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Abstract 

A conjecture for generalized Hadamard matrices over group G of order 
p states that Hadamard matrix GH(p, h) exists only if the matrices In 
and nIn are Hermitian congruent [1], where n = ph and p is prime. Ref
erences (4,5] document many parameter values for which non-existence is 
known to occur. Here, methods for establishing non-existence based upon 
a fundamental necessary condition of Brock [2] are considered. Several 
parameter sequences for which non-existence occurs are identified. The 
methods exploited complement de Launey's [6] approach via number the
oretic properties of the Hadamard determinant. Neither investigation is 
exhaustive of all possibilities. 

1 Introduction 

Let Cs be the multiplicative group of all complex 8 th roots of unity. The square 
matrix H = [hij ] of order rover Cs is said to be a "Butson Hadamard matrix', 
briefly a B H (8, r) matrix, if and only if H H* = r Ir . Here, H* is the conjugate 
transpose of H. 

BH(2, r) matrices are referred to simply as Hadamard matrices (or ±1 matrices). 
Such matrices exist only if r = 1,2 or else r = 4k, where k is a positive integer. 
Existence has been verified for at least each and every k ::; 106, and the classical 
Hadamard conjecture states that existence occurs for each integer k > O. 

For primes p > 2, the situation is quite different. A necessary condition for the 
existence of BH(p > 2, r) is that r = pt, where t is a positive integer. This condition 
is also sufficient, for the case of BH(p > 2,2mpk), provided 0 ::; m ::; k, where k is 
an integer (3]. 

It has been conjectured [1] that BH(p, pt) exists, for primes p > 2 and all positive 
integers t. However, instances have been discovered where this conjecture fails [4]. 
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The most recent generalized Hadamard conjecture(6] is that H(p, n) exists only if In 
is Hermitian congruent to nIn, where n = pt. 

In this paper techniques are explored for proving non-existence of infinite se
quences of potential BH(s, rk), k E K, where K is a countably infinite set of positive 
integers. Sets K are identified for which {BH(s, rk) : k E K} = cp. These techniques 
consist chiefly of methods for proving non-existence of non-trivial solutions to homo
geneous Diophantine equations 

2 Hadamard Matrices Over Groups 

Definition 1: Let (G,8) be a group of order g. A (g, k; A)-difference matrix is a 
k x gA matrix D (dij ) with entries from G, such that for each 1 :::; i < j :::; k, the 
multiset 

{dil 8 djll : 1 ::; 1 ::; 9 A } 

contains every element of G A times. When G is Abelian, typically, additive notation 
is used, so that differences dil - dj1 are employed. 

Consider the additive group G = {O, 1, 2} with modulo three arithmetic. Two in-
equivalent (3,6; 2)-difference matrices over G are 

0 0 0 0 0 0 
0 0 1 1 2 2 

A= 0 1 0 2 2 1 
0 1 2 0 1 2 
0 2 2 1 0 1 
0 2 1 2 1 0 

and 

0 0 0 0 0 0 
1 2 0 2 0 1 

B= 1 0 2 2 1 0 
0 2 2 0 1 1 
2 2 0 1 1 0 
2 0 2 1 0 1 

Definition 2: A generalized Hadamard matrix GH(g, A) over group G is a (g, gA; A)
difference matrix (4]. 

A number of authors have studied these matrices [7], (8], [11], [12], [13], and [14]. 
For a summary of the known matrices, see Theorem A of Street [14]. 
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Clearly, both difference matrices A and B are generalized Hadamard matrices 
GH(3, 2), each having an associated Butson Hadamard matrix BH(3, 6). This asso
ciation will now be clarified. 

Theorem 1 For primes p > 2, there exists a generalized Hadamard matrix 
B H (p, p)..) over the cyclic group Cp if and only if there exists a generalized Hadamard 
matrix GH(p,)..) over the additive group Zp = {O, 1,2, ... ,p - I}, (+). 

