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Abstract

A general upper bound for the size Ramsey number 7#(Ps, K 1,t) matching
the exact value for s < 7 and t sufficiently large is presented. Moreover,
the remaining unknown values of the size Ramsey number for pairs of
forests of order at most five are determined.

1 Introduction

For any pair of graphs G and H the size Ramsey number 7(G, H) is defined to be
the minimum size of a graph F such that in any 2-coloring of the edges of F, say
with red and green, there is a red copy of G or a green copy of H; as usual this is
denoted by F — (G, H). The size Ramsey number was introduced in [8] and has
been studied for several pairs of graphs, i.e. for pairs of complete graphs and of stars
(18]) and, mostly with regard to the asymptotic behavior, for pairs of paths, of trees
and of cycles ([1], [2], [12], [13]). Moreover, various results have been obtained for
pairs of graphs where one of the two graphs is a matching or a star, respectively (141,
(61, [10], [14]).

Here we will consider the size Ramsey number for a path P, of order s versus a
star K. A general upper bound will be derived for #(P;, K1), and it will be shown
that this bound is best possible for s < 7 and ¢ sufficiently large. Moreover, as an
extension of the results in [9], where the size Ramsey number has been determined
for almost all pairs of graphs of order at most four, we will present the still missing
values of the size Ramsey number for all pairs of forests of order at most five.

The following notation will be used. As usual, the vertex-set of a graph G is
denoted by V(G), the edge-set by E(G), and we write p(G) = [V(G)| and ¢(G) =
|E(G)|. A 2-coloring of a graph F always means a 2-coloring of the edges of F' with
red and green. A (G, H)-coloring of a graph F is a 2-coloring of F' containing neither
a red copy of G nor a green copy of H. Furthermore the set of red neighbors of a
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vertex v € V(F) in a 2-coloring of F' is denoted by R, and the set of green neighbors
by G,, respectively. Further special notation will be introduced as needed.

Notation not specifically mentioned will follow that in [11].

2 Paths versus stars
It is easy to see that
H(Poy K1) =t, #(Py,Kyp)=t+1.

The following two lemmas will determine an upper bound for #(P;, K} ;) in case of
s > 4 and ¢ sufficiently large.

Lemma 1. Let m > 2. Then

Km,2t—1 - (P2m+1, Kl,t) if ¢ Z max{m + 1, 2m — 5} (1)

Proof. We will prove (1) applying induction on m. The assertion holds for m =
2. Suppose now that m > 3 and that (1) holds for m — 1 and fails for m, i.e. a
(Pom1, K1 ¢)-coloring x of the graph G = K1 exists. Consider the coloring x.
Let U be the set of the m independent vertices and W = V(G) \ U. Note that
|Gy] <t—1and |R,| >t>m+1 for every v € U. Pick some vertex u € U. By the
induction hypothesis we can find a red path P of order 2m—1in G —u = Km-126-1-
We see that P = wiujwolty . . . Wy Upm—1 Wy, Where {u1, ..., umr} = U\ {u} and
Wy, W, € W Let Wi = {wy,..., wn_1}, Wo = W\ W, and, for v € U, R =
R, N W,. Note that |R}| > ¢ — m + 2 for every v € U. Furthermore we see that
RyNR, =R,NR; =0 asotherwise a red path of order 2m + 1 is unavoidable.

Um—1

First suppose that Ry N Ry # 0. We may assume that w; € Rj N Ry .
This yields a red cycle C of order 2m — 2 containing uy, ..., Upy_; and wy, . . ., Wp_;.
A vertex w; € Wy must be joined red to u because of R C G,,, |Gy,| <t —1 and
|Ru| > t. Moreover, we can find vertices z € R% _ \{w;} and y € R’ \ {z}. But then
a red path of order 2m + 1 can be obtained using edges of C' and the edges zu;_;,

Wik, UY.

