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Abstract

Algebraic techniques are employed to obtain necessary conditions for
the existence of certain circulant weighing matrices. As an application
we rule out the existence of many circulant weighing matrices.

We study orders n = s +s+1, for 10 < s < 25. These orders correspond
to the number of points in a projective plane of order s.

1 Introduction

A weighing matrix W(n,k) = W of order n with weight k is a square matrix of
order n with entries from {0, —1, +1} such that

WWt = k-1,

where I, is the n x n identity matrix and W is the transpose of W.

A circulant weighing matriz, written as W = WC(n, k), is a weighing matrix
in which each row (except the first row) is obtained by its preceding row by a right
cyclic shift. We label the columns of W by a cyclic group G of order n, say generated
by g.

Define )

A = {¢g | W,;=11i=01,...,n-1} (1)
and B = {g¢' | Wi;=-1,i=0,1,...,n-1}
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It is easy to see that | A | + | B |= k.
It is well known that &k must be a perfect square, (see [13], for instance); we write
k = s? for some integer s.
For more on weighing designs, weighing matrices and related topics refer to [8].
It is known [8, 13, 15] that:

Theorem 1 A WC(n, k) can only ezist if (i) k = s, (i) | A| = <12 and
| B|= £52, (i) (n—k)? — (n—k) >n—1and i) if(n—k)? — (n—k) =n—1
then A = J — W xW is the incidence matriz of a finite projective plane, (here J
is the n x n matriz of all 1’s and * denotes the Kronecker product).

For a multiplicatively written group G, we let ZG denote the group ring of G
over Z. We will consider only abelian (in fact, only cyclic) groups. A character of
the group G, is therefore, a homomorphism from G to the multiplicative group of
complex numbers. Y, denotes the principal character of G which sends each element
of G to 1. Extending this to the entire group ring ZG yields a map from ZG to the
field C of complex numbers. For § C G, we let S denote the element >zesx of ZG.
For A = ¥,a,9 and t € ZG, we define A = Tg g9t

It is easy to see (see [1] or [16], for details):

Theorem 2 A WC = W(n, s?) ezists if and only if there exist disjoint subsets A
and B of Z, satisfying

(A - B)(A - B)UY = &2 (2)

We exploit (2), in conjunction with a few known results on multipliers in group
rings, to obtain necessary conditions on the order n and weight k of a possible
circulant W(n, k).

2 Known Results

Theorem 3 (Arasu and Seberry [4]) Suppose that a WC(n, k) exists. Let p be a
prime such that p* | k for some positive integer t. Assume that

(1) m is a divisor of n. Write m = m'p*, where (p,m') =1;
(i) there exists an f € Z such that pf = ~1 (mod m').
Then
(i) Z>p" ifp|m;
(ii) > p'if pfm.
Lemma 1 Let q be a prime and & an integer. If there exists an integer f such that
zf =-1 (mod ¢)
for some positive integer i, then there exist an integer f' such that

o' = -1 (mod ¢*).
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Proof. By hypothesis, zf = —1 + £¢* for some integer £. Consider
zf1 = (=14 4g')?

= 1+ g+ TR )19y, .

Since g is a prime, each of the (g— 1) binomial coefficients ( j ) in the right hand
sum is divisible by ¢ and hence

q—.l . . . .
Y17 $)g)? =0 (mod ¢**Y).
i=1 J
Also ¢% =0 (mod ¢**!) since gi > i + 1. Thus z/7 = =1 (mod ¢**'), proving
the lemma. O

Lemma 2 If m/ is a prime power, say m' = (p')" for some prime p', hypothesis ()
in Theorem 8 is satisfied whenever the Legendre symbol (&) = —1. o

Proof. In view of Lemma 1, it suffices to prove the result for r = 1. (An easy
induction is applied afterwards.) We first claim that p has even order, say 2c,
modulo p'. For otherwise, p**! =1 (mod p') for some integer 3, hence (pP+1)? =
p (mod p') showing that p is a quadratic residue modulo p; this contradicts the
hypothesis (5’7) = —1. Thus the order of p modulo p' is 2¢ for some positive integer
o. Thus p' | (p** —1). Sop' | (p® — 1) or p' | (p™ +1). But p’ cannot divide p* — 1,
since the order of p modulo p’ is 2c. Thus p’ | (p® + 1), proving the result for r = 1.
O

Theorem 4 ((Seberry) Wallis and Whiteman [15]) If g is a prime power, then there
ezists WC(¢* + ¢+ 1,¢%).

