Estimates on Strict Hall Exponents*

Bolian Liu
Department of Mathematics, South China Normal University Guangzhou 510631, P. R. China and
Department of Computer Science, Guangdong Institute for Nationalities Guangzhou 510633, P. R. China

Zhou Bo
Department of Mathematics, South China Normal University Guangzhou 510631, P. R. China

Abstract

Let B_{n} be the set of all n by n Boolean matrices, and let $H_{n}^{*}=\left\{A \in B_{n}\right.$: A^{k} is a Hall matrix for every sufficiently large integer $\left.k\right\}$. We provide upper estimates on the strict Hall exponents of microsymmetric matrices in H_{n}^{*}; furthermore, we obtain the maximum value of the strict Hall exponents of symmetric matrices in H_{n}^{*}.

1 Introduction

Let B_{n} be the set of all n by n matrices over the Boolean algebra $\{0,1\}$. A matrix A in B_{n} is said to be a Hall matrix provided that there is a permutation matrix Q such that $Q \leq A$ (entrywise order with $0 \leq 1$).

In 1973, Schwarz [1] introduced the concept of Hall exponent: for $A \in B_{n}$, if there is a positive integer k such that A^{k} is a Hall matrix, then the least such positive integer is called the Hall exponent of A, denoted by $h(A)$. When they made a further study of Hall exponents in 1990, Brualdi and Liu [2] found that there exist $A \in B_{n}$ and integer $m>h(A)$ such that A^{m} is not a Hall matrix. Therefore they introduced the concept of the strict Hall exponent.

For $A \in B_{n}$, if there is a positive integer k such that A^{i} is a Hall matrix for every integer $i \geq k$, then the least such positive integer is called the strict Hall exponent of A, denoted by $h^{*}(A)$.

[^0]It should be noted that $h(A)$ or $h^{*}(A)$ does not exist for some $A \in B_{n}$. Let $H_{n}^{*}=\left\{A \in B_{n}: A^{k}\right.$ is a Hall matrix for every sufficiently large integer $\left.k\right\}$.
Then $h^{*}(A)$ exists if and only if $A \in H_{n}^{*}$, and $h(A)$ exists if $A \in H_{n}^{*}$.
A matrix $A=\left(a_{i j}\right) \in B_{n}$ is said to be microsymmetric if there is a pair i, j with $i \neq j$ such that $a_{i j}=a_{j i}=1$ (for such i and j, we call $a_{i j}$ and $a_{j i}$ a pair of symmetric ones of $A) ; A=\left(a_{i j}\right)$ is said to be symmetric if $a_{i j}=a_{j i}$ for all i, j. We denote the set of all microsymmetric matrices in H_{n}^{*} by $M H_{n}^{*}$, and the set of all symmetric matrices in H_{n}^{*} by $S H_{n}^{*}$. Clearly, $S H_{n}^{*} \subset M S_{n}^{*}$.

A matrix $A \in B_{n}$ is primitive provided that for some positive integer $m, A^{m}=J_{n}$, the all 1's matrix in B_{n}. The set of primitive matrices in B_{n} is denoted by P_{n}.

Recently, we proved that $h^{*}(A) \leq\left\lfloor\frac{n^{2}}{4}\right\rfloor$ for $A \in P_{n}$ and $n \geq 2$. (This was conjectured in [2]). This upper estimate seems, however, far from satisfactory for some special classes of matrices in $P_{n} \subset H_{n}^{*}$.

In the present paper, we provide upper estimates on the strict Hall exponents of matrices in $M H_{n}^{*}$; furthermore we obtain the maximum value of the strict Hall exponents of matrices in $S H_{n}^{*}$.

2 Preliminaries

Recall that the matrix A is reducible provided that there is a permutation matrix P such that

$$
P A P^{T}=\left(\begin{array}{cc}
A_{1} & 0 \\
A_{2} & A_{3}
\end{array}\right) ;
$$

otherwise A is irreducible.
The digraph of $A=\left(a_{i j}\right) \in B_{n}, D(A)$, is defined by $D(A)=(V, E)$ where $V=V D(A)=\{1,2, \cdots, n\}$ and the $\operatorname{arc}(i, j) \in E=E D(A)$ if and only if $a_{i j}=1$ for all i, j. Thus loops are permitted in $D(A)$, but multiple arcs are not allowed.

It is well known that $A \in B_{n}$ is irreducible if and only if $D(A)$ is strongly connected, and $A \in B_{n}$ is primitive if and only if $D(A)$ is strongly connected and the greatest common divisor of the lengths of all cycles of $D(A)$ is 1 .

