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Abstract 

A linear forest-factor F of a graph G is a spanning subgraph of G whose 
components are paths. A linear forest-decomposition of G is a collection 
:F = {F1, ••• , Fk } of linear forest-factors of G such that the edge set 
E (G) of G is the disjoint union of E (F1), •.• , E (Fk)' The linear ar borici ty 
la( G) of G is the minimum cardinality of a linear forest-decomposition of 
G. In this paper we evolve a method to construct a small linear forest­
decomposition of a graph G from given linear forest-decompositions of 
two subgraphs that are linked by a cut vertex of G. As an application 
we determine the linear arboricity of block-cactus graphs which extends 
a result of Zelinka [5] (1986). Our results are connected to the "linear 
arboricity conjecture" of Akiyama, Exoo and Harary [2] (1980). 

1. Introduction 

We consider finite, simple, undirected, connected and non-trivial graphs G with 
vertex set V(G) and edge set E(G). For a vertex x of a graph G the degree d(x, G) 
of x in G is the cardinality of the neighbourhood of x in G. The maximum degree 
of a vertex in a graph G is denoted by .6.(G). The linear arboricity of a graph was 
defined by F. Harary in [3]. We give here a slightly more formalized version which 
simplifies some matters of notation. 

A linear forest-factor F of a graph G is a spanning subgraph of G whose compo­
nents are all paths (isolated vertices are allowed). A linear forest-decomposition of 
G is a collection :F = {F1, . .. , Fk } of linear forest-factors of G such that E(G) is the 
disjoint union of E(Fd, ... ,E(Fk)' The linear arboricity la(G) of G is the minimum 
cardinality of a linear forest-decomposition. 

Since the maximum degree in a linear forest-factor is at most 2, the lower bound 

r ~~G) 1 0; la( G) 

is immediate for every graph G. 
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To shorten the proofs we now introduce some notation. Let F= {F1, .•• , Fk } be 
an linear forest-decomposition of G. For every vertex x E V (G) we define 

ni(x, F) = I{F E :F: d(x, F) = i}l, i 0,1,2 

and 
n(x, F) = (no(x, F), ri1(x, F), n2(x, F)). 

A fundamental question in this context is the "linear arboricity conjecture" of Aki­
yama, Exoo and Harary [2]. 

Conjecture 1 If G is an r-regular graph, then 

la(G) = rr;11. 
For non regular graphs we state a version of this conjecture formulated by A'it­

djafer [1]. 

Conjecture 2 If G is a graph, then 

2. Structural Results 

We start with our main theorem. It examines how to obtain a small linear forest­
decomposition of a graph G from given linear forest-decompositions of two subgraphs 
that are linked by a cut vertex of G. 

Theorem 1 Let G be graph with the cut vertex x. Let G1 and G2 be two subgraphs 
of G such that {x} = V(G1) n V(G2 ), V(G) = V(Gd U V(G2 ) and E(G) = E(G1 ) u 
E(G2 ). 

Let F1 and F2 be linear forest-decompositions of G1 and G2 , respectively with 
l.ril = la(Gi) and ni =(n~,nLn;) = n(x, Fi), i = 1,2. Assume that ni 2: ni· 

Then the following relations for laC G) hold: 

i. If na ::; n~ and n5 ~ n~, then 

la(G) = maxn d(x~G)l ,la(G,)} 

ii. If na ~ n~ and n~ < n5 < n~ + (ni - ni), then 
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iii. In all other cases we have 

la(G) = max{la(Gr), la(G2)}. 

Proof. Step by step we combine linear forest-factors of :Fl and F2 to form linear 
forest-factors of G. After every step we reduce the entries of fit and fh to keep track 
of the remaining linear forest-factors. If fit = ii2 = (0,0,0), the process is complete. 