A generalization of this result is stated by Drake [7], whose proof follows from results 
of Butson [3]. This association will be illustrated by example. 

Let C3 = {I, x, x2 }, where x = e27ri
/ 3 is a primitive cube root of unity. Consider the 

BH-matrices 

H = BH(3,6) = x E 

where E is one of the difference matrices A, B above. The notation means that 
matrix elements obey hij = xeij

• 

By calculation, H H* = 61; therefore, H is a generalized Hadamard matrix in the 
classical sense. Also, by calculation H is a GH(3,2) matrix with respect to C3 ,8. 
The Hadamard exponent forms (matrices A, B above) have already been cited as 
GH(3, 2) with respect to the group Z3, EB. 

The next theorem provides a necessary condition for the existence of GH(g,)..) over 
group G, IGI = g: 

Theorem 2 A GH(g,)..) with n = g).. odd exists over Abelian group G of order IGI = 
g only if a nontrivial solution in integers x,y,z exists to the quadratic Diophantine 
equation 

Z2 = nx2 + (_1)(t-l)/2 ty2, 

for every order, t, of a homomorphic image of G. 

The proof of this theorem can be found in Brock [2], and it is discussed in Colbourn 
and Dinitz [4]. 

Corollary 1 For primes p > 2, and)" > 0 an odd integer, BH(p,p)..) exists only if 
there are nontrivial solutions in integers to both equations 

and 

Z2 = p)..x2 + y2. 

Proof. If G is an Abelian group of order p > 2, where p is prime, there exist 
homomorphic images of G of orders t = 1, p. 0 
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3 The Imbedding Problem 

Definition 3: Let G be an Abelian group of order g, with n = gA, where A is a 
positive integer. For 0 < k < n, a k x n difference matrix D over the group G is 
"completable" if and only if there exists a GH(g, A) matrix having D as its first k 
rows. 

The Hadamard imbedding problem concerns the question of whether the matrix D 
can be extended by the process of row addition so as to be completable. This problem 
has been studied variously by Beder [1], Brock [2], Drake [7] and others. 

Definition 4: Difference matrix D of dimension k x n is "locally maximal" (in 
dimension) if there is no (k+ 1) x n difference matrix which reduces to D by deletion 
of a single row. If D is a GH(g, A), then it is globally maximal [4]. 

It is interesting to note that there may exist locally maximal (g, k; A)-difference 
matrices for which k < gA, even in cases where a (g, gA; A)-difference matrix exists. 
For 9 = 2 and A = 10, Beder [I] constructs such (±1) matrices, characterized by 
k = 8,12,16. 

With respect to the group G = {O, 1, 2}, (+), the present authors have discovered 
locally maximal difference matrices D kx15 with k = 7,8 (see Tables I and II). The 
observation that gcd(7, 15) = gcd(8, 15) = 1 appears a stark contrast to what may be 
observed in Beder's (±1) difference matrices; namely, in cases where locally maximal 
difference matrices of dimension D kxn and Dnxn simultaneously exist, gcd(k, n) f= 1 
(for n = 20; k = 8,12,16). 

This contrasting behaviour leads to the likely conjecture that GH(3, 15) does not ex
ist. Actually, this has been known for several years. However, following up this con
jecture in absence of this knowledge motivated the present research on non-existence 
of certain GH(g, A). 

