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Abstract

A linear forest-factor F' of a graph G is a spanning subgraph of G whose
components are paths. A linear forest-decomposition of G is a collection
F = {F,...,Fi} of linear forest-factors of G such that the edge set
E(G) of G is the disjoint union of E(F}),..., E(Fy). The linear arboricity
la(G) of G is the minimum cardinality of a linear forest-decomposition of
G. In this paper we evolve a method to construct a small linear forest-
decomposition of a graph G from given linear forest-decompositions of
two subgraphs that are linked by a cut vertex of G. As an application
we determine the linear arboricity of block-cactus graphs which extends
a result of Zelinka [5] (1986). Our results are connected to the “linear
arboricity conjecture” of Akiyama, Exoo and Harary [2] (1980).

1. Introduction

We consider finite, simple, undirected, connected and non-trivial graphs G with
vertex set V(G) and edge set E(G). For a vertex z of a graph G the degree d(z,G)
of z in G is the cardinality of the neighbourhood of z in G. The maximum degree
of a vertex in a graph G is denoted by A(G). The linear arboricity of a graph was
defined by F. Harary in [3]. We give here a slightly more formalized version which
simplifies some matters of notation.

A linear forest-factor F of a graph G is a spanning subgraph of G whose compo-
nents are all paths (isolated vertices are allowed). A linear forest-decomposition of
G is a collection F = {Fy,..., Fi} of linear forest-factors of G such that E(G) is the
disjoint union of E(F}),..., E(F}). The linear arboricity la(G) of G is the minimum
cardinality of a linear forest-decomposition. '

Since the maximum degree in a linear forest-factor is at most 2, the lower bound

[@] < 14(G)

is immediate for every graph G.
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To shorten the proofs we now introduce some notation. Let F = {Fl, oo, Fi} be
an linear forest-decomposition of G. For every vertex z € V(G) we define

ni(z, F)=|{FeF:dz,F)=1}, 1=0,1,2

and ' '
7-7:(1', f) = (no(x,]’),m(x,f),ng(x,f)).

A fundamental question in this context is the “linear arboricity conjecture” of Aki-
yama, Exoo and Harary [2].

Conjecture 1 If G is an r-regular graph, then

r+1]

(@) = [ ;

For non regular graphs we state a version of this conjecture formulated by Ait-
djafer [1]. :

Conjecture 2 If G is a graph, then

2. Structural Results

We start with our main theorem. It examines how to obtain a small linear forest-
decomposition of a graph G from given linear forest-decompositions of two subgraphs
that are linked by a cut vertex of G.

Theorem 1 Let G be graph with the cut vertex z. Let G; and G4 be two subgraphs
of G such that {z} = V(Gl) NV(G,), V(G) = V(G,) UV(G,) and E(G) = (Gl)
E(G).
Let fl and F; be linear forest-decompositions of G4 and Gg, respectlvely with
| Fi| = la(G;) and 7i; = (nh, ni, ny) = 7i(z, F;), i = 1,2. Assume that nl > ni.
Then the following relations for la(G) held:

i. If n} < n2 and nZ < nd, then

1a(G) = max,{ [‘“Lfl] ,la(Gl)} .

ii. If n§ < n% and n} < n? <n}+(n} —n?), then

1(G) < maz {la,(Gl), (d(g”’ G) +nf = ”5] } .

2
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iii. In all other cases we have

la(G) = maz{la(G1),la(G2)}.

Proof. Step by step we combine linear forest-factors of F; and F, to form linear
forest-factors of G. After every step we reduce the entries of 77; and 7, to keep track
of the remaining linear forest-factors. If 7i; = 7l = (0, 0,0), the process is complete.

