






where n;3 ::; a :::; n - 2, is a critical set for Ben' 

An example of S, for n = 7 and a = 2, is displayed in Table 2. In the even case, 
it is easily shown that a minimal critical set for Ben has size �~�,� as �~� independent 
intercalates exist in Ben and each must have non-zero intersection with a critical 
set. Note that when a = n;4, S provides an example of a minimal critical set. It is 
still undetermined for odd n, whether the corresponding critical set of size n2;1 is 
minimal. 

Let lcs( n) denote the size of the largest critical set in any latin square of order nand 
scs( n) denote the size of the smallest critical set in any latin square of order n. 

In 1978 Curran and van Rees [5] established an upper bound of n2 - n for lcs(n). If 
we let a = n 2 in the set S from Lemma 5, then a critical set is produced with size 
n2:;n. Hence, lcs(n) 2: n2:;n. This gives the following: 

n2 
- n -- < lcs(n) < n2 

- n. 2 - -

Cooper, McDonough and Mavron (4) show that scs(n) 2: n + 1, and a more recent 
result, by Fu, Fu and Rodger [10], establishes that scs( n) 2: l7n;3 J for n 2: 20. A 
conjecture by Nelder is that scs( n) = l �~� J and no evidence has been presented to 
date to suggest otherwise. 

For particular values of n, Curran and van Rees [5] verify the following exact results: 

scs(n) n I �~� 2 3 4 
1 2 4 �~�I� 

For all other values of n, only the bounds for scs( n) are known. As mentioned, �~� 
is the minimal size of a critical set for Ben for even n, however the minimal size 
for odd n is undetermined. It is hence desirable to investigate BCn for odd values 
of n and to extend results for the smaller sized latin squares. Recently, Donovan in 
[7] investigates the existence of critical sets in latin squares of order less than 11. 
Further, in [12], Adams and Khodkar produce minimal critical sets for all groups of 
order 8. 

In this paper, we shall utilize the relationship that exists between latin interchanges 
and critical sets to produce an algorithm which is then used to determine scs(6) and 
the minimal size of a critical set for BC7 and BGg• 

2. Main Results 

In order to produce a critical set G, for a latin square L of order n, it is evident from 
Lemmas 2 and 3 that the latin interchanges that occur within L must be identified. 
Latin interchanges are relatively easy to locate; for suppose any partial latin square 
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P has two completions, then the differing cells of these two completions form a latin 
interchange. In the event that P does complete uniquely (some subset of P is thus a 
critical set) then remove one or more elements from P and test again for DC. Note 
that when verifying Lemma 2, it is unnecessary to consider latin interchanges that 
contain smaller latin interchanges. That is, if latin interchanges I and J exist where 
I C J, then disregard J. 

Suppose that a latin square L contains v distinct latin interchanges It, where IItl = rt 
for 1 ~ t ~ v. Let V denote the set of all latin interchanges occurring in L. 

For each position (i,j) in L, where 0 ~ i,j :::; n - 1, let b(i,j) denote the set of 
all latin interchanges in L containing position (i, j), and let X denote the set of 
latin interchange sets b(i,j), for every position (i, j) in L. We shall use the notation 
b(i,j) E C to denote that the partial latin square C contains a triple corresponding to 
position (i,j). In analogy with Lemmas 2 and 3, a critical set C must then satisfy: 

£2) For each It E V, lIt n CI ;::: 1; and 

£3) for each b(i,j) E C,3It E V so that b(i',j') E (C n It), if and only if if = i and 
j' =j. 

Note that finding a minimal critical set C is equivalent to finding a subset W eX, 
of smallest size, such that UW = V and Vb(i,j) E W, the set b(i,j) \ U{W\b(i,j)} is 
non-empty. 

A general description of the algorithm will now be presented. In what follows, our 
goal is to produce a minimal critical set for some latin square L. When searching for a 
minimal critical set, we normally have some lower bound for the smallest possible size. 
As smaller sized partial latin squares require less computational time, it is generally 
more effective to test whether critical sets exist of smallest expected values. Then, if 
a critical set is found of size m, we search for a critical set of size m - 1 and if none 
exists, then m must be the size of a minimal critical set. Note that if theoretical 
lower bounds do not exist for a particular latin square, we can find an upper bound 
for the size as follows. 