Since ni :::; nt we begin in all three cases by forming the union of linear forest­
factors Fl E Fl and linear forest-factors F2 E :F2 with d(x, Pi) = 1, i = 1,2 to 
construct ni new linear forest-factors of G. This leads to 

(1) 

In Cases i and ii we form the union of linear forest-factors Fl E Fl and linear 
forest-factors F2 E :F2 with d(x, Fr) = ° and d(x, F2) 2 to construct n6 new linear 
forest-factors of G and obtain 

(2) 

Case i: By forming the union of linear forest-factors Fl E FI and linear forest­
factors F2 E F2 with d(x, Fr) = 2 and d(x, F2) = ° we construct n5 new linear 
forest-factors of G. Therefore we deduce from (2) 

iiI = (0, ni - ni, ni - n~) and ii2 = (0, 0, n~ - n6). 

Now we decompose m = min {l n};n? J ,n~ - n6} of the linear forest-factors F E :F2 
with d(x, F) = 2 in 2m new linear forest-factors F' of G2 with d(x, F') = 1 and 
obtain 

iiI remains unchanged and ii2 = (0, 2m, n~ - n6 - m). 

By forming the union of linear forest-factors FI E :Fl and linear forest-factors F2 E :F2 
with d(x, F 1) = 1 and d(x, F2 ) = 1 we construct 2m linear forest-factors of G and 
obtain 

iiI = (0, ni - ni - 2m, ni - n~) and ii2 = (0, 0, n~ - n6 - m). 

All the remaining linear forest-factors of G1 and G2 are adopted unchanged as linear 
forest-factors of G (just by adding all the missing vertices to get a factor). This 
yields finally 

iiI = ii2 = (0,0,0). 

The cardinality of the constructed linear forest-decomposition of G is now 

ni + n6 + n~ + 2m + (ni - n~) + (ni - ni - 2m) + (n~ - n6 - m) 

= ni + ni + n~ - m 
max {nl + nl + n2 _lni - nij nl + n1 + n2 

122 2 '122 

= max { nl + n~ + ~ + r n; ; nll ' ni + nl + n~ } 
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{ r n~ + n~ + 2n~ + 2n~1 1 II} 
max 2 ' no + n i + n 2 

{ r
d(X, G)1 } = max -2-' la( GI) , 

and hence it follows that 

la(G) s: max W(x~ G) 1 ' la(G t ) } . 

Since la( G) ;::: max { r d(xiG) 1 ' la( G I ) 1 the desired equality is proved. 
Case ii: By forming the union of linear forest-factors FI E :fi and linear forest­

factors F2 E F2 with d(x, FI) = 2 and d(x, F2) = 0 we construct n~ new linear 
forest-factors of G. Hence (2) becomes 

ih = (0, ni - ni, 0) and ih = (n~ - n~, 0, n~ - n5). 

By forming the union of linear forest-factors FI E FI and linear forest-factors F2 E F2 
with d(x, F I ) = 1 and d(x, F2 ) = 0 we construct n5 - n~ new linear forest-factors of 
G and obtain 

ih = (O,ni - ni -n~ +n~,O) and ih = (O,O,n~ - n5)· 

{ ln1 n2 n 2+n1 J 2 I} Now we decompose m = min 1-); 0 2 ,n2 - no of the linear forest-factors 

FEF2 with d(x, F) = 2 in 2m new linear forest-factors F' of G2 with d(x, F') = 1 
and obtain 

ih remains unchanged and ii2 = (0, 2m, n~ - n5 - m). 

By forming the union of linear forest-factors FI E FI and linear forest-factors 
F2 E F2 with d(x, F I ) = 1 and d(x, F2) = 1 we construct 2m new linear forest­
factors of G and obtain 

iiI = (0, ni - ni - n~ + n~ - 2m, 0) and ii2 = (0, 0, n~ - n5 - m). 

All the remaining linear forest-factors of G1 and G2 are adopted unchanged .as 
linear forest-factors of G. A similar calculation as in Case i leads to the cardinality of 
the constructed linear forest-decomposition of G, which implies the desired inequality 

la(G) s: max {r d(x, G) ; n5 - n~ 1 ' la(G.) } . 

Case iii: Starting from (1) we distinguish two subcases. 

