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Abstract 

A general upper bound for the size Ramsey number f(Ps , KI,t) matching 
the exact value for s ::; 7 and t sufficiently large is presented. Moreover, 
the remaining unknown values of the size Ramsey number for pairs of 
forests of order at most five are determined. 

Introduction 

For any pair of graphs G and H the size Ramsey number f( G, H) is defined to be 
the minimum size of a graph F such that in any 2-coloring of the edges of F, say 
with red and green, there is a red copy of G or a green copy of H; as usual this is 
denoted by F ---t (G, H). The size Ramsey number was introduced in [8] and has 
been studied for several pairs of graphs, i.e. for pairs of complete graphs and of stars 
([8]) and, mostly with regard to the asymptotic behavior, for pairs of paths, of trees 
and of cycles ([1], [2], [12], [13]). Moreover, various results have been obtained for 
pairs of graphs where one of the two graphs is a matching or a star, respectively ([4], 
[6], [10], [14]). 

Here we will consider the size Ramsey number for a path Ps of order s versus a 
star Kl,t. A general upper bound will be derived for f(Ps , KI,t), and it will be shown 
that this bound is best possible for s ::; 7 and t sufficiently large. Moreover, as an 
extension of the results in [9], where the size Ramsey number has been determined 
for almost all pairs of graphs of order at most four, we will present the still missing 
values of the size Ramsey number for all pairs of forests of order at most five. 

The following notation will be used. As usual, the vertex-set of a graph G is 
denoted by V(G), the edge-set by E(G), and we write p(G) = IV(G)I and q(G) = 
IE(G)I. A 2-coloring of a graph F always means a 2-coloring of the edges of F with 
red and green. A (G, H)-coloring of a graph F is a 2-coloring of F containing neither 
a red copy of G nor a green copy of H. Furthermore the set of red neighbors of a 
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vertex v E V (F) in a 2-coloring of F is denoted by Rv and the set of green neighbors 
by Gv , respectively. Further special notation will be introduced as needed. 

Notation not specifically mentioned will follow that in [11]. 

2 Paths versus stars 

It is easy to see that 

The following two lemmas will determine an upper bound for f(Ps, KI,t) in case of 
s 2:: 4 and t sufficiently large. 

Lemma 1. Let m 2:: 2. Then 

K m,2t-I -+ (P2m+b KI,t) if t 2::: max{ m + 1, 2m - 5}. (1) 

Proof. We will prove (1) applying induction on m. The assertion holds for m = 
2. Suppose now that m 2::: 3 and that (1) holds for m - 1 and fails for m, i.e. a 
(P2m+l , KI,t)-coloring X of the graph G = K m ,2t-I exists. Consider the coloring X. 
Let U be the set of the m independent vertices and W = V (G) \ U. Note that 
IGvl ::; t 1 and IRvl 2:: t 2::: m + 1 for every v E U. Pick some vertex U E U. By the 
induction hypothesis we can find a red path P of order 2m -1 in G - U = K m - I ,2t-I. 

We see that P = WI UI W2U2 ... Wm-I Um-I Wm where {UI,"" um-d = U \ {u} and 
WI,,,,,Wm E W. Let WI = {w2,,,.,wm-d, W 2 = W\ WI and, for v E U, R~ = 
Rv n W2 . Note that IR~I 2::: t - m + 2 for every v E U. Furthermore we see that 
R~ n R~! = R~ n R~m_! = 0 as otherwise a red path of order 2m + 1 is unavoidable. 

First suppose that R~l n R:m_l #- 0. We may assume that WI E R:! n R:m_l . 
This yields a red cycle C of order 2m - 2 containing UI, . .. , Um-l and WI, ... ,Wm-I. 

A vertex Wi E WI must be joined red to u because of R: c GUll IGUII ::; t - 1 and 
IRuI 2:: t. Moreover, we can find vertices x E R~i_l \ {wd and y E R: \ {x}. But then 
a red path of order 2m + 1 can be obtained using edges of C and the edges XUi-l, 

WiU, uy. 