If L has order n, then the set C = {(i, j; k) 10 :::; i, j :::; n - 2, (i, j; k) E L} is a 
uniquely completable set, as each row and column contains n - 1 entries and so the 
last entry is forced in each case. The size of C is (n - 1)2. Note that we can remove 
any element from C and check for DC. While we still have DC, continue to remove 
elements from C. When C is reduced to the point where every element is necessary 
for DC, then we have a critical set of size m, where m is the number of elements 
remaining in set C. This method is well-suited for computer implementation. We 
now describe the steps for determining whether a critical set of size m exists. 

Step 1. Find all sets Cw corresponding to a subset W of X of size m, where Cw = 
{(i, j; k) I b(i,j) E W}, and ICwl = m. Keep all sets that satisfy Lemma 4: 
that is, no row or column is completely filled and no element occurs n times. 
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Further, keep only the sets that contain at least n - 1 different rows, columns 
and elements. Note that as any pair of rows, columns or elements form a latin 
interchange, this last requirement covers any latin interchanges of this type. 

Step 2. For each m-set Cw check that Lemma 2 is satisfied. That is, each Cw must 
intersect with every latin interchange It C L. 

Step 3. Check that each m-set Gw satisfies Lemma 3, (equivalent to requirement 
£3 above). 

Sets Gw that satisfy Steps 1, 2 and 3, are critical sets of size m. Thus, once a critical 
set of size m is found, repeat Steps 1, 2, 3, replacing m with m - 1 to find a critical 
set of size m - 1. Note that if all m-sets satisfy Steps 1 and 2 but fail Step 3, then 
they are UC but contain superfluous elements, so also repeat Steps 1, 2 and 3 to find 
a critical set of size m -lor less. If no sets of size m have UC, that is they fail Steps 
1 and 2, then there cannot be any critical set of size less than m + 1. 

For a latin square of order n there are (:) sets of positions of size m that require 
checking at Step 1 of the algorithm. For n = 6 it is computationally feasible to check 
all m-sets. For example, with m = 9, approximately 94 x 106 sets must be checked. 
In some cases, this search space may be reduced if elements can be fixed without 
loss of generality (for example in symmetric latin squares). This concept is used in 
the search for BG7 , and for BG9 • Generally however, for larger values of n, the size 
of the search space limits the feasibility of conducting complete searches for critical 
sets. In these cases, the algorithm may be adapted for use in a probabilistic manner. 
Alternatively, Steps 1 and 2 may be used to check whether a UC set exists of size 
m, with the algorithm being halted as soon as the first one is found. 

In the implementation of Step 2, it is not always necessary to identify every single 
latin interchange, It, in L. Quite often a minimal critical set can be found by utilizing 
just a selection of It's. It is desirable to start with small sized latin interchanges first, 
as these are the most 'easily missed' and are also computationally faster to check for. 
Perform the above steps with some subset of V containing all known smaller sized 
latin interchanges. If some m-set covers these It's, then additional latin interchanges 
need to be found. However, if no m-set is found that covers these latin interchanges, 
then clearly there cannot be a critical set of size m, or less. 

We shall now proceed to find scs(6). 

In [9], Fisher and Yates produced a classification of all latin squares of order six. 
There are 9408 latin squares of order six when put into standard· form. These latin 
squares are partitioned into twelve main classes. A relatively simple computer pro
gram will produce all of these, and isomorphism programs such as Nauty by B McKay 
[13], may be used to produce the necessary classification into main classes. It is note
worthy that this classification was accurately done by hand by Fisher et al in 1934. 

In what follows, the notation Li refers to a latin square from main class i, and Gi 
denotes a minimal critical set for L i . Table 3 displays a representative of each main 
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Main Class 1 2 3 4 
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 
1 2 3 4 5 0 1 2 0 5 3 4 1 2 0 5 3 4 1 0 3 2 5 4 

latin 2 3 4 5 0 1 2 0 1 4 5 3 2 0 1 4 5 3 2 3 4 5 0 1 
square 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 1 2 0 3 2 5 4 1 0 

4 5 0 1 2 3 4 5 3 2 0 1 4 5 3 0 1 2 4 5 0 1 3 2 
5 0 1 2 3 4 5 3 4 1 2 0 5 3 4 2 0 1 5 4 1 0 2 3 
0 1 - - - - - - - - 4 5 - 1 - - 4 - - 1 - - -
1 - - - - - 1 - - - - 4 - - - - - - 1 - 3 - 5 -

critical - - - - - - 2 - 1 - - - 2 - - 4 5 - - - 4 - - -

set - - - - - 2 - - - 0 - - - - - - 2 0 3 - - 4 - 0 
- - - - 2 3 - - 3 2 0 - - - 3 - - 2 - 5 - - 3 -