Since n? < ni we begin in all three cases by forming the union of linear forest-
factors Fy € F; and linear forest-factors F; € Fp with d(z, F;) = 1, ¢ = 1,2 to
construct n? new linear forest-factors of G. This leads to

ﬁl = (n(l)vni - TL%,’H/%) and ﬁ2 = (ngv 07 ng) (1)

In Cases i and ii we form the union of linear forest-factors F; € F, and linear

forest-factors Fy € Fp with d(z, F) = 0 and d(z, F3) = 2 to construct n} new linear
forest-factors of G and obtain

ity = (0,n; — n%,n}3) and 7, = (n3,0,n3 — nj). (2)

Case i: By forming the union of linear forest-factors F; € F, and linear forest-
factors Fy € F, with d(x, Fy) = 2 and d(z, F5) = 0 we construct n2 new linear
forest-factors of G. Therefore we deduce from (2)

ity = (0,n} — n?,n} —nd) and 7, = (0,0,n3 — n}).
Now we decompose m = min { [Ei;_"iJ ,n% — n})} of the linear forest-factors F' € F,
with d(z, F') = 2 in 2m new linear forest-factors F’ of G, with d(z, F') = 1 and
obtain
iy remains unchanged and i, = (0,2m,nj — n} — m).

By forming the union of linear forest-factors F; € F; and linear forest-factors F;, € F,
with d(z, F1) = 1 and d(z, F3) = 1 we construct 2m linear forest-factors of G and
obtain

-

ity = (0,n] — nf — 2m, nj — nj) and iy = (0,0,n% — n} —m).

All the remaining linear forest-factors of G; and G are adopted unchanged as linear
forest-factors of G (just by adding all the missing vertices to get a factor). This
yields finally

T—il - 177:2 = (0, 0, 0)

The cardinality of the constructed linear forest-decomposition of G is now

n} +ng + ng + 2m + (n} — nd) + (n} — n? — 2m) + (n2 — n} — m)
=ni+né+n§—m

1_ 2
nt—n
=mam{n}+n§+n§——{ 12 IJ,n{—I—n%-I—ng-—n%—s—né}
2 _ 1
n?—n
:max{n{—i—né%—né-&—[ 12 1},n3+ni+n%}
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—ma:c{[ 1 L 2 2 2],”6*{'”%4‘”%}

- s[5 ),

and hence it follows that
la(G) < maz { P—(%—g—)-“ ,la(Gl)} .

Since la(G) > mam{[ﬂ%@] ,la(Gl)E the desired equality is proved.

Case i1: By forming the union of linear forest-factors F; € F; and linear forest-
factors Fy € F, with d(z,F;) = 2 and d(z, F>) = 0 we construct nj new linear
forest-factors of G. Hence (2) becomes

iy = (0,n} — n},0) and 7, = (nd — n}, 0,nj — ny).

By forming the union of linear forest-factors F; € F; and linear forest-factors /3 € F,
with d(z, F}) = 1 and d(z, F3) = 0 we construct n? — n} new linear forest-factors of
G and obtain

fiy = (0,n] — n? — n2 + nl,0) and 7, = (0,0,n3 — ng).

o nl—n2—n24nl 9 1 i
Now we decompose m = min { ‘_—1—-—15—’1——2} , NG — no} of the linear forest-factors
F € F, with d(z, F) = 2 in 2m new linear forest-factors F’ of G5 with d(z, F') =1
and obtain

7} remains unchanged and iy = (0, 2m,n3 — n§ — m).

By forming the union of linear forest-factors F; € F; and linear forest-factors
F, € F, with d(z,F;) = 1 and d(z, F;) = 1 we construct 2m new linear forest-
factors of G and obtain

iy = (0,n] — n? — nk +n} — 2m,0) and 7, = (0,0,n3 — nj — m).

All the remaining linear forest-factors of G; and G, are adopted unchanged as
linear forest-factors of G. A similar calculation as in Case i leads to the cardinality of
the constructed linear forest-decomposition of G, which implies the desired inequality

NPT | [CLEL.O oS

Case iii: Starting from (1) we distinguish two subcases.