Theorem 5 (Eades [6]) If q is a prime power, ¢ odd and i even, then there ezists
WC(L, ¢). ‘

Theorem 6 (Arasu, Dillon, Jungnickel and Pott [1]) If ¢ = 2' and i even, then
there exists WC(g%i—;—l, qt).

Theorem 7 (Eades and Hain [7]) A WC(n,4) ezists if and only if 2 | n or 7 | n.

Theorem 8 (Arasu and Seberry [4]) If there ezist WC(ny, k) and WC(ng, k) with
ged(n, ng) = 1 then there exist

(i) a WC(mny, k) for all positive integers m;
(ii) two inequivalent WC(ning, k);
(Z'M,) Q WC('fll’l‘Lg,kz).
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Theorem 9 (Strassler [18]) A WC(n,9) ezists if and only if 13 | n or 24 | n.

Theorem 10 (Arasu and Seberry [4]) For a given integer k and prime p, WC (p, k?)
ezists for only a finite number of p.

Remark 1 It is shown in [4] that a WC(p,9) exists for a prime p if and only if
p=13.

Theorem 11 is given by Seberry [14] but we give a proof here for completeness.
In Theorem 11 we use the following notation. If G = H x N is a group and A C H
and B C N, then (A4,B) = {(a,b) € G;a € A and b € B}. Similarly, if S and T are
group ring elements of ZH and ZN, the element (S,T') is the product of S’ and T

in ZG, where S’ and T' are the images of S and T" under the canonical embedding
of ZH and ZN into ZG.

Theorem 11 (Circulant Kronecker Product Theorem) If there exist WC(ny, k?)
and WC(ng, k3) with ged(ny,ny) = 1 then there ezists WC(niny, k2k3).
Proof. Since there exist WC(n;, k2) for i = 1,2, by Theorem 2, there exist subsets
A—i, Bi of Zni’ Ai ﬂBi = ¢ y IA,,’ = %(kf + k,) and ‘Bz| = %(k? - k,), Satisfying
(Ai = B)(Ai = B))) = &k} in Zyn,, fori = 1,2.

Define X = A;Ay+ B1By and Y = A;By + A3B;. Then X, Y € ZG and the
coefficients of X and Y are 0 and 1.

Consider
(X - Y)(X — Y)(“l) = (A1 - Bl)(Al — Bl)("l)(Az - Bz)(Ag - Bz)(ﬁl)
= kik3.
An easy computation shows that | X| = §(k?k3 + k1kz) and |Y| = 1(k2k3 — kik,).
This X — Y defines the first row of WC(nny, k2k2). ]

Corollary 1 There exist:

WC(91,6%), WC(217,8%), WC(217,10%), WC(273,42), WC(273,9%), WC (273, 62),
WC(273,12%), WC(381,82), W(C(399,14%), WC (651, 8%), WC(651,102),
WC(651,16%) and WC(651,20%). :

Proof.

WC(7,4) and WC(13,9) WC(91,62)
' WC(273,62)
WC(7,4) and WC(31, 16) WC(217,82)
WC(651,82)
21,16) WC(273,42)
91,81) WC(273,92)
WC(273,122)

7,4) and WC(31, 25) WC(217,102)

=
=
=
=
WC( =
wc( =
WC(13,9) and WC(21,16) =
WC( =
= WC(651,10%)
=
=
=
=

WC(127, 64) WC(381,82)

WC(7,4) and WC(57, 49) WC (399, 142)
W(C(21,16) and WC(31, 16) WC(651,162)
W(C(21,16) and WC(31, 25) WC(651,20%)
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Remark 2 A WC(13,9) exists and hence a W (509, 81) = WC(13,9) x W(C(13,9) x
I, exists. However the existence of the W(C'(507, 81) remains open.

Applications

(I) WC(n,2?) exist for n =133, 273, 343, 553 and 651. WC(n, 2?) do not exist for
n =111, 157, 183, 211, 241, 307, 381, 421, 463, 507 or 601.

(II) WC(n,3?) do not exist for n = 111, 133, 157, 183, 211, 241, 307, 343, 381, 421,
463, 553, 601 or 651.

(III) A W(C(111,10?%) does not exist as its existence would imply the existence of a
projective plane of order 10 which does not exist.