The remaining case is that the sets R} , R;  and R} are pairwise disjoint
and contain at least ¢ — m + 2 elements each. It follows that m — 2 + 3(t -m+
2) < [W| = 2t — 1 which implies that ¢ < 2m — 5. In view of the assumption
t > max{m + 1,2m — 5} we see that only ¢t = 2m — 5 and m > 6 is left. Here
a contradiction can only be avoided if W = R}, UR; U R: and if R, R, .
and Rj contain t —m +2 = m — 3 elements each. This implies that all edges
from uy,um-1 and u to W; are red. Now consider the vertex ug. There must be
a red neighbor w of up in Wa. If w € R}, we take a vertex w' € R’ and obtain

the red Pomi1 = W uwousWu walaWatiy . . . Wyn_qUpm—1Wm. The remaining cases that




y € R, orw € Ry similarly lead to a contradiction, and the proof of Lemma 1 is
omplete. ®

Lemma 2. Let m > 2. Then

Ko+ —K-—Zt—l—m - (PQm, Kl,g) if t>4m—3. (2)

Proof. We apply induction on m. In case of m = 2 the assertion holds for
> 4. Suppose now that m > 3 and that (2) holds for m — 1 and fails for m, i.e. a
Pym, K1,4)-coloring x of the graph G = K, + Koi_1_m exists. Consider the coloring
¢. Let U be the vertex-set of the K, and W = V(G) \ U. Pick some vertex u € U
ind remove the edges joining u to W. This yields a graph G’ = K1 + Ko 1 (m—1)-
By the induction hypothesis we can find a red path P of order 2m — 2in G.

Case I P does not contain the vertex u. Then P has to contain the remaining
n — 1 vertices ug, ..., Um—1 from U, m — 1 vertices wy, ..., Wn—1 € W, and at most
yne edge belonging to [U] can occur in P. This leads to one of the following two
subcases.

1.1: P does not contain an edge belonging to [U]. Then we may assume that P =
W U Wolly - - - W1 Um—1- Let Wi = {wWa,...,Wn-1}, Wo = W\ W; and, for v € U,
R: = R, ﬂW2 We see that |R}| > t—2m+2 for every v € U. No red Pay in X
unphes that REN R, =R,NR, = = . Thus, Ry NR;  # {# since otherwise
2% —2m+1 = [ng |Ry |+ l e 1| + |R:| > 3t — 6m + 6 in contradiction to
t > 4m — 3. We may assume that w; € Ry N Ry . Then P and the edge witm—1
yield a red cycle C of length 2m — 2. A red edge from u to C would yield a red
path of order 2m because of |R%| > 1. Thus, we have 2m — 2 green edges from u
to C. Then no green K;; in x implies at most ¢t — 2 green edges from u; to W,
ie. |R: \ {wi}| > t—2m+2. Since R} N Ry, = 0, there must be at least ¢ —2m +2
green edges from u to W\ V(C) and together with the 2m — 2 green edges joining
u to V(C) this yields a green Ky ;.

1.2: P contains an edge ab belonging to [U]. In this case we may assume that P =
WU Wally - - - WeBbWigy - - - U1 Wm—1- Let Wi = {wa, ..., Wm—2}, Wo = W\ W) and,
forveU, R = R,NW,. If R*NR; # 0, we obtain a red path P of order 2m —2 as
in case [.1. Thus, we may assume that R: N Ry = 0. Note that [Wa| = 2t — 2m + 2
and |RY| > t—2m+3 for every v € U. Using t > 4m—3 we see that among any three
vertices from U there are two of them with a common red neighbor in W,. Thus,
a vertex ¢ € (R U R}) N R:, exists. We may assume that ¢ € R; N Rj. Moreover,
RINR;, =R,NR, = = () as otherwise a red path of order 2m would occur. This
implies R* NR; # 0, and we obtain a red cycle C' of order 2m — 3. But then
we obtain a red path of order 2m by removing the edge ab from C' and adding the
edges ac, cu and ud where d € R} \ {c}.