(a) n% < n}. We construct n} new linear forest-factors of G by forming the union of
linear forest-factors F; € F; and linear forest-factors Fy € F, with d(z, F1) =0
and d(z, Fy) = 2. We obtain

ity = (ny — n3,n; —n?,n}) and 7z = (n3,0,0).
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We construct maz{nd, nj + (n! —n?) + (n} —n)} new linear forest-factors of G

by forming the union of min{nf, nj+ (n! —n2) + (n} — n2)} linear forest-factors

Fy € 7, and linear forest-factors F, € F, and by adopting all remaining linear
forest-factors unchanged. We obtain a linear forest-decomposition of G with
cardinality

n? + nd + maz{nd,n + (nt —n?) + (n) — n2)}

= maz{n] + n? +n2, nt +n! +nl}

= maz{la(G1),la(Gs)}.

Therefore la(G) < maz{la(G1),la(G,)}. Since clearly la(G) > la(G;) for
1 = 1,2 we obtain the desired result.

(b) The only remaining case, n3 > n} and nZ > n} + (n} — n?) is similar to Case
iii (a) and is therefore omitted. = :

To apply this result we need to know the vectors 7i;. For a vertex = € V(G)
of maximum degree in a graph G satisfying Conjecture 2, the following proposition
summarizes all possible values of 7i(z, F).

Proposition 1 Let G be a graph with "é_%ﬁl] <la(G) < "M}ﬂ] Let z be a vertex

of G with maximum degree d(z, G) = A(G) and F be a linear forest-decomposition
of G with |F| = la(G).

L.1. If A(G) is odd, then 7i(z, F) = (0,1, 1a(G) — 1).
1.2. If A(G) is even and la(G) = 2 then i(z, F) = (0,0, 1a(G)).

1.3. If A(G) is even and la(G) = é%,gl + 1, then either
(a) Az, F) = (0,2,1a(G) - 2) or (b) i(z, F) = (1,0,1a(G) - 1).

The simple proof of Proposition 1 is left to the reader. Now we proceed to the first
application of Theorem 1.

Theorem 2 Let G be a graph with at least two blocks By, ..., B, such that
2.1. foreach s € {1,...,r}, [ﬂf—"z] <la(B;) < ]'ﬁ(%lﬂ];

2.2. for each ¢ € {1,...,7} and for every cut vertex z of & in V(B;) we have
d(z, B;) = A(B;); and

2.3. for each i € {1,...,7} such that A(B;) is even and la(B;) = 5‘\‘—(531) +1, for every
cut vertex z of G in V'(B;) there are linear forest-decompositions F; and F, of
B; such that 7i(z, F1) = (0,2,la(B;) — 2) and 7i(z, F») = (1,0,la(B;) — 1).

Then

1a(G) = [@1 . (3)
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Proof. We use induction on 7 to show that if the graph G with » > 1 blocks
By, ..., B, has properties 2.1, 2.2 and 2.3 then

) < maa{ 2B iy [AON) "

When r > 2, from 2.2 we have that A(B;)+1 < A(G) fori=1,...,r, so (3) follows
from (4) and the theorem will be proved. Since (4) is immediate from 2.1 when
r = 1, we assume now than r > 2.

Without loss of generality we assume that B; is an endblock with the cut vertex
z. By induction the graph G’ = G — (V(B;) — {z}) satisfies (4), i.e.

@) < s [EBLT] o [SO), .

Let F and F' be linear forest-decompositions of B; and G’ with la(B;) = |F| and
la(G") = |F'|. Define i = 7i(z, F) and 7' = 7i(z, F").
Theorem 1 can be applied to By and G’ as G; and G,. Since d(z, B;) = A(B;)

and B satisfies [281] < [q B;) < [ABu+L , the only possible values for 7 are all
2 2

mentioned in Proposition 1. We now show that all these values exclude Case ii of
Theorem 1 for 7 and 7.

1. Let A(B;) be odd and thus 7 = (0, 1,la(B;) — 1).
(a) If n{ = 0, then we use Theorem 1 with G; = B; and G, = ¢'. Since
la(By) — 1 < nf = ng < la(B,;) is not possible, Case ii is excluded.
(b) If n{ > 1, then we use Theorem 1 with G; = G’ and G, = B,. Since

0 = nd > nj > 0 is false, Case ii is excluded.