The remaining case is that the sets R:!, R~m_l and R~ are pairwise disjoint 
and contain at least t - m + 2 elements each. It follows that m - 2 + 3(t - m + 
2) ::; IWI 2t 1 which implies that t ::; 2m - 5. In view of the assumption 
t 2:: max{ m + 1,2m - 5} we see that only t = 2m - 5 and m 2: 6 is left. Here 
a contradiction can only be avoided if W2 = R:I U R~m_l U R~ and if R:I , R~m_l 
and R~ contain t - m + 2 = m - 3 elements each. This implies that all edges 
from UI, Um-I and U to WI are red. Now consider the vertex U2. There must be 
a red neighbor W of U2 in W2 . If W E R:

I
, we take a vertex w' E R: and obtain 

the red P2m+l = W'UW2U2WUIW3U3W4U4." Wm-IUm-IWm . The remaining cases that 

4 



u E R~m_l or W E R~ similarly lead to a contradiction, and the proof of Lemma 1 is 
:omplete. I11III 

[.emma 2. Let m 2: 2. Then 

(2) 

Proof. We apply induction on m. In case of m = 2 the assertion holds for 
, 2: 4. Suppose now that m 2: 3 and that (2) holds for m - 1 and fails for m, i.e. a 

K1,t)-coloring X of the graph G = Km + K 2t-I-m exists. Consider the coloring 
Let U be the vertex-set of the Km and W = V(G) \ U. Pick some vertex U E U 

:tnd remove the edges joining U to W. This yields a graph G' = Km - 1 + K 2t - I -(m-l)' 

the induction hypothesis we can find a red path P of order 2m - 2 in G'. 

Case I: P does not contain the vertex u. Then P has to contain the remaining 
m - 1 vertices UI,"" Um-I from U, m - 1 vertices WI, ... , Wm-l E W, and at most 
)ne edge belonging to [U] can occur in P. This leads to one of the following two 
mbcases. 

1.1: P does not contain an edge belonging to [U]. Then we may assume that P 
WIUIW2U2 ... Wm-IUm-l. Let WI = {W2,"" Wm-I}, W 2 = W \ WI and, for v E U, 

= Rv n W2 . We see that IR~I 2: t - 2m + 2 for every v E U. No red P2m in X 
implies that R~ n R~l = R: n R:m_

1 
= 0. Thus, R~l n R~m_l i= 0 since otherwise 

2t - 2m + 1 = IW2 1 2: IR~ll + IR~m_ll + IR~I 2: 3t - 6m + 6 in contradiction to 
t 2: 4m - 3. We may assume that WI E R~l n R:

m
_

1
• Then P and the edge WI Um-I 

yield a red cycle C of length 2m - 2. A red edge from U to C would yield a red 
path of order 2m because of IR:I > 1. Thus, we have 2m - 2 green edges from U 

to C. Then no green KI,t in X implies at most t - 2 green edges from UI to W, 
i.e. I R~l \ {WI} I 2: t - 2m + 2. Since R~ n R~l = 0, there must be at least t - 2m + 2 
green edges from U to W \ V (C) and together with the 2m - 2 green edges joining 
u to V( C) this yields a green KI,t. 

1.2: P contains an edge ab belonging to [U]. In this case we may assume that P = 
WIUIW2U2'" Wiabwi+I ... Um-lWm-I' Let WI = {W2,"" W m -2}, W2 = W \ WI and, 
for v E U, R~ = Rv n W2 . If R~ n Rb i= 0, we obtain a red path P of order 2m - 2 as 

case 1.1. Thus, we may assume that R~ n Rb = 0. Note that IW2 1 = 2t - 2m + 2 
and IR~I 2: t-2m+3 for every v E U. Using t 2: 4m-3 we see that among any three 
vertices from U there are two of them with a common red neighbor in W2 . Thus, 
a vertex c E (R~ U Rb) n R~ exists. We may assume that c E R~ n R~. Moreover, 

n R~l = R~ n R~m_l = 0 as otherwise a red path of order 2m would occur. This 
implies R:

1 
n R~m_l i= 0, and we obtain a red cycle C' of order 2m - 3. But then 

we obtain a red path of order 2m by removing the edge ab from C' and adding the 
edges ac, cu and ud where d E R: \ {c}. 