Tables I and II show the previously referred to locally maximal difference matrices 
with respect to group G = {O, 1, 2}, (+): 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 
0 0 1 1 1 2 2 0 0 0 1 1 2 2 2 
0 0 1 1 2 1 0 2 2 0 2 2 1 1 0 
0 0 1 2 2 0 1 1 2 2 1 0 2 0 1 
0 1 2 0 2 1 2 0 1 2 1 0 1 2 0 
0 1 0 2 2 2 1 2 1 0 0 1 1 0 2 

Table I 
A (3,7,15)-difference matrix 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 2 1 2 1 2 1 2 1 2 0 0 0 0 
0 2 1 1 1 1 1 2 0 2 0 2 2 0 0 
0 1 2 2 2 0 1 2 1 0 0 1 1 2 0 
0 2 1 1 0 2 1 0 2 0 2 1 0 2 1 
0 1 2 0 1 2 0 2 0 1 1 2 0 2 1 
0 2 0 0 1 2 2 1 1 0 2 2 1 1 0 
0 1 0 2 1 2 1 0 2 1 0 0 2 1 2 

Table II 
A (3,8,15)-difference matrix 

4 Quadratic Diophantine Equations 

We now consider methods for establishing non-existence of nontrivial integer solu-
tions to the homogeneous Diophantine equation 

ax2 + by2 + cz2 = O. (1) 

Lemma 1 If a and b are integers, then the equation 

Z2 = abx2 ± ay2 

has nontrivial integer solutions only if the reduced equation 

has nontrivial integer solutions. 

Proof. The result is obvious. If (x, y, z) is a solution, of necessity alz. Therefore, 
let z = ai, where l is an integer if z is. 0 

Method I: 

Legendre's Theorem: [10] 

Let a, b, c be pairwise relatively prime integers which are squarefree and not all of 
the same algebraic sign. Then equation (1) has a nontrivial solution in the integers 
if and only if -bc, -ac, -ab are quadratic residues of a, b, c, respectively. 

Warwick de Launey [6] has approached the non-existence question for generalized 
Hadamard matrices by means of number theoretic properties of the Hadamard de
terminant. Basically, he proves the non-existence of many generalized Hadamard 
matrices for groups whose orders are divisible by 3,5 or 7; for example, GH(15, C I5 ), 

GH(15,C3), and GH(15,C5). 

That his work is non-exhaustive is evidenced by the following result: 
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Theorem 3 For Abelian groups of order p, and for odd primes 
p == ±3(mod 5), GH(p,5) does not exist. 

Proof. Consider the problem of finding integer solutions to the equation 

where p ±3(mod 5). This can be done only if one can find integer solutions of 

(2) 

(3) 

As x2 == ±3(mod 5) has no solutions, by Legendre's theorem neither does (2) or (3) 
have nontrivial integer solutions. 0 

Note. Clearly, theorem 3 generalizes some of de Launey's results. 

5 Reciprocity 

Definition 5: For groups G, H with IGI = g and IHI .\, potential generalized 
Hadamard matrices GH(g,.\) and GH(.\, g) satisfy a reciprocity relation provided 
both exist or both do not exist. 
Example. GH(3, 5) and GH(5, 3) are reciprocally non-existent, as in each case 
the pertinent reduced equation is of the form 

By Legendre's theorem, this equation has no nontrivial integer solutions (a, b, c), 
since ±3 is a quadratic non-residue of 5. 
By the same approach, the following result can be established: 

Theorem 4 Let.\ be a prime number. If (-1)-91-.\ and (-1) \;-1 .\ are both quadratic 

non-residues of 5, or if (-1) -91- 5 and (-1) ),;-1 5 are both quadratic non-residues of .\, 
then GH(5,.\) and GH('\, 5) constitute a reciprocally non-existent pair. 

Corollary 2 If 7 + 5k is a prime number, then GH(5, 7 + 5k) and GH(7 + 5k, 5) 
constitute a reciprocally non-existent sequence of potential generalized Hadamard ma
trices. 