Case II: P contains the vertex u. We may assume that any red path of order
9m — 2 contains u and that P contains every v € U, since otherwise we would obtain




a situation equivalent to case I. Thus, u cannot be an end-vertex of P since otherwise
we could find a red edge joining the neighbor of u on P, which must also belong to
U, to a vertex in W \ V(P) yielding a red Py, without u. Similarly, no red Pyy,_s
can have an end-edge belonging to [U]. Let Wy = V(P)NW, W, = W\ W}, and let
¢ and y be the neighbors of u on P. Note that |Wi| = m — 2, [Wy| = 2t — 2m + 1
and z,y € U. Let Ry = R, N W, for v € U. Using that |R}| > ¢t — 2m + 2 for every
v € U and t > 4m — 3 we obtain that

Ry NE, =R, NR, =0 = |R,NR:|>2foralv,v,uecl (3

We see that R; N Ry = { since otherwise we would obtain a red path Py,_o not
containing u. Moreover, no red Py, in ) implies that RE N R = @ or RyN Ry = 0.
Thus, (3) yields that Ry N R;| > 2 or |R; N Ry > 2. We may assume that w, w' €
Ry, N R;. Suppose that P contains an end-vertex z € U. But then we can replace uy
by uw and wy and add a red edge to P joining z to a vertex in W, \ {w} yielding
ared Py,. Thus, P = wyuy...zuy... usws where wi,wy € W and uy,ug € U. It is
allowed that u; =z or uy = y.

Suppose that a vertex v; € Ry N R, exists. We may assume that v; # w since
otherwise we could exchange w and w’. But then we obtain a red Py, by removing
the edges zu, uy, wiu;, uywy from P and adding the edges u; vy, vyus, uw, wy, Tvg, uvs
where v; € R\ {vi} and v; € R\ {w,vn}. Thus, R} NR; = 0. Moreover,
R;N Ry, =0 and Ry N Ry = 0 since otherwise a forbidden red Pj,,_, with an end-
edge belonging to [U] would occur. Especially, w,w’ ¢ R . By (3) it follows that
we can find two distinct vertices z; € R, N Ry, and 2, € Ry N R}, where 21, 2, # w.

It can be checked that a third edge ab belonging to [U] must occur on P. This
leads to one of the following two subcases.

IL.1: The edge ab belongs to the section of P from y to ws. Let a be the vertex
that is reached before b passing through P from y to w,. First suppose that a
vertex s1 € R N Ry, exists. We may assume that s; # w since otherwise we could
exchange w and w'. But then we obtain a red P, by removing the edges uy, ab, usws
from P and adding the edges uw,wy, asy, sius, bs, where sy € R} \ {w, s1}. Thus,
R;N R}, = 0. This implies that a # y. Using that R} N R =0 and (3) we see that
a vertex s3 € R, N R with s3 # w, 2; must exist. But then we obtain a red P
from P by removing the edges wyu;, wous, ab and the two edges incident to y on P
and adding the edges uw, wy, yz1, z1u2, u1s3, S3a, bsy where sy € R} \ {w, 21, ss}.

I1.2: The edge ab belongs to the section of P from w; to z. Let a be the vertex
that is reached before b passing through P from w; to z. First suppose that a vertex
t1 € R, N R; with t; # w exists. Then we obtain a red P, by removing the edges
wyuy, ab, uy from P and adding the edges u;t,, t1b, uw, wy, at, where ty € RA\{w,t1}.
Thus, R}, N Ry = 0. Taking into account that R} N R} =0 and (3) the remaining
case is that a vertex ¢t3 € Ry N Ry, with t3 # 2z, exists. We may assume that 3 # w.
But this yields a red Pay, if the edges ab, zu, uy, wu;, wouy are removed from P and
the edges uyzg, 207, uw, wy, bts, tauy, aty where t; € R:\ {w, 2,3} are added. This
completes the proof of Lemma 2. =




As an immediate consequence of Lemma 1 and Lemma 2 we obtain

Theorem 1. Let s > 4 be fixed, m = |s/2], t; = max{m + 1,2m — 5} and
ty =4m — 3. Then

2mt —m if sis odd and t > ¢4,
2mt —im? — 3m if sis even and t > ¢5.