Case II: P contains the vertex u. We may assume that any red path of order 
2m - 2 contains U and that P contains every v E U, since otherwise we would obtain 
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a situation equivalent to case 1. Thus, U cannot be an end-vertex of P since otherwise 
we could find a red edge joining the neighbor of U on P, which must also belong to 
U, to a vertex in W \ V(P) yielding a red P2m-2 without u. Similarly, no red P2m- 2 
can have an end-edge belonging to [U]. Let WI = V(P) n W, W2 = W \ WI, and let 
x and y be the neighbors of U on P. Note that IW11 = m - 2, IW21 = 2t - 2m + 1 
and x, y E U. Let R~ = Rv n W2 for v E U. Using that IR~I 2: t - 2m + 2 for every 
v E U and t 2: 4m - 3 we obtain that 

R~l n R~2 = R~l n R~3 = 0 =* IR~2 n R~31 2: 2 for all VI, V2, V3 E U. (3) 

We see that R; n R; = 0 since otherwise we would obtain a red path P2m- 2 not 
containing u. Moreover, no red P2m in X implies that R; n R~ = 0 or R; n R~ = 0. 
Thus, (3) yields that IR; n R~I 2: 2 or IR; n R~I 2: 2. We may assume that w, w' E 
R; n R~. Suppose that P contains an end-vertex Z E U. But then we can replace uy 
by uw and wyand add a red edge to P joining Z to a vertex in W2 \ {w} yielding 
a red P2m . Thus, P = WIUl." xuy ... U2W2 where WI, W2 E Wand Ul, U2 E U. It is 
allowed that Ul = x or U2 = y. 

Suppose that a vertex VI E R~l n R~2 exists. We may assume that VI =I w since 
otherwise we could exchange wand w'. But then we obtain a red P2m by removing 
the edges xu, uy, WIUl, U2W2 from P and adding the edges UIVl, VIU2, UW, wy, XV2, UV3 
where V2 E R; \ {vd and V3 E R: \ {w, vd· Thus, R~l n R~2 = 0. Moreover, 
R; n R:2 = 0 and R; n R~l = 0 since otherwise a forbidden red P2m- 2 with an end­
edge belonging to [U] would occur. Especially, w, w' ~ R:

1
• By (3) it follows that 

we can find two distinct vertices Zl E R; n R:
2 

and Z2 E R; n R:
1 

where Zl, Z2 -f. w. 

It can be checked that a third edge ab belonging to [U] must occur on P. This 
leads to one of the following two subcases. 

11.1: The edge ab belongs to the section of P from y to W2. Let a be the vertex 
that is reached before b passing through P from y to W2. First suppose that a 
vertex 81 E R~ n R~2 exists. We may assume that 81 -f. w since otherwise we could 
exchange wand w'. But then we obtain a red P2m by removing the edges uy, ab, U2W2 
from P and adding the edges UW, wy, aSl, 81 U2, b82 where 82 E R'b \ {W, 81}. Thus, 
R~ n R~2 0. This implies that a =I y. Using that R~l n R~2 = 0 and (3) we see that 
a vertex 83 E R:

1 
n R: with S3 -f. W, Zl must exist. But then we obtain a red P2m 

from P by removing the edges WI Ul, W2U2, ab and the two edges incident to y on P 
and adding the edges UW, wy, yZl, Zl U2, U183, 83a, bS4 where 84 E R'b \ {W, Zl, S3}' 

II.2: The edge ab belongs to the section of P from WI to x. Let a be the vertex 
that is reached before b passing through P from WI to x. First suppose that a vertex 
tl E R~l n R'b with tl -f. W exists. Then we obtain a red P2m by removing the edges 
WIUl, ab, uy from P and adding the edges U1t1, tlb, UW, wy, at2 where t2 E R:\ {w, t 1}. 