Theorem 5 Let p = 4k + 3 and q = 4k + 5 be prime numbers, where 2 is a quadratic 
non-residue of p. Then (p, q) is a reciprocal pair. 
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Proof. Since p, q are squarefree and relatively prime, Legendre's theorem applies 
to determine integer solutions of the equations 

and 

Existence of a nontrivial integer solution of either equation can happen only if there 
exists a nontrivial integer solution (f, m, n) for equations of the following type 

No solution for this equation exists, as 

x 2 == 2(mod p) 

has no solution. o 

A more general method for finding reciprocal pairs employs a result of Euler: 

Euler's Theorem: [15] 
If p is an odd prime which does not divide a, then x2 == a( mod p) has a solution or 
no solution according as 

a(p-l)/2 == l(mod p) 

or 

a(p-l)/2 == -l(mod p). 

Reciprocity Theorem: Let p = 4k + 3 and a = 4l +5 be odd primes which satisfy 
Euler's condition 

a(p-l)/2 == -l(mod p). 

Then GH(a,p) and GH(p, a) constitute a reciprocal non-existent pair of generalized 
Hadamard matrices over groups G, H of order p, a. 
Proof. Under the hypotheses of the theorem, Euler's condition guarantees the 
non-existence of non-trivial integer solutions (x, y, z) to both equations 

and 
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whose reduced equation is of the form 

o 

Several reciprocal pairs are given by Table III: 

3 5 
3 17 
3 29 
11 13 
11 17 
11 29 
19 29 
19 59 
19 79 
59 61 
III 113 

Table III 

Method II: 

When the hypotheses of Legendre's theorem fail, an analysis of last digit [9] of 
separate members of equation (1) is sometimes fruitful. Here, if x is a nonzero 
integer, the last digit of x is denoted by [x]. For instance, the last digit of x2 is in 
the set 

[x 2
] = {O, 1,4,5,6, 9}, and 

[3x2
] = {O, 2,3,5, 7, 8} = [7x2

], 

[(10k + l)x2
] = [x 2

], k 2:: ° an integer 

[5x2
] = {O, 5}, 

[9x2] = {O, 1,4,5,6, 9}. 

These facts are useful in proving some non-existence theorems below. 

Lemma 2 The equation 

(4) 

where k is a non-negative integer satisfying (2k + 1) -¥=- O( mod 5), does not possess a 
nontrivial solution in integers. 
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Proof. By the method of contradiction, assume a nontrivial solution (x, y, z) exists, 
where (x, y, z) are non-negative integers. As the equation is homogeneous of degree 
two, (x, y, z) is a solution if and only if (tx, ty, tz) is a solution, where t is an integer. 
Therefore, it can be assumed that gcd(x, y, z) = 1. 

Clearly, z is divisible by 3. If z = 3£, where £ is an integer, then equation (4) reduces 
to 

(5) 

As the last digit of each integer (x2, y2, k2) belongs to the set L = {O, 1,4,5,6, 9}, 
the last digits of 5(2k + l)x2 and 3£2 are members of {O,5} and {O, 2, 3, 5,7, 8}, 
respectively. For compatibility with (5), the last digit of y2 can only be zero or five; 
the~efore, y = 5m, where m is an integer. 

N ow equation (5) becomes 

(6) 

Therefore, £ = 5p, where p is an integer. Equation (6) becomes 

Since five does not divide 2k + 1, it is necessary that x = 5q, where q is an integer. 
The conclusions 51Y and 51x imply that 51z. As this contradicts gcd(x, y, z) = 1, the 
assumption that (4) has a nontrivial solution in the integers must be false. 0 

Lemma 3 The equation 

Z2 = 5 . n . (10k + 1 )x2 + 5y2 (7) 

has no nontrivial solution for integers k ~ ° and n = 1, 3, 7. 

Proof. By the method of contradiction, assume a nontrivial solution (x, y, z) exists, 
where (x, y, z) are positive integers. As the equation is homogeneous of degree two, 
(x, y, z) is a solution if and only if (tx, ty, tz) is a solution, where t is an integer. 
Therefore, it can be assumed that gcd(x, y, z) = 1. 

Clearly, z is divisible by 5 in equation (7). 