F(P, Kn) < { @

In the following we will prove that the upper bound given in Theorem 1 is attained
for s < 7 if ¢ is sufficiently large. Some additional notation will be useful. A graph
is called an (n, t)-brush if it contains exactly n vertices of degree at least ¢ and no
two vertices of degree at most ¢ — 1 are adjacent. We will always use uy,...,un to
denote the vertices of degree at least ¢ in an (n,t)-brush G and let U = {u1,...,us}
and W = V(G) \ U. The number of vertices in W adjacent to u; will be denoted by
l;. Moreover, we define #,(P,, K1) to be the minimum size of an (n, t)-brush G' with
G— (Ps,Kl,t)-

Lemma 3. Any graph G satisfying G — (P, K1) and G — e 4 (P, K1) for
every edge e € E(G) is an (n,t)-brush with n > m = |s/2]. Moreover,

f(Ps, Kl,t) = min{f"n(Ps,Kl,t) n 2 m} (5)

Proof. Suppose that G contains an edge e = uv where d(u),d(v) <t — 1. Take
a (P;, Ky ,)-coloring of G — e and add the edge e in green. This yields a (P, K1.)-
coloring of G, a contradiction. Additionally, if n < |s/2], no subgraph P; occurs in
G and a (P, K, ;)-coloring of G trivially exists. This obviously implies (5). ®

Lemma 4. Let s >4, m = |s/2| and t > m. Then

2mt —m if s is odd,
2mt — tm? 3

- 5m if 5 is even. (6)

Fm(Ps, K1) > {

Proof. First let s be odd. Consider an (m, t)-brush G where ¢(G) < 2mt —m - 1.
Then l; < 2t—2forsomei € {1,...,m}. Let wy,. .., w; be the vertices in W adjacent
to u;. Then color the edges from u; to wy, ..., wy,/2) and the edges between U \ {ui}
and w|y/2j+1,---,w; green and all remaining edges red. This gives a (Ps, K14)-
coloring of G implying (6) for s odd.

Now let s be even. Consider an (m,t)-brush G where ¢(G) < 2mt — m?/2 —
3m/2 — 1. Then d(u;) < 2t — 3 for some ¢ € {1,...,m}. Color min{t — 2,1;} edges
from u; to W red and all other edges incident to u; green. Then color the edges
between U \ {w;} and the red neighbors of u; green and all remaining edges red. This




gives a (Ps, Ky,)-coloring of G implying (6) for s even, and the proof of Lemma 4 is
complete. ®

A direct consequence of Lemma 1, Lemma 2 and Lemma 4 is

Theorem 2. Let s > 4, m = |s/2], and let t > max{m + 1,2m — 5} for s odd
and ¢t > 4m — 3 for s even. Then

2mt —m if s is odd,

2mt — im? — 3m if s is even.

nlPa K1) = { ™)

Lemma 5. Let s > 4 be fixed and m = |s/2|. Then for ¢ sufficiently large
(especially for £ > 2m? + 2m + 1 in case of s odd and for t > 2m? + 3m — 2 in case
of s even)

F( Py, K1) = min{#,(Ps, K1 1) : m <n < 2m — 2} (8)

Proof. Let #, = #,(P,, K1,). Note that for the ¢ in question #,, is determined by
Theorem 2. We will show that 7, > 7, for n > 2m — 1. Then the assertion follows
by Lemma 3.

First let G be an {n,t)-brush where n > 2m + 1. Using Theorem 2 we obtain
q(G) > 2m+1)t— (2’"2“) > fy, for the ¢ in question. This trivially implies 7, > 7.