3 Further Results using Multipliers

Notation 1 For each positive integer n, M(n) is defined as follows: M(1) = 1,
M(2)=2-7,M(3)=2-3-11-13, M(4) = 2-3-7-31, and recursively, M(z) for z > 5
is the product of the distinct prime factors of the numbers z, M (f;?)’ p—1,p*—1,
- p*#) — 1, where p is any prime dividing m with p? || m and u(z) = (2* — 2).
Theorem 12 (Multiplier Theorem, Arasu and Xiang [5]) Let R be an arbitrary
group ring element in ZG that satisfies RR"Y) = a for some integer a, a # 0,
where G is an abelian group of order v and ezponent v*. Let t be a positive integer
relatively prime to v, ky | a, k1 = p§p3? - - p&*, a1 = (v, k1), ko = %
For each p;, we define

pi if pifv*
¢ =< & if v'=plu, (p,u) =1, r > 1, 4 is any integer such that
(b,p)=1land ;= p{ (mod u).

Suppose that for each 1, there exists an integer f; such that either

(1) ¢ff=t (modv*) or
(2) ¢ =~-1 (modv*).
If (v, M(fz-)) =1, where M(m) is as defined earlier, then t is a multiplier of R.

The following corollary is proved in Arasu, Dillon, Jungnickel and Pott [1]

Cordllary 2 (Multiplier Theorem) Let R be an arbitary group ring element in ZG
that satisfies RRCYD = p™ where p is a prime with (p,|G|) = 1 and where G is an
abelian group. Then R® = Rg for some g € G.
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Remark 3 Let R = },a,9 € ZG. By a result in Arasu and Ray-Chaudhuri [3]
if (X4aq, |G]) = 1, we can replace R by a suitable translate of it, if necessary, in
Theorem 12 and Corollary 2 and conclude R®) = R, i.e. the multiplier ¢ actually
fixes R.

Let ¢ be a multiplier of R = A — B. Then by the above remark we obtain
(A-B)” =A—Bor A — B® = A — B. But A and B have coefficients 0 or 1,
hence it follows that A®) = 4 and B® = B. Thus A and B are unions of some of
the orbits of G under the action z — tz.

Theorem 13 A WC(7,4) exists and hence a W (49, 16) ezists. However no
WC(49,16) ezists.

Remark 4 The non-existence of a W(C(49,16) follows from Corollary 2 using the
multiplier 2.

Most of the above results suffice to settle the cases in the following tables except for
the cases WC(133,10%) and W(C(133,5?) which require ad hoc methods which we
now prove.

Proposition 1 There does not exist any WC(133,10?).

Proof. Assume the contrary. Write G = Zi33 = Z7 X Z1g. Then there exists
D € ZG, whose coeflicients are 0, £1, such that

DDY =102, (3)

Let o : Zy x Z1g9 — Z1g be the canonical homomorphism. Extend o linearly
from
Z[Z7 X Z19] — Z[Z]_g].

Apply o to (3), setting E = D, to obtain

EECYD =102 (4)

in Z[Z19]. Note that the coefficients of E lie in [~7,7]. Since 2'® =5 (mod 19), by
Theorem 12, 5 is a multiplier of E. We may, without lost of generality, assume that
E® = E. The orbits of Z1g under = — 5z are of sizes 1'92. Hence from (4) (after
applying the principal character first to £ and then to both sides of (4)), we can find
three integers a, b, c¢ such that

a+9+9 =10 ' (5)

a® + 982 + 92 = 100. (6)

These integers a, b, c are merely the coefficients of E. By (5) a =1 (mod 9).
But a € [-7,7]. Therefore a = 1. But then (6) gives

b+ =11,

a contradiction, which proves the Proposition. O

26




Proposition 2 There does not ezist any WC(133,52).

Proof. Assume to the contrary that there exists a WC(133,52). Write G = Z133 =
Z7 % Z19. By Theorem 2, there exist A and B C Zy33, AN B = ¢, |A| = 15 and
| B| = 10 such that

(A - B)(4 — B)™Y = 5% (7)

By theorem 12, 5 is a multiplier of A — B; hence A® = A and B® = B. The orbits
of Z7 under z — 5z are {0} and {1,2,3,4,5,6}. The orbits of Z19 under z — 5z
are {0}, Cp and C; where Cj is the set of all non-zero quadratic residues of Z19 and
C, = Zy9 — (CoU{0}).