For an irreducible $A \in B_{n}$, let R be a set of some distinct lengths of cycles of $D(A)$. For $i, j \in V D(A), d_{R}(i, j)$ denotes the length of the shortest walk from i to j meeting at least one cycle of each length in R, and $d(i, j)$ denotes the distance from i to j, i.e., the length of the shortest path from i to j.

For $X \subseteq V D(A)$, let $R_{t}(X)$ be the set of vertices of $D(A)$ which can be reached by a walk of length t from a vertex in X. In particular, $R_{0}(X)=X$. It follows from Hall's theorem ([4]) that A^{t} is a Hall matrix if and only if $\left|R_{t}(X)\right| \geq|X|$ for every nontrivial subset X of $V D(A)$.

We have
Lemma 2.1 ([5]) Suppose A is an irreducible matrix in B_{n} and $X \subseteq V D(A)$. Then for every positive integer t,

$$
\left|\bigcup_{i=0}^{t} R_{i}(X)\right| \geq \min \{|X|+t, n\} .
$$

Let a, b be coprime positive integers. The Frobenius number $\phi(a, b)$ is defined to be the least integer ϕ such that every integer $m \geq \phi$ can be expressed in the form $x a+y b$ where x, y are nonnegative integers. It is well known that $\phi(a, b)=$ $(a-1)(b-1)$.

Note that B_{n} forms a finite multiplicative semigroup of order $2^{n^{2}}$. Let $A \in B_{n}$. The sequence of powers A^{1}, A^{2}, \cdots clearly forms a subsemigroup $\langle A\rangle$ of B_{n}, and there is a least positive integer $k=k(A)$ such that $A^{k}=A^{k+t}$ for some $t>0$, and there is a least positive integer $p=p(A)$ such that $A^{k}=A^{k+p}$. We call the integer $k=k(A)$ the index of A, and the integer $p=p(A)$ the period of A. It should be noted that this definition of the index of a Boolean matrix is a little different from that in [6] where $k(A)$ was permitted to be zero; however, they are the same for an irreducible Boolean matrix whose associated digraph is not a cycle of length n. It is well known that $p(A)$ equals the greatest common divisor of the distinct lengths of all the cycles of $D(A)$ if A is irreducible. And it is easy to see that $h^{*}(A) \leq k(A)$ for $A \in H_{n}^{*}$.

Let $A \in B_{n}$ with $p(A)=p$. For all i and $j, k_{A}(i, j)$ is defined to be the least positive integer k such that $\left(A^{l+p}\right)_{i j}=\left(A^{l}\right)_{i j}$ for every integer $l \geq k$, and $m_{A}(i, j)$ is defined to be the least positive integer m such that $\left(A^{a+m p}\right)_{i j}=1$ for every integer $a \geq 0$. It is easy to verify that

$$
k(A)=\max _{1 \leq i, j \leq n} k_{A}(i, j)
$$

and

$$
k_{A}(i, j)=\max \left\{m_{A}(i, j)-p+1,1\right\} .
$$

3 Main Results

Theorem 3.1 Let $A \in P_{n} \cap M H_{n}^{*}, n \geq 2$. Then $h^{*}(A) \leq 2 n-3$.
Proof. Since $A \in P_{n} \cap M H_{n}^{*}, D(A)$ must contain a cycle C_{2} with length 2 and a cycle C_{r} with length r where r is odd. Let $X \subseteq V D(A)$ with $|X|=k, 1 \leq k<n$. We will prove that $\left|R_{t}(X)\right| \geq k$ for $t \geq 2 n-3$. Note that this is obvious for $k=1$. We assume $k>1$.

There exist $x^{\prime} \in X, y^{\prime} \in V C_{2}$ such that

$$
d\left(x^{\prime}, y^{\prime}\right)=\min _{x \in X, y \in V C_{2}} d(x, y) .
$$

Therefore $d\left(x^{\prime}, y^{\prime}\right) \leq n-k-1$.

There also exists $z^{\prime} \in V C_{r}$ such that

$$
d\left(y^{\prime}, z^{\prime}\right)=\min _{z \in V C_{r}} d\left(y^{\prime}, z\right)
$$

and $d\left(y^{\prime}, z^{\prime}\right) \leq n-r$.
Setting $R=\{2, r\}$, we have

$$
d_{R}\left(x^{\prime}, z^{\prime}\right) \leq d\left(x^{\prime}, y^{\prime}\right)+d\left(y^{\prime}, z^{\prime}\right) \leq n-k-1+n-r=2 n-k-r-1
$$