It remains that 2m —1 < n < 2m. Let r;, = d(u;) — ¢ for i = 1,...,n. Without
loss of generality we may assume that r; > ry > ... > r,. Moreover, we will use that

n

2 =4q(G) —nt+q([U) (9)

i=1
for any (n,t)-brush G.

First consider a (2m, t)-brush G with ¢(G) < #,,. Using Theorem 2 and ¢([U]) <
(2;”) we obtain by (9) that 227 (r; + 1) < ¢t — (2m — 1) for the ¢ in question. Note
that l; > ¢— (2m—1) fori=1,...,n. Thus, fori=1,...,2m we can color r; + 1
edges from u; to W red such that no vertex in W is incident to more than one red
edge. Coloring all remaining edges green we obtain a (P, K )-coloring of G. This
implies Fo, > .

Finally consider a (2m—1,t)-brush G with ¢(G) < . Let U = {uy, ..., um_1},
U® = {upm,..., ugm-2} and U®) = {uy,,_;}. Color the edges in [UV] and [U?®)] red
and all other edges in [U] green. Now let n; be the number of red edges incident to
u; in [U]. It can be checked by considering (9) that for the ¢ in question

lom—1 2 t+7oma — (2m—2) > 1oy + 1,
li >t+r;—(n;+m) >ri+l—n;+romq +1 ifm<i<2m -2,
li >t+ri—(n;+m) >+ l-n+ Y 4+1) if1<i<m— 1.
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Thus, for i = 2m — 1,...,1 we can color r; +1 —n; edges from u; to W red such
that no vertex in W is adjacent in red to two of the sets U), U® and U @, 1f
all remaining edges are colored green, a (P, Kj)-coloring of G is obtained. This
implies 7gm_1 > fm, and the proof of Lemma 5 is complete. &

Theorem 3. Let m = |s/2]. Thenfor s =4ift>4,fors=5ift > 2, fors=6
ift > 16 and fors=7if t > 25

2mt — m fs=5o0rs="7,

2mt — im? —3m ifs=4ors=6.

7Py, K14) = { (10)

Proof. Using Lemma 5 and Theorem 2 we obtain (10) in case of s =4 for t > 7
and in case of s = 5 for t > 13. It can be checked by some case analysis that (10)
already holds for t > 4 and ¢ > 2, respectively.

Now consider 6 < s < 7. Theorem 1 establishes the upper bound for ¢ > 9 and ¢ >
4, respectively. Let G be a (4,t)-brush with ¢(G) < 6t—4 and let ¢t > 15. Considering
Lemma 5 and Theorem 2 the proof is complete if it can be shown that a (P, K )-
coloring of G exists. We define N (u;) to be the set of vertices in W adjacent to u;. For
any permutation 7,7, k, I of 1,2,3,4 let Nyjxy = (N(u;) UN(u;)) 0 (N (ug) UN (ur)),
and let ng be the number of vertices of degree d in W. Note that

iN1,2)3,4I + |N1)312,41 + |N1,4,2y3| = 2ny + 3nz + 3ng < q(G) < 6t — 4. (11)

Consider some fixed Ni,j,k,l- Let A = Ni,j,k,l \ N(u]'), B = Ni,j,lc,l \ N(ui) and C =
Ni,j,k,l \ (A U B)

First suppose that min{|A|, |B|} < t—3 and max{|A|+|C|,|B|+|C|} < 2t—6. We
may assume that |B| < |A|. If |B|+|C| > ¢ —3, choose a (t — 3 — | B|)-element subset
C' C C and a | B|-element subset A’ C A. Then color the edges between {u;, u;} and
A'"UBUC"U {ug,w} and the edges between {ux,w} and (C'\ C") U (A\ A') green
and all remaining edges in G red. If | B|+|C| < t — 3, choose a (t — 3 — |C|)-element
subset A’ C A in case of |A| > t — 3 — |C|, otherwise put A" = A. Then color the
edges between {u;,u;} and A'UBUC U {ux, w} and the edges between {ux,w} and
A\ A’ green and all remaining edges in G red. In both cases a (Py, K1 4)-coloring of
G is obtained.