(a) n~ < n5. We construct n~ new linear forest-factors of G by forming the union of 
linear forest-factors Fl E FI and linear forest-factors F2 E F2 with d(x, Fd = 0 
and d(x, F2 ) = 2. We obtain 

.... (1 2 1 2 1) d..... (2 0 0) nl = nO-n2,nI-nI,n2 an n2 = no, , . 
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We construct + (ni - nI) + (n~ - n§)} new linear forest-factors of G 
lOnrnlllg the union of min{ n5, n~ + (ni nI) + (n~ n§)} linear forest-factors 

and linear forest-factors E F2 and adopting all remaining linear 
forest-factors unchanged. We obtain a linear of G with 

ni + n~ + max{n~, n~ + (ni ni) + 
= max{ n~ + ni + n~ + ni + 
= max{la(G1 ),la(G2 )}. 

Therefore ::; max{la(Gd, la(G2 )}. Since clearly Za(G) 2: la(Gi ) for 
1,2 we obtain the desired result. 

(b) The remaining case, n§ ~ n~ and n6 2: n~ + (ni - nI) is similar to Case 
iii ( a) and is therefore omitted. III 

To this result we need to know the vectors iii. For a vertex x E V ( G) 
of maximum in a graph G satisfying Conjecture 2, the following proposition 
summarizes all possible values of ii(x, F). 

Pr40pC)sttlOn 1 Let G be a graph with r ll.~G)l ::; la( G) ::; r ll.(~)+11. Let x be a vertex 

of G with maximum degree d(x, G) = L1(G) and F be a linear forest-decomposition 
of G with IFI = la(G). 

1.1. If L1 (G) is odd, then F) = (0,1, la(G) -

1.2. If L1(G) is even and la(G) = .6.~G), then ii(x, F) (O,O,la(G)). 

1.3. If L1(G) is even and la(G) = ~¥ + 1, then either 
(a) ii(x, F) = (0,2, la(G) - 2) or (b) fi(x, F) = (1,0, la(G) - 1). 

The of Proposition 1 is left to the reader. Now we proceed to the first 
application of Theorem 1. 

Theorem 2 Let G be a graph with at least two blocks B1 , ... , such that 

2.1. for each i E {l, ... ,r}, rll.(:;)l::; la(Bi)::; r.6.(B;)+11; 
2.2. for each i E {I, ... , r} and for every cut vertex x of G in V(Bi) we have 

d(x, Bi ) L1(Bi); and 

2.3. for each i E {I, ... ,r} such that L1(Bi) is even and la(Bi) .6.C: i
) + 1, for every 

cut vertex x of G in V(Bi) there are linear forest-decompositions F1 and F2 of 
such that ii(x, F 1 ) = (0,2, la(Bi) - 2) and ii(x, (1,0, la(Bi) - 1). 

Then 

la(C) = r L'.~C) 1· (3) 
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Proof. We use induction on r to show that if the graph G with r > 1 blocks 
B 1 , •.. , Br has properties 2.1, 2.2 and 2.3 then 

{ f
.6.(Bi) + I] . f.6.(G)]} la(G) ~ max 2 ,'I, = 1, ... , r, -2- . (4) 

When r ~ 2, from 2.2 we have that fl(Bi) + 1 :s; .6.(G) for i = 1, ... , r, so (3) follows 
from (4) and the theorem will be proved. Since (4) is immediate from 2.1 when 
r = 1, we assume now than r ~ 2. 

Without loss of generality we assume that Bl is an end block with the cut vertex 
x. By induction the graph Gt = G - (V(B1 ) - {x}) satisfies (4), i.e. 

, {f.6.(Bi) + I] . f.6.(G')]} la( G ) :s; max 2 ,'I, = 2, ... ,r, -2- . (5) 

Let :F and :F' be linear forest-decompositions of Bl and G' with la(Bl) = IFI and 
la(G') = IF'I. Define ii = ii(x, F) and ii' = ii(x, F'). 

Theorem 1 can be applied to Bl and G' as G l and G2 . Since d(x, B1) = .6.(Bl) 
and Bl satisfies r~(:dl :s; Za(Bl):S; r~(B~)+ll the only possible values for ii are all 
mentioned in Proposition 1. We now show that all these values exclude Case ii of 
Theorem 1 for ii and ii'. 