Case 1: n = 1 

If z = 5£, where £ is an integer, then equation (7) reduces to 
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(8) 

As the last digit of each integer (X2,y2,£2) belongs to the set L = {O,I,4,5,6,9}, 
the last digits of 5£2 and (10k + l)x2 are members of {O,5} and {O, 1,4,5,6, 9}, 
respectively. For compatibility with (8), the last digit of x 2 and y2 can only be zero 
or five; therefore, x = 5m and y = 5p, where m,p are integers. 

The conclusions 51Y and 51x imply that 51z. As this contradicts gcd(x, y, z) = 1, the 
assumption that (7) has a nontrivial solution in the integers must be false. 

Case 2: n = 3 

If z = 5£, where £ is an integer, then equation (7) reduces to 

(9) 

As the last digit of each integer (X2,y2,f2) belongs to the set L = {O,I,4,5,6,9}, 
the last digits of 5£2 and 3(10k + l)x2 are members of {0,5} and {O, 2, 3, 5,7, 8}, 
respectively. For compatibility with (9), the last digit of y2 can only be zero or five; 
therefore, y 5m, where m is an integer. 

Now equation (9) becomes 

3(10k + l)x2 = 5£2 - 25m2
• 

Since five does not divide 3(10k+l), it is necessary that x = 5p, where p is an integer. 
The conclusions 51Y and 51x imply that 51z. As this contradicts gcd(x, y, z) = 1, the 
assumption that (7) has a nontrivial solution in the integers must be false. 

Case 3: n 7 

If z 5£, where £ is an integer, then equation (7) reduces to 

(10) 

As the last digit of each integer (x2, y2, £2) belongs to the set L = {O, 1,4,5,6, 9}, 
the last digits of 5£2 and 7(10k + l)x2 are members of {0,5} and {O, 2, 3, 5, 7, 8}, 
respectively. For compatibility with (10), the last digit of y2 can only be zero or five; 
therefore, y = 5m, where m is an integer. 

Now equation (10) becomes 

7(10k + l)x2 = 5£2 - 25m2
• 

Since five does not divide 7(10k+ 1), it is necessary that x = 5p, where p is an integer. 
The conclusions 51Y and 51x imply that 51z. As this contradicts gcd(x, y, z) = 1, the 
assumption that (7) has a nontrivial solution in the integers must be false. 0 
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6 Summary 

Theorem 6 Several sequences of potential Hadamard matrices over Abelian group 
G of order g which do not exist are: 

1. GH(3, 5(2k + 1)), (2k + 1) :t O(mod 5), with k a non-negative integer, 

2. GH(5, n(10k + 1)), for n = 1,3,7, k non-negative, 

3. GH(5,p), where p == ±3(mod 5) is an odd prime, 

4. Reciprocal pairs GH(5, 7+5k) and GH(7+5k, 5), where 7+5k is an odd prime. 

Coronary 3 For k a non-negative integer, the following classes of BH matrices do 
not exist: 

1. BH(3, 15(2k + 1)), (2k + 1) :t O(mod 5), 

2. BH(5, 5n(10k + 1)), for n = 1,3,7, 

3. BH(5, 5p), p == ±3(mod 5), an odd prime, 

4. Reciprocal pairs BH(5, 35 + 25k) and BH(7 + 5k, 35 + 25k), where 7 + 5k is 
an odd prime. 

The following conjecture, which motivated this research, appears to gain some sup
port from Corollary 3 and Tables I and II: 

Conjecture 1 If for 0 < k < g).. a locally maximal (g, k, A)-difference matrix with 
respect to Abelian group G of order g exists for which gcd(k, g)..) = 1, then GH(g,)..) 
does not exist. 

7 Conclusions 

Although the approaches of de Launey and the present author provide many in
stances of non-existent GH(p, q), these results are by no means exhaustive of all 
possibilities. The methods usefully complement each other, and together show the 
number theoretic complexity of this non-existence problem. 
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