- - - 2 3 4 5 3 - - - - - 3 4 - - - - - - 0 - -

Main Class 5 6 7 8 
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 
1 0 3 2 5 4 1 0 3 4 5 2 1 0 3 2 5 4 1 0 3 2 5 4 

latin 2 4 0 5 1 3 2 3 1 5 0 4 2 4 0 5 3 1 2 4 0 5 1 3 
square 3 5 1 4 0 2 3 5 4 1 2 0 3 5 4 0 1 2 3 5 4 0 2 1 

4 2 5 1 3 0 4 2 5 0 1 3 4 2 5 1 0 3 4 3 5 1 0 2 
5 3 4 0 2 1 5 4 0 2 3 1 5 3 1 4 2 0 5 2 1 4 3 0 
- 1 - - 4 - 0 1 - - - 5 0 - 2 3 - - - - - 3 4 -
- - 3 - - 4 1 0 - - - - - - - - - 4 1 - - - - -

critical 2 - - 5 - - - - 1 - - - - 4 - - - 1 - - 0 - - -

set - - - - 0 - - - - - 2 - 3 - - 0 - - 3 5 - - - -

- 2 5 1 - - 4 - - - - - - - - - 0 - - - - - 0 2 
5 - - - - - - - - 2 3 - 5 - - - - - 5 2 1 - - -

Main Class 9 10 11 12 
latin 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 

square 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 4 1 0 3 2 5 4 
2 3 4 5 0 1 2 4 0 5 1 3 2 4 0 5 3 1 2 3 4 5 0 1 
3 4 5 0 1 2 3 5 1 4 2 0 3 5 4 0 1 2 3 4 5 1 2 0 
4 5 0 1 2 3 4 3 5 1 0 2 4 3 5 1 2 0 4 5 1 0 3 2 
5 2 1 4 3 0 5 2 4 0 3 1 5 2 1 4 0 3 5 2 0 4 1 3 

critical - - - - 4 5 0 - - - - - 0 1 2 - - - 0 - 2 - - -
set 1 - 3 - - - - - 3 - - 4 - - - - 5 - 1 - - - 5 4 

2 - - - 0 - - 4 - - 1 3 - - - 5 3 - - - - 5 - 1 
3 - - - - 2 - - - - - - - - 4 - - 2 - - - 1 - -

- - - 1 - - - 3 - - - 2 - - - - - - - - - - - -

- - 1 4 - - 5 - - 0 - - - 2 1 - - - - 2 0 - - -

Table 3: The twelve main classes of latin squares of order six and their minimal 
critical sets. 
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class and its corresponding minimal critical set. It is relatively easy to prove that 
each Ci is DC and that each element is essential. Proof that each critical set produced 
is minimal is provided by following the general algorithm. In each case, no set of 
ICi I 1 positions in Li passes both Steps 1 and 2 of the algorithm, thus confirming 
that Ci is a minimal critical set. For each main class, a selection of latin interchanges 
occurring in Li is used to determine a critical set, and the number of various sizes 
required is displayed in Table 4. 
The first latin square, L 1 , is the back circulant latin square of order six, and from 
Lemma 6, the size of a minimal critical set is known to be nine. The second latin 
square, L2 , corresponds to the Dihedral group of order three. A critical set of size 
twelve was produced by Keedwell in [16]but was not known to be minimal. Using 
all 27 intercalates and all 36 latin interchanges of size 6, it is found that no set of 
11 positions in this latin square satisfies Steps 1 and 2 of the algorithm. Thus, a 
minimal critical set for L2 has size 12. For classes 6 and 12, Mortimer [14] produced 
critical sets of size 10 which are now known to be minimal. All remaining results are 
new. 

I IItl II 4 I 6 I 8 I 9 10 I 11 12 113 I 14 I 15 16 18 

L1 9 
L2 27 36 
L3 36 162 691 463 108 
L4 9 36 96 252 443 
L5 19 12 12 24 212 69 68 108 
L6 4 12 61 24 252 
L7 11 12 60 132 
L8 15 20 90 60 
L9 9 36 18 123 35 405 80 32 138 
L10 15 8 30 60 60 36 
L11 7 12 60 32 133 39 40 
L12 5 16 52 53 139 46 12 

Table 4: Number of latin interchanges required to identify minimal critical sets 
for each latin square of order 6. 