The remaining case is that |A|, |B| > t — 2 or max{|A| + |C|, |B| +|C|} > 2t -5
for every permutation 4,5, k,{ of 1,2, 3,4, which implies that |N; il > 2t —5.

First let |A|,|B| > t — 2 for some Njjx,, we may assume for N1 3. Then (11)
and IN1’3’2’4‘> ‘N1‘4?2,3‘ > 2t — 5 1mply that ]N1,2,3,4] S 3t—9 fort > 15. Choose
(t — 3)-element subsets A’ C A and B' C B. Then color the edges between {u1, us}
and A’ U B' U {us,us} and the edges between {us, us} and (A\ A" ) U (B\B)UC
green and all remaining edges in G red. Again a (P;, K1;)-coloring of @ is obtained.

Only the case that max{|A|+|C|, |B|+|C|} > 2t —5 for every N, is left. This
implies that at least three vertices in U are adjacent to at least 2t — 5 vertices in W
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each. It follows that ¢(G) > t 4 3(2t — 5). But this contradicts q(G) < 6t — 4 for
t > 12, and the proof of Theorem 3 is complete. m

Remark. Considering Theorem 3 we conjecture that the upper bound given in
Theorem 1 for 7#(P,, K1) is also attained for s > 8 if ¢ is sufficiently large (depending
on s).

In case of s > 4, m = [s/2] and ¢t > m the best lower bound for #(P;, K )
currently known to us is

(P, K1) > (m+ 1)t — (m; 1).

for n > m + 1 (consider the edges incident to 7 + 1 of the n vertices of degree at

least t of an (n,t)-brush) and 7, (Ps, K14) > (m + 1)t — (m,jl) by Lemma 4.

This follows immediately from Lemma 3 since 7, (Ps, K1) > (m + 1)t — (m; 1)

3 Forests of order at most five

Table 1 gives the size Ramsey number for all pairs of isolate-free forests of order
at most five. Additionally, Table 2 gives the corresponding restricted size Ramsey
number 7*(G, H) which is defined as the minimum size of a graph F' with (G, H)
vertices and F' — (G, H), where r(G, H) denotes the minimum order of a graph F
satisfying F' — (G, H).

Note that the trivial results #(P,, H) = #*(P,, H) = g(H) for arbitrary H have
been omitted in both tables.

Following the notation in [3] we use Si 3 to denote the graph obtained from a star
K, 3 by joining an additional fifth vertex to one of the outer vertices of the star.

The footnotes indicate where the corresponding values of #(G, H) and #*(G, H)
have been obtained from. The remaining values can be checked by some tedious and
lengthy case analysis which is omitted here.
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2P P, \PBsUP| Kis | Po | Kig | Si3 Ps
3 4 5 6 5 8 8 6
25 [5) [5) [5) (6] [5) (6}
a 3 5 4 5 5 7 6
5 [5) [5] [9) [5] Th. 3
6 7 8 9 9 9
P3 U P2
5 8 6 9 10
K 1,3 5] 19] [5] Th. 3
7 11 9 10
Py @ | Th 3
7 12 | 14
Kia 5] Th. 3
10 | 11
S1s )
10
P

2P, | Py [PBBUP| Kig | Py | K14 | Si3 By
5 4 6 8 5 12 8 6
25 [9) [9]
5 3 5 4 5 10 7 6
3 (7] 7] [9] 1 Th. 3
8 ) 8 12 9 10
P, U P,
5 9 6 i0 | 10
Kis m 1)
7 11 9 10
Py [9 | Th 3
21 | 17 | 17
K1,4 [7]
i1 | 11
Si,3
10
Py

Table 2: #*(G, H) for all pairs of isolate-free forests of order at most five
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