By the definition of the Frobenius number, for every integer $m \geq 2 n-k-r-1+$ $\phi(2, r)=2 n-k-r-1+(r-1)=2 n-k-2$, there is a walk from x^{\prime} to z^{\prime} with length m. Hence for $t \geq(2 n-k-2)+k-1=2 n-3$, we have

$$
\bigcup_{a=0}^{k-1} R_{a}\left(\left\{z^{\prime}\right\}\right) \subseteq R_{t}\left(\left\{x^{\prime}\right\}\right)
$$

By Lemma 2.1,

$$
\begin{aligned}
\left|R_{t}(X)\right| & \geq\left|R_{t}\left(\left\{x^{\prime}\right\}\right)\right| \\
& \geq\left|\cup_{a=0}^{k-1} R_{a}\left(\left\{z^{\prime}\right\}\right)\right| \\
& \geq 1+(k-1)=k, \quad k>1
\end{aligned}
$$

Thus we have proved that $h^{*}(A) \leq 2 n-3$.
Note that A has at least two symmetric ones for $A \in M H_{n}^{*}$. We can generalize Theorem 3.1 to Theorem 3.2.

Theorem 3.2 Suppose $A \in P_{n} \cap M H_{n}^{*}$, and there are exactly s rows in A containing symmetric ones, $2 \leq s \leq n$. Then $h^{*}(A) \leq 2 n-s-1$.

Furthermore we have
Theorem 3.3 Suppose $A \in M H_{n}^{*}$, A is irreducible, and there are exactly s rows in A conlaining symmetric ones, $2 \leq s \leq n$. Then $h^{*}(A) \leq 2 n-s-1$.

Proof. By Theorem 3.2, we need only to prove $h^{*}(A) \leq 2 n-s-1$ for irreducible but not primitive $A \in M H_{n}^{*}$. In this case $p(A)=2$. For any vertices $i, j \in V D(A)$, there is a walk starting from vertex i to some vertex u of a cycle of length 2 of $D(A)$ with length $\leq n-s$; and vertex j can be reached by a walk starting from u with length $\leq n-1$. Hence for some positive integer $m \leq n-s+n-1=2 n-s-1$ and any integer $a \geq 0$, there is a walk from i to j with length $m+2 a$. Thus $m_{A}(i, j) \leq m \leq 2 n-s-1$, and $k_{A}(i, j) \leq m_{A}(i, j)-2-1 \leq 2 n-s-2<2 n-s-1$. Now it follows that

$$
h^{*}(A) \leq k(A)=\max _{1 \leq i, j \leq n} k_{A}(i, j)<2 n-s-1
$$

as desired.
By Theorem 3.3, we immediately have
Theorem 3.4 Suppose $A \in M H_{n}^{*}, n \geq 2$ and A is irreducible. Then $h^{*}(A) \leq$ $2 n-3$.

Now we investigate the strict Hall exponents of symmetric matrices in H_{n}^{*}. We consider the primitive matrices first.

Theorem 3.5 For $n \geq 3$, we have

$$
\max \left\{h^{*}(A): A \in P_{n} \cap S H_{n}^{*}\right\}= \begin{cases}n-2 & n \text { is odd } \\ n-1 & n \text { is even } .\end{cases}
$$

Proof. Suppose $A \in P_{n} \cap S H_{n}^{*}$. Then all rows of A contain symmetric ones. By Theorem 3.2, We have $h^{*}(A) \leq n-1$.

When n is even, we have $R_{n-2}(X) \supseteq X$ since A is symmetric. Hence $\left|R_{n-2}(X)\right| \geq$ $|X|$ holds for every $X \subseteq V D(A)$. Combining with the fact that $h^{*}(A) \leq n-1$, we have $h^{*}(A) \leq n-2$.

Therefore we have

$$
h^{*}(A) \leq \begin{cases}n-2, & n \text { is even } \\ n-1, & n \text { is odd }\end{cases}
$$

In the following we are going to show that the above upper bound can be achieved for every n.

If n is even, let

$$
A_{1}=\left(\begin{array}{cccccccc}
& & & 1 & & & & \\
& 0_{n / 2 \times n / 2} & & \vdots & & & & 0 \\
\\
& \ldots & 1 & 1 & & & & \\
& & & 1 & & & & \\
& & & 1 & 0 & \ddots & & \\
& & & & \ddots & \ddots & \ddots & \\
& 0 & & & & \ddots & 0 & 1 \\
& & & & & & 1 & 1
\end{array}\right)_{n \times n} .
$$

Clearly $A_{1} \in P_{n} \cap S H_{n}^{*}$. It is easy to verify that

$$
A_{1}^{n-3}=\left(\begin{array}{ccccccc}
& & & 1 & 0 & & \\
& 0_{n / 2 \times n / 2} & & \vdots & \vdots & & \\
& & 1 & 0 & & \\
1 & \cdots & 1 & 0 & 1 & \cdots & 1 \\
0 & \cdots & 0 & 1 & & & \\
& & & \vdots & & J & \\
& J & & 1 & & &
\end{array}\right) .
$$