Theorem 1: scs(6) = 9. 

Proof. Implementing the general algorithm outlined previously, produces minimal 
critical sets for every latin square of order six. The size of the minimal critical set 
for each latin square Li is summarized below and out of these, the smallest size is 
nine, occurring for BC6 • 
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Main Class 1 2 3 4 5 6 7 8 9 10 11 12 
ICil 9 12 11 11 11 10 10 11 11 10 10 10 

We now consider BC7 • 

An example of a critical set of size 12 for BC7 was given earlier in Table 2, and hence 
scs(7) :s; 12. We are interested in finding an exact value for the size of the minimal 
critical set for BC7 . As a critical set of size 12 exists, it suffices to produce all sets 
of 11 positions in BC7 and test firstly whether they are DC. 

Our goal is to produce a list of all sets of 11 positions in BC7 which are possible 
candidates for critical sets. We know that at most six elements can occur in any 
row or column and that at least six rows and six columns must be represented. The 
following result tells us that we must have all seven distinct elements: 

Lemma 6. (Donovan) Cooper} Nott and Seberry [2j.) Let L be a back circulant latin 
square of odd order n :2: 7. Then a critical set based on n - 1 distinct elements has 
size at least 2(n - 1). 

Implementing the algorithm described earlier confirms that no 11-set in Be7 can 
be found that satisfies Steps 1 and 2. That is, for each II-set that passes Step 1, 
a latin interchange can be found that does not intersect this 11-set. In all cases, 
a latin interchange I of size 9 (and type 3 of Keedwelrs classification [11]) as in 
Table 1, can be found at Step 2. In BC7 , this is the smallest sized latin interchange 
occurring and there are 196 distinct latin interchanges of this size and type. These 
are distributed evenly throughout BC7 and each position in BC7 occurs in 36 of 
these latin interchanges. For each position (i, j) two such latin interchanges Ii~j and 
Ii~l, are produced with the following nine triplets, where k = 1 for Ii~j and k = -1 
for Ii~f. The notation EB and e denote addition and subtraction modulo 7. 

Ii~j = {(i,jjiEBj), (i,jEBkjiEBjEBk), (i,jekjiEBje k), 

(iEBk, jj iEBjEBk), (iEBk, jekj iEBj), (iEBk, jEB3kj iEBjEB4k), 

(i e 2k, j EB kj i EB j e k), (i e 2k, j e kj i EB j EB 4k), (i e 2k, j EB 3kj i EB j EB k)}. 

There are 49 values for (i, j) and the sets Ii~j produce 98 distinct latin interchanges. 
These are not symmetric, so taking the transpose of each, gives an additional 98 
latin interchanges, a total of 196. 

As there are (i~) ~ 29 x 109 possible sets of 11 positions, it is preferential to split the 
search for all 11-sets in BC7 into smaller groups. Five groups are formed by fixing 
q elements in the last row of BC7 for 2 :s; q :s; 6. Additionally, an upper limit, q, is 
imposed on the number of elements that can occur in anyone row. For each group, 
a search is then conducted to find all sets of (11 - q) positions from the first six rows 
of BC7 • Each (11 - q)-set, along with the set of q fixed positions is then required 
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to cover at least six rows and six columns and seven distinct elements. Within each 
group, no single row is permitted to be represented more than q times. The following 
relates to the steps of the algorithm, using m = 11. The rows, columns and elements 
of BG7 are indexed in the following steps with 0, 1, ... , 6. 

Step 1. For q = 2 to 6, fix q elements in the last row of BG7 , and search for all 
(l;':'q) positions in the first six rows. Only sets satisfying the following are 
kept: 

(a) A maximum of q elements is included from anyone row; 

(b) Each ll-set intersects at least six rows; 

(c) Each ll-set intersects at least six columns; and 

( d) Each II-set represents seven elements. 

Step 2. For each 11-set found above, find a latin interchange Iw = {(it, jt; kt ) 11 ::; 
t ::; 9} of size 9 and type 3 or it's transpose, that does not intersect with this 
11-set. 

A flowchart for the search algorithm is displayed in Figure 1. 

Search Results 

Table 5 contains a summary of the searches performed for each group. Recall that 
q elements were fixed in the last row of BG7 • The program searched for all C:':'q) 
sets of positions in the first six rows of BG7 and kept sets that satisfied requirements 
l(a), (b), (c) and (d). For 2 ::; q ::; 5, there are multiple non-isomorphic fixings of q 
positions in the last row of BG7 • In these cases, a search was performed for each 
non-isomorphic fixing. The table displays the search number and the elements that 
were fixed in each search. The last column gives the number of II-sets found in each 
search that passed the requirements of Step 1. Note that these numbers are generally 
well below the size of the original search space. 