Thus, R~l n R'b = 0. Taking into account that R~l n R:2 = 0 and (3) the remaining 
case is that a vertex t3 E R'b n R~2 with t3 -f. Z2 exists. We may assume that t3 -f. W. 
But this yields a red P2m if the edges ab, xu, uy, WIUl, W2U2 are removed from P and 
the edges UIZ2, Z2X, UW, wy, bt3, t3U2, at4 where t4 E R: \ {w, Z2, td are added. This 
completes the proof of Lemma 2. iIIIl 
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As an immediate consequence of Lemma 1 and Lemma 2 we obtain 

Theorem 1. Let s ~ 4 be fixed, m = ls/2j, tl = max{m + 1,2m - 5} and 
t2 = 4m - 3. Then 

A (P K ) < { 2mt - m if s is odd and t ~ t 1 , 

r 8' 1,t - 2mt _ ~m2 - ~m if s is even and t ~ t2 . 
(4) 

In the following we will prove that the upper bound given in Theorem 1 is attained 
for s ::; 7 if t is sufficiently large. Some additional notation will be useful. A graph 
is called an (n, t)-brush if it contains exactly n vertices of degree at least t and no 
two vertices of degree at most t - 1 are adjacent. We will always use Ul, ... ,Un to 
denote the vertices of degree at least t in an (n, t)-brush G and let U = {Ul," ., un} 

and W = V(G) \ U. The number of vertices in W adjacent to Ui will be denoted by 
li. Moreover, we define Tn(Ps, K 1,t) to be the minimum size of an (n, t)-brush G with 
G -+ (Ps , K1,t). 

Lemma 3. Any graph G satisfying G -+ (Ps , K 1,t) and G - e f+ (Ps , K1,t) for 
every edge e E E(G) is an (n, t)-brush with n ~ m = ls/2J. Moreover, 

(5) 

Proof. Suppose that G contains an edge e = uv where d(u), d(v) ::; t - 1. Take 
a (Ps , K1,t)-coloring of G - e and add the edge e in green. This yields a (Ps , K 1,t)­
coloring of G, a contradiction. Additionally, if n < l s /2 j, no subgraph Ps occurs in 
G and a (Ps , K1,t)-coloring of G trivially exists. This obviously implies (5). II 

Lemma 4. Let s ~ 4, m = ls/2j and t 2: m. Then 

A (P K ) > { 2mt - m if s is odd, 
rm s, l,t - 2mt _ ~m2 - ~m if s is even. (6) 

Proof. First let s be odd. Consider an (m, t)-brush G where q(G) ::; 2mt - m-1. 
Then li S; 2t-2 for some i E {I, ... , m}. Let WI,"" WI; be the vertices in W adjacent 
to Ui. Then color the edges from Ui to WI,' .. , WLI;/2J and the edges between U \ {Ui} 

and WL1i/2j+l,.'" WI; green and all remaining edges red. This gives a (Ps , K1,t)­
coloring of G implying (6) for s odd. 

Now let s be even. Consider an (m, t)-brush G where q(G) S; 2mt - m2/2 -
3m/2 - 1. Then d(Ui) ::; 2t - 3 for some i E {I, ... , m}. Color min{t - 2, li} edges 
from Ui to W red and all other edges incident to Ui green. Then color the edges 
between U \ { Ui} and the red neighbors of Ui green and all remaining edges red. This 
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gives a (Ps , K1,t)-coloring of G implying (6) for s even, and the proof of Lemma 4 is 
complete. II1II 

A direct consequence of Lemma 1, Lemma 2 and Lemma 4 is 

Theorem 2. Let s 2: 4, m = Ls/2J, and let t 2: max{m + 1, 2m - 5} for s odd 
and t 2: 4m - 3 for s even. Then 

if s is odd, 
:im if s is even. 
2 

(7) 

Lemma 5. Let s 2: 4 be fixed and m = L s /2 J . Then for t sufficiently large 
(especially for t 2: 2m2 + 2m + 1 in case of s odd and for t 2: ~m2 + ~m - 2 in case 
of seven) 

(8) 

Proof. Let Tn = Tn(Ps, K 1,t). Note that for the t in question Tm is determined by 
Theorem 2. We will show that Tn 2: T m for n 2: 2m 1. Then the assertion follows 
by Lemma 3. 

First let G be an (n, t)-brush where n 2: 2m + 1. Using Theorem 2 we obtain 

q(G) 2: (2m+1)t- em2+1) 2: Tm for the t in question. This trivially implies Tn ~ Tm. 

It remains that 2m - 1 ::; n ::; 2m. Let ri = d( Ui) t for i = 1, ... ,n. Without 
loss of generality we may assume that rl 2: r2 ~ ... 2: rn. Moreover, we will use that 

n 

L ri = q(G) nt + q([U]) (9) 
i=1 

for any (n, t)-brush G. 