2. Let A(B;) be even, la(B;) = é—%;—‘l and thus 7 = (0,0,la(B;)). We define
G1 =G and G, = By. Since 0 = n2 > ni > 0 is false, Case ii is excluded.

3. Let A(By) be even and la(B;) = ALZB—Q +1.

(a) If n} > 2, then choose F such that i = (0,2,la(B;) — 2). We define
G1 = G' and G, = By. Since 0 = n2 > n} > 0 is false, Case ii is excluded.

(b) If ny < 2, then choose F such that # = (1,0,la(B;) — 1). We define
Gy =G"and Gy = By. Since nj =nh <ni =1 < ni+(n!—n?) =n)+n}
is not possible, Case ii is excluded.

Thus for B; and G’ only Cases i and iii of Theorem 1 occur which implies

1a(G) < maz {la(G’), la(B,), [ 1(“’2—6’)] } .

Together with (5) and the bounds la(B;) < !-913—2‘&] and A(G') < A(G), we deduce
(4) and the proof is complete. =
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Under weaker conditions the same proof-methods lead to a similar result.
Theorem 3 Let G be a graph with r > 1 blocks By, ..., B, such that
3.1. foreach s € {1,...,r}, [9—(2212] <la(B;) < [éﬁ%ﬁﬂ] and

3.2. for each i € {1,...,r} and for every cut vertex z of G in V(B;) we have
d(.’l?, B‘l) = A<Bz)

Then

1a(G) < [%} ,

i.e. the graph G satisfies Conjecture 2.

3. Applications

A block-cactus graph is a graph whose blocks are either complete or cycles. In view
of Theorem 2 the linear arboricity of block-cactus graphs is now easy to determine.

Corollary 1 If G is a block-cactus graph with at least two blocks, then

e = [2€)]

Proof. Since for the blocks which are cycles all conditions in Theorem 2 are evident,
we only verify them for the complete blocks.

For the complete graph K, on n vertices Condition 2.2 of Theorem 2 is immediate,
and the linear arboricity was determined by Stanton, Cowan and James [4] and is
given by (see also [2])

i = [21]

Therefore the complete blocks satisfy Condition 2.1.
For Condition 2.3 let K, be a complete graph of odd order and let z be an
arbitrarily chosen vertex in V(X,). The linear arboricity is

A(Kn)+1-| AK,) . n—1

la(Kn):[ 3 =— +1= 5 + 1

Now by [4] there exists even a linear forest-decomposition F of K, in la(K,)
factors such that each factor in F contains only one path of length different from
0. Hence it is easily seen that there are at least two vertices z; and z; in V(K,)
such that 7(z1,F) = (0,2,la(K,) — 2) and A(z2, F) = (1,0,la(K,) — 1). Now the
symmetry of K, implies the existence of two linear forest-decompositions of K, in
la(K,) factors where z takes the positions of z; and z, respectively. Hence the
desired decompositions of Condition 2.3 do exist. This completes the proof. =

As an immediate consequence, we obtain the following two results.
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Corollary 2 (Zelinka [5], 1986) If G is a cactus graph with at least two blocks, then

AQ)

la(G) = 5

Corollary 3 (Akiyama, Exoo and Harary [2], 1980) If G is a tree, then

la(G) = é—(g—) .

Acknowledgements We would like to thank the referee for useful comments and
suggestions concerning the exposition of this paper.

References

[1] H. Ait-djafer. Linear arboricity for graphs with multiple edges. J. Graph Theory
11, 135-140 (1987)

[2] J. Akiyama, G. Exoo and F. Harary. Covering and packing in graphs III: cyclic
and acyclic invariants. Math. Slovaca 30, 405-417 (1980)

[3] F. Harary. Covering and packing in graphs I. Ann. New York Acad. Sci. 175,
198-205 (1970)

[4] R.G. Stanton, D.D. Cowan and L.O. James. Some results on path numbers. Proc.
Louisiana Conf. Combinatorics, Graph Theory and Computing, Baton Rouge,
112-135 (1970) '

[6] B. Zelinka. Domatic number and linear arboricity of cacti. Math. Slovaca 36,
49-54 (1986)

(Received 30/5/97)

274