Theorem 2: The minimal critical set for BG7 consists of 12 elements. 

Proof. Due to the cyclic nature of BG7l completion of Step 1 above produces all 11-
sets in BG7 that are candidates for critical sets. From Lemma 1, the latin interchange 
Iw found in Step 2 provides proof that no ll-set can be a critical set. 

Finally, we consider BGg • 

The back circulant latin square of order nine consists of nine subsquares of order 
three. From Lemma 5, recall that if G is a critical set for BGg , then G must uniquely 
define each subsquare, and this requires at least two elements per subsquare. Lemma 
6 provides a critical set of size twenty for BGg , and hence, 18 ::; IGI ::; 20. Thus, we 
must check whether a critical set exists of size eighteen or nineteen. Note that if a 

284 



'FIND _11_SETS' Algorithm 
Description: 'Find_l Lsets' produces sets of 11 positions in the back 
circulant latin square of order 7. Initially, 'q' positions in row 7 are fixed. 
The algorithm searches for all sets of (ll-q) positions from the first 
6 rows. Two inputs are required for the program: cnt!, an integer and 
s, a set. Counters 'cntl' and 'cnt2' keep track of the 42 positions being 
searched for in rows 1 to 6. The algorithm is recursive and is initiated 
with cntl=1 and s={ }. 

Initial input: 
cnt!= 1; s={} 

no 

yes 

no 

no 

Write this set to OUTPUT file. 

cnt2 < 42? 

Figure 1: The search algorithm 'Find_ILsets' 
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Number of 
q C::q) Search columns fixed m-sets that 

Number in row 7 of BG7 pass Step 1 
2 445,891,810 la 5 6 14,083,838 

Ib 4 6 14,083,838 
lc 3 6 14,083,838 

3 118,030,185 2a 4 5 6 12,380,241 
2b 3 5 6 12,372,345 
2c 2 5 6 12,380,241 
2d 2 4 6 12,380,241 

4 26,978,328 3a 3 4 5 6 2,744,768 
3b 2 4 5 6 2,742,288 
3c 1 2 5 6 2,744,768 
3d 1 3 5 6 2,744,768 

5 5,245,786 4a 2 3 4 5 6 483,339 
4b 1 3 4 5 6 483,339 
4c 1 2 4 5 6 483,339 

6 850,668 5 1 2 3 4 5 6 54,186 

Table 5: Summary of searches performed. 

uc set of size nineteen does not exist, then the minimal critical set for BG9 must 
have size twenty. 

The algorithm is adapted in order to reduce the search space and the task is to 
search for a UC set of size nineteen. Observe that in BG9 , a UC set of size nineteen 
must contain two elements from eight of the subsquares and three elements from 
the remaining subsquare. As each subsquare is isotopic to any other, we can fix the 
elements in the subsquare containing three elements. Any subsquare will do. There 
are four non-isotopic UC sets of size three for a latin square of order three, and hence 
four searches must be performed. Then, for each remaining subsquare, there are nine 
sets of two positions that form a critical set. Hence, for each of the four fixings of 
three elements, there are 89 (rv 108

) sets of sixteen elements that have UC within 
each subsquare. These sets combined with the set of three fixed elements are hence 
candidates for UC sets for BG9 • The first step of the modified algorithm produces all 
such sets of size nineteen. There are 486 latin interchanges of size ten (type 1 Ob ), as 
displayed in Table 6. Each position in BG9 occurs in sixty of these. Any UC set must 
have non-zero intersection with each of these latin interchanges. Thus, the second 
step in the algorithm is to test whether all the potential UC sets of size nineteen 
found in the first step intersect with each of these 486 latin interchanges. The result 
is summarized in Theorem 3. 

Theorem 3: The minimal critical set for BG9 consists of twenty elements. 
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o * 2 5 
2 * 4 * 
* 4 5 * 
4 5 * 0 

Table 6: An example of the latin interchange of size 10 and type lOb. 

Proof. Adaptation of the general algorithm, as outlined above, produces all partial 
latin squares of size nineteen that satisfy the minimum requirements for a UC set. 
None of these satisfies Lemma 2, and hence none has UC. Thus, the critical set 
derived from Lemma 6 of size twenty must be minimal. 
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