First consider a (2m, t)-brush G with q( G) < Tm. Using Theorem 2 and q([U]) ::; 
e;n) we obtain by (9) that I:;;:~Hri + 1) ::; t - (2m 1) for the t in question. Note 
that li 2: t (2m - 1) for i = 1, ... , n. Thus, for i 1, ... , 2m we can color ri + 1 
edges from Ui to W red such that no vertex in W is incident to more than one red 
edge. Coloring all remaining edges green we obtain a (Ps , K 1,t)-coloring of G. This 
implies T2m 2: Tm. 

Finally consider a (2m-I, t)-brush G with q(G) < Tm. Let U(I) = {UI, ... , um-d, 
U(2) = {um, ... , U2m-2} and U(3) = {u2m-d. Color the edges in [U(1)] and [U(2)] red 
and all other edges in [U] green. Now let ni be the number of red edges incident to 
Ui in [U]. It can be checked by considering (9) that for the t in question 

l2m-l 2: t + r2m-l - (2m - 2) 2: f2m-l + 1, 
li 2: t + ri - (ni + m) > ri + 1 - ni + r2m-l + 1 if m ::; i ::; 2m - 2, 
li 2: t + r i - (ni + m) > f i + 1 ni + I:T~~ 1 (r i + 1) if 1 ::; i ::; m - 1. 
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Thus, for i = 2m 1,. " , 1 we can color Ti + 1 - ni edges from Ui to W red such 
that no vertex in W is adjacent in red to two of the sets U(l), U(2) and U(3). If 
all remaining edges are colored green, a (Ps , K 1,t)-coloring of G is obtained. This 
implies T2m-1 2:: Tm , and the proof of Lemma 5 is complete. I11III 

Theorem 3. Let m = Ls/2J. Then for s = 4 ift ~ 4, for s 5 ift ~ 2, for s = 6 
if t ~ 16 and for s 7 if t ~ 25 

T(P K ) = { 2mt - m if s = 5 or s = 7, 
s, l,t 2mt - ~m2 - ~m if s = 4 or s 6. (10) 

Proof. Using Lemma 5 and Theorem 2 we obtain (10) in case of s = 4 for t ~ 7 
and in case of s 5 for t ~ 13. It can be checked by some case analysis that (10) 
already holds for t ~ 4 and t ~ 2, respectively. 

Now consider 6 ::; s ::; 7. Theorem 1 establishes the upper bound for t ~ 9 and t ~ 
4, respectively. Let G be a (4, t)-brush with q( G) ::; 6t-4 and let t 2:: 15. Considering 
Lemma 5 and Theorem 2 the proof is complete if it can be shown that a (Ps , K 1,t)­
coloring of G exists. We define N( Ui) to be the set of vertices in W adjacent to Ui. For 
any permutation i,j, k, l of 1,2,3, 4 let Ni,j,k,l = (N(Ui) U N(uj)) n (N(Uk) U N(UI)), 
and let nd be the number of vertices of degree d in W. Note that 

IN1,2,3,41 + IN1,3,2,41 + IN1,4,2,31 = 2n2 + 3n3 + 3n4 ::; q(G) ::; 6t 4. (11) 

Consider some fixed Ni,j,k,l. Let A = Ni,j,k,l \ N(uj), B = Ni,j,k,l \ N(Ui) and G = 
Ni,j,k,l \ (A U B). 

First suppose that min{IAI, IBI} ::; t-3 and max{IAI+IGI, IBI+ICI} ::; 2t-6. We 
may assume that IBI ::; IAI. If IBI + IGI ~ t - 3, choose a (t - 3 -IBD-element subset 
C' c G and a I B I-element subset A' c A. Then color the edges between {Ui' Uj} and 
A' U B U C' U {Uk, Ul} and the edges between {Uk, UI} and (G \ C') U (A \A') green 
and all remaining edges in G red. If IBI + IGI < t - 3, choose a (t - 3 IGI)-element 
subset A' c A in case of IAI ~ t - 3 - IGI, otherwise put A' = A. Then color the 
edges between {Ui' Uj} and A' U BuG U {Uk, UI} and the edges between {Uk, Ul} and 
A \ A' green and all remaining edges in G red. In both cases a (Ps , K1,t)-coloring of 
G is obtained. 

