $p$ is an integer. The conclusions $5 \mid y$ and $5 \mid x$ imply that $5 \mid z$. As this contradicts $\operatorname{gcd}(x, y, z)=1$, the assumption that (7) has a nontrivial solution in the integers must be false.

Case 3: $n=7$
If $z=5 \ell$, where $\ell$ is an integer, then equation (7) reduces to

$$
\begin{equation*}
y^{2}=5 \ell^{2}-7(10 k+1) x^{2} . \tag{10}
\end{equation*}
$$

As the last digit of each integer $\left(x^{2}, y^{2}, \ell^{2}\right)$ belongs to the set $L=\{0,1,4,5,6,9\}$, the last digits of $5 \ell^{2}$ and $7(10 k+1) x^{2}$ are members of $\{0,5\}$ and $\{0,2,3,5,7,8\}$, respectively. For compatibility with (10), the last digit of $y^{2}$ can only be zero or five; therefore, $y=5 m$, where $m$ is an integer.

Now equation (10) becomes

$$
7(10 k+1) x^{2}=5 \ell^{2}-25 m^{2}
$$

Since five does not divide $7(10 k+1)$, it is necessary that $x=5 p$, where $p$ is an integer. The conclusions $5 \mid y$ and $5 \mid x$ imply that $5 \mid z$. As this contradicts $g c d(x, y, z)=1$, the assumption that (7) has a nontrivial solution in the integers must be false.

## 6 Summary

Theorem 6 Several sequences of potential Hadamard matrices over Abelian group $G$ of order $g$ which do not exist are:

1. $G H(3,5(2 k+1)),(2 k+1) \not \equiv 0(\bmod 5)$, with $k$ a non-negative integer,
2. $\operatorname{GH}(5, n(10 k+1))$, for $n=1,3,7, k$ non-negative,
3. $G H(5, p)$, where $p \equiv \pm 3(\bmod 5)$ is an odd prime,
4. Reciprocal pairs $G H(5,7+5 k)$ and $G H(7+5 k, 5)$, where $7+5 k$ is an odd prime.

Corollary 3 For $k$ a non-negative integer, the following classes of $B H$ matrices do not exist:

1. $B H(3,15(2 k+1)),(2 k+1) \not \equiv 0(\bmod 5)$,
2. $B H(5,5 n(10 k+1))$, for $n=1,3,7$,
3. $B H(5,5 p), p \equiv \pm 3(\bmod 5)$, an odd prime,
4. Reciprocal pairs $B H(5,35+25 k)$ and $B H(7+5 k, 35+25 k)$, where $7+5 k$ is an odd prime.

The following conjecture, which motivated this research, appears to gain some support from Corollary 3 and Tables I and II:

Conjecture 1 If for $0<k<g \lambda$ a locally maximal ( $g, k, \lambda$ )-difference matrix with respect to Abelian group $G$ of order $g$ exists for which $\operatorname{gcd}(k, g \lambda)=1$, then $G H(g, \lambda)$ does not exist.

## 7 Conclusions

Although the approaches of de Launey and the present author provide many instances of non-existent $G H(p, q)$, these results are by no means exhaustive of all possibilities. The methods usefully complement each other, and together show the number theoretic complexity of this non-existence problem.

## Acknowledgment

The authors would like to thank Professor Jennifer Seberry for constructive comments and suggestions.

## References

[1] Beder, J.H. (1995). Conjectures about Hadamard matrices, R.C. Bose Memorial Conference On Statistical Design and Related Combinatorics, Colorado State University, June 7-11, 1995.
[2] Brock, B.W. (1988). Hermitian congruence and the existence and completion of generalized Hadamard matrices, J. of Combinatorial Theory (Series A), Vol. 49, 233-261.
[3] Butson, J.A. (1963). Relations among generalized Hadamard matrices, Can. J. Math., Vol. 15, 42-48.
[4] Colbourn, C.J. and Dinitz, J.H. (1996). "The CRC Handbook of Combinatorial Designs", CRC Press, New York.
[5] Dawson, J. (1985). A construction for generalized Hadamard matrices GH(4q, EA(4q)), J. Stat. Plann. and Inference, Vol. 11, 103-110.
[6] de Launey, W. (1984). On the non-existence of generalized Hadamard matrices, J. Stat. Plann. and Inference, Vol. 10, 385-396.
[7] Drake, D.A. (1979). Partial $\lambda$-geometries and generalized Hadamard matrices over groups, Can. J. Math., Vol. 31, 617-627.
[8] Jungnickel, D. (1979). On difference matrices, resolvable transversal designs and generalized Hadamard matrices, Math. Z., Vol. 167, 49-60.
[9] Private communication, Mark Dorrepaal, Department of Mathematics, Old Dominion University, Norfolk, Virginia.
[10] Ryser, H.J. (1963). "Combinatorial Mathematics", Carus Math. Monograph Vol 14. Wiley, New York.
[11] Seberry, J. (1980). A construction for generalized Hadamard matrices, J. Stat. Plann. and Inference, Vol. 4, 365-368.
[12] Seberry, J. (1979). Some remarks on generalized Hadamard matrices and theorems of Rajkundlia on SBIBDs, Combinatorial Mathematics VI, Lecture Notes In Mathematics Vol. 748. Springer-Verlag, New York.
[13] Shrikhande, S.S. (1964). Generalized Hadamard matrices and orthogonal arrays of strength 2, Can. J. Math., Vol. 16, 736-740.
[14] Street, D. (1979). Generalized Hadamard matrices, orthogonal arrays and Fsquares, Ars Combinatoria, Vol. 8, 131-141.
[15] Underwood, D. (1969). "Elementary Number Theory", W.H. Freeman Company, San Francisco.