A_{1}^{n-3} has a $\frac{n}{2} \times\left(\frac{n}{2}+1\right)$ zero submatrix with $\frac{n}{2}+\left(\frac{n}{2}+1\right)>n$, so A_{1}^{n-3} is not a Hall matrix. Thus $h^{*}\left(A_{1}\right) \geq n-2$. But we have proved that $h^{*}\left(A_{1}\right) \leq n-2$, so we have $h^{*}\left(A_{1}\right)=n-2$.

When n is odd, let

$$
A_{2}=\left(\begin{array}{ccccccc}
& & & 1 & & & \\
& 0_{(n+1) / 2 \times(n+1) / 2} & & \vdots & & & \\
& \ldots & 1 & & & & \\
1 & \ldots & 1 & 0 & 1 & & \\
\\
& & & 1 & 0 & \ddots & \\
\\
& & & & \ddots & \ddots & \ddots \\
& 0 & & & & \ddots & 0 \\
& & & & & & 1
\end{array}\right)_{n \times n} .
$$

It is easy to see that $A_{2} \in P_{n} \cap S H_{n}^{*}$ and

$$
A_{2}^{n-2}=\left(\begin{array}{cc}
0_{(n+1) / 2 \times(n+1) / 2} & J \\
J & J
\end{array}\right) .
$$

Hence A_{2}^{n-2} has a $\frac{n+1}{2} \times \frac{n+1}{2}$ zero submatrix, and it is not a Hall matrix. So $h^{*}\left(A_{2}\right) \geq$ $n-1$. Note that $h^{*}(A) \leq n-1$. We have $h^{*}(A)=n-1$. The proof is now completed.

Theorem 3.6 For $n \geq 3$, we have

$$
\max \left\{h^{*}(A): A \in S H_{n}^{*}\right\}=\left\{\begin{array}{cc}
n-2, & n \text { is even } \\
n-1, & n \text { is odd }
\end{array}\right.
$$

Proof. Suppose that $A \in S H_{n}^{*}$. By Lemma 3.5, we need only to prove

$$
h^{*}(A) \leq\left\{\begin{array}{cc}
n-2, & n \text { is even } \\
n-1, & n \text { is odd }
\end{array}\right.
$$

for $A \in S H_{n}^{*} \backslash P_{n}$. We divide the proof into two cases.
Case 1: A is irreducible. It has been proved in [7] that $k(A) \leq n-2$. Hence $h^{*}(A) \leq k(A) \leq n-2$.

Case 2: A is reducible. Assume that $A_{1}, A_{2}, \cdots, A_{t}(t \geq 2)$ are the irreducible components of A. Let the order of A_{i} be n_{i} for $1 \leq i \leq t$. It is easy to see that $h^{*}\left(A_{i}\right)$ exists for every i since $A \in S H_{n}^{*}$. For $1 \leq i \leq t$, it has been proved that $h^{*}\left(A_{i}\right) \leq n_{i}-1$ if A_{i} is primitive in Theorem 3.5; and by a similar argument as in Case $1, h^{*}(A) \leq n_{i}-2$ if A_{i} is not primitive. Hence

$$
h^{*}(A)=\max _{1 \leq i \leq t} h^{*}\left(A_{i}\right) \leq \max _{1 \leq i \leq t} n_{i}-1 \leq n-1-1=n-2 .
$$

References

[1] S. Schwarz, The semigroup of fully indecomposable relations and Hall relations, Czech. Math. J., 23: 151-163 (1973)
[2] R. A. Brualdi, B. Liu, Hall exponents of Boolean matrices, Czech. Math. J., 40: 659-670 (1990)
[3] B. Zhou, B. Liu, On a conjecture about the strict Hall exponents of primitive Boolean matrices, Chinese Science Bulletin, 41: (1996) 1319-1320
[4] L. Mirsky, Transversal Theory, Acdemic Press, New York (1971)
[5] B. Liu, On fully indecomposable exponents for primitive Boolean matrices with symmetric ones, Linear and Multilinear Algebra, 31: 131-138 (1992)
[6] J. Shao, Q. Li, The index set for the class of irreducible Boolean matrices with a given period, Linear and Multilinear Algebra, 22: 285-303 (1988)
[7] J. Shao, Q. Li, On the index of maximum density for irreducible Boolean matrices, Discrete Appl. Math., 21: 147-156 (1988)

[^0]: *This work was supported by NNSF of China and NSF of Guangdong Province.