The remaining case is that IAI, IBI ~ t - 2 or max{IAI + IGI, IBI + IGI} ~ 2t - 5 
for every permutation i, j, k, l of 1,2,3,4, which implies that INi,j,k,l\ 2:: 2t - 5. 

First let IAI, IBI ~ t - 2 for some Ni,j,k,l, we may assume for N 1,2,3,4. Then (11) 
and IN1,3,2,41, IN1,4,2,31 ~ 2t - 5 imply that IN1,2,3,41 ::; 3t - 9 for t 2:: 15. Choose 
(t - 3)-element subsets A' c A and B' c B. Then color the edges between {Ul' U2} 
and A' U B' U {U3' U4} and the edges between {U3' U4} and (A \ A') U (B \ B') U G 
green and all remaining edges in G red. Again a (Ps , K1,t)-coloring of G is obtained. 

Only the case that max{IAI + IGI, IBI + IGI} ~ 2t - 5 for every Ni,j,k,l is left. This 
implies that at least three vertices in U are adjacent to at least 2t - 5 vertices in W 
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each. It follows that q(G) ~ t + 3(2t - 5). But this contradicts q(G) ::; 6t - 4 for 
t 2: 12, and the proof of Theorem 3 is complete. 81 

Remark. Considering Theorem 3 we conjecture that the upper bound given in 
Theorem 1 for f (Ps , K l,t) is also attained for s 2: 8 if t is sufficiently large (depending 
on s). 

In case of s ~ 4, m = ls/2J and t ~ m the best lower bound for f(Ps, K 1,t) 
currently known to us is 

This follows immediately from Lemma 3 since fn(Ps, K 1,t) ~ (m + l)t _ (m~l) 
for n ~ m + 1 (consider the edges incident to m + 1 of the n vertices of degree at 
least t of an (n, t)-brush) and fm(Ps, KI,t) 2: (m + l)t - (m~l) by Lemma 4. 

3 Forests of order at most five 

Table 1 gives the size Ramsey number for all pairs of isolate-free forests of order 
at most five. Additionally, Table 2 gives the corresponding restricted size Ramsey 
number f*(G, H) which is defined as the minimum size of a graph F with r(G, H) 
vertices and F -t (G, H), where r(G, H) denotes the minimum order of a graph F' 
satisfying F' -t (G, H). 

Note that the trivial results f(P2 , H) = f*(P2 , H) q(H) for arbitrary H have 
been omitted in both tables. 

Following the notation in [3] we use 51,3 to denote the graph obtained from a star 
K 1,3 by joining an additional fifth vertex to one of the outer vertices of the star. 

The footnotes indicate where the corresponding values of f(G, H) and f*(G, H) 
have been obtained from. The remaining values can be checked by some tedious and 
lengthy case analysis which is omitted here. 
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2P2 P3 P3 UP2 K 1,3 P4 K 1,4 Sl,3 P5 

3 4 5 6 5 8 8 6 
2P2 [5] [5] [5] [6] [5] [6] 

3 5 4 5 5 7 6 
P3 [5] [5J [9] [5] Th. 3 

P3 UP2 
6 7 8 9 9 9 

5 8 6 9 10 
K 1,3 [5] [9] [5] Th. 3 

7 11 9 10 
P4 [9] Th. 3 

7 12 14 
K 1,4 

[5] Th. 3 

10 11 
Sl,3 

[3] 

P5 
10 

Table 1: f(G, H) for all pairs of isolate-free forests of order at most five 

2P2 P3 P3 UP2 K1,3 P4 K 1,4 Sl,3 P5 

5 4 6 8 5 12 8 6 
2P2 

[9J [9] 

P3 
3 5 4 5 10 7 6 
[7] [7] [9] [7] Th. 3 

1P3 U P2 
8 9 8 12 9 10 

K 1,3 
5 9 6 10 10 
[7] [7] 

7 11 9 10 
P4 [9] Th. 3 

21 17 17 
K 1,4 

[7] 

Sl,3 
11 11 

P5 
10 

Table 2: f*(G, H) for all pairs of isolate-free forests of order at most five 
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