1. Let .6.(Bl) be odd and thus ii = (0,1, la(Bd - 1). 

(a) If n; = 0, then we use Theorem 1 with G l = Bl and G2 = G'. Since 
la(Bl ) - 1 < n~ = n5 < la(Bl) is not possible, Case ii is excluded. 

(b) If n; ~ 1, then we use Theorem 1 with G l = Gt and G2 = B l . Since 
o = n5 > n~ ~ 0 is false, Case ii is excluded. 

2. Let .6.(Bd be even, la(Bd = ~(:d and thus ii = (0,0, la(Bt}). We define 
G l = Gt and G2 = B 1 • Since 0 = n5 > n~ ~ 0 is false, Case ii is excluded. 

3. Let .6.(Bl) be even and la(Bl) = ~(:d + 1. 

(a) If n; ~ 2, then choose F such that ii = (0,2, la(Bl ) - 2). We define 
Gl = G' and G2 = B l . Since 0 = n5 > n~ ~ 0 is false, Case ii is excluded. 

(b) If n~ < 2, then choose F such that ii = (1,0, la(Bd - 1). We define 
G 1 = Gt and G2 = B 1 • Since n~ = n~ < n5 = 1 < n~ + (ni - ni) = n~ + n~ 
is not possible, Case ii is excluded. 

Thus for Bl and Gt only Cases i and iii of Theorem 1 occur which implies 

late) ::: max {la(e'), la(Bl)' f d(X~ e) n . 
Together with (5) and the bounds la(Bl ) :s; r ~(B~)+ll and .6.( G') :s; .6.( G), we deduce 
(4) and the proof is complete. III 
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Under weaker conditions the same proof-methods lead to a similar result. 

Theorem 3 Let G be a graph with r 2:: 1 blocks ... ,Br such that 

3.1. for each i E {I, .. , r}, r ~(:i)l ::; la(Bi) ::; r ~(B~)+11 and 

3.2. for each i E {I, ... , r} and for every cut vertex x of G in V(Bi) we have 
d(x, Bi ) tl(Bi). 

Then 

la(G) :<; r D.(G~ + 11 ' 
i.e. the graph G satisfies Conjecture 2. 

3. Applications 

A block-cactus graph is a graph whose blocks are either complete or cycles. In view 
of Theorem 2 the linear arboricity of block-cactus graphs is now easy to determine. 

Corollary 1 If G is a block-cactus graph with at least two blocks, then 

la(G) = r D.;G) 1· 
Proof. Since for the blocks which are cycles all conditions in Theorem 2 are evident, 
we only verify them for the complete blocks. 

For the complete graph Kn on n vertices Condition 2.2 of Theorem 2 is immediate, 
and the linear arboricity was determined by Stanton, Cowan and James [4] and is 
gi ven by (see also [2]) 

la(Kn) = r D.(K;) + 11· 
Therefore the complete blocks satisfy Condition 2.1. 

For Condition 2.3 let Kn be a complete graph of odd order and let x be an 
arbitrarily chosen vertex in V(Kn). The linear arboricity is 

la(Kn) rtl(Kn) + 11- tl(Kn) + 1 _ n - 1 + 1 
2 - 2 - 2 . 

Now by [4] there exists even a linear forest-decomposition F of Kn in la(Kn) 
factors such that each factor in F contains only one path of length different from 
0. Hence it is easily seen that there are at least two vertices Xl and X2 in V(Kn) 
such that fi(Xl' F) = (0,2, la(Kn) - 2) and fi(X2' F) = (1,0, la(Kn) - 1). Now the 
symmetry of Kn implies the existence of two linear forest-decompositions of Kn in 
la(Kn) factors where x takes the positions of Xl and X2 respectively. Hence the 
desired decompositions of Condition 2.3 do exist. This completes the proof. !Ill 

As an immediate consequence, we obtain the following two results. 
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Corollary 2 (Zelinka [5], 1986) If G is a cactus graph with at least two blocks, then 

la( G) = r L'l~G) 1· 
Corollary 3 (Akiyama, Exoo and Harary [2], 1980) If G is a tree, then 

la(G) = r L'l~G)l· 
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