Then, without loss of generality, we can assume that

A=1{1,2,3,4,56} x {0} U {0} x C, and B ={(0,0)}U{0} x Cy.
Let x be any nonprincipal character of G such that x | Zyg = xo. Then x(4) =

—1+49 =8 and x(B) = 1+9 =-10. Therefore x(A — B) = 8 — 10 = —2. But by (7),
|x(A — B)|?> = 52, a contradiction. Thus there cannot exist WC(133,5?). o

4 The Projective Plane Orders

In this section we consider WC(m? + m + 1, k%) for k € {2,---,m}.

Case | n=102+10+1
k |Theorem |[p[t[ m [ n [p/=-1 (modm)
10 Does not exist as there is no projective plane of order 10
9 | Theorem3 |3 ]2|111{111{3°=~1 (mod 37)
8 | Theorem3 |2 |3 37 | 111 |2¥ = -1 (mod 37)
7 | 7 is a multiplier; orbit sizes 13912, |A| = 28, |B| = 21; impossible
6 | Theorem3|3|1]111|111|3°=~-1 (mod 37)
5 | Theorem3 |5 | 1| 37 | 111 | 5¥ = —1 (mod 37)
4 | Theorem3|2|2| 37 {111 |2¥ =~1 (mod 37)
3 | Theorem 9 | Does not exist
2 | Theorem 7 | Does not exist.

WC(10% + 10 + 1, k2) does not exist for any k.
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Case | n=112+11+1

k |Theorem [p[t[ m [ n [p/=-1 (modm)
11 | Theorem 4 | Exists

10 | Proposition

o

Theorem 3 | 3 | 2| 19 | 133 | 3°=—1 (mod 19)
Theorem 3 | 2 }3 19 !133 2=-1 (mod 19)
Open

Theorem 3 | 3 | 1]133 133 | 3°=~1 (mod 133)

Proposition 2

2 is a multiplier; orbit sizes 1132187, |A| = 10, |B| = 6; impossible
Theorem 9 | Does not exist

Theorem 7 | Exists.

BN Wd Ut g 00w

WC (112 + 11 + 1, k?) exists only for k = 2,11 and possibly for 7.

Case | n=122412+1

k |Theorem [p|[t[m | n [pf=-1 (modm)

12 |3/ =4 (mod n) =4 is a multiplier; orbit sizes 1126%, [A] = 78, | B| = 66;
impossible

11 | 11 is a multiplier; orbit sizes 11394, |A| = 66, |B| = 55; impossible

10 | Theorem 3 |2 | 1| 157 | 157 | 2% =—1 (mod 157)

9 | 3 is a multiplier; orbit sizes 11782, | 4| = 45, |B| = 36; impossible

8 | Theorem 3| 2|3 157 | 157 | 2% =~1 (mod 157)

7 | 7is a multiplier; orbit sizes 11523, |A] = 28, |B| = 21; impossible

6 | Theorem 3 | 2| 1| 157 | 157 | 226 =~1 (mod 157)

5 | 5 is a multiplier; orbit sizes 1'156, |A| = 15, | B] = 10; impossible

4 | Theorem 3 | 2| 2| 157 | 157 | 2% =~1 (mod 157)

3 Theorem 9 | Does not exist

2 | Theorem 7 | Does not exist.

WC(122 4+ 12 + 1, k%) does not exist for any k.

Case | n=132+13+1
k | Theorem plt]m [ n [pf=-1 (modm)
13 | Theorem 4 | Exists

12 | Theorem 3 | 2 | 2| 61 | 183 | 2f =~1 (mod 61)
11 | Theorem 3 | 11 | 1| 61 | 183 | 11/ = ~1 (mod 61)
10 | Theorem3 | 5 | 1| 61 | 183 |58 =—1 (mod 61)
9 | Theorem3 | 3 | 2183|183 |3°=~1 (mod 61)
8 | Theorem3 | 2 [3| 61 | 183 |2/ =~1 (mod 61)
7 | Theorem3 | 7 | 1| 61 |183 [ 7/ =~1 (mod 61)
6 | Theorem3 | 3 |1|183[183|3°=-1 (mod 61)
5 | Theorem3 | 5 | 1| 61 |183 |5 =—1 (mod 61)
4 | Theorem3 | 2 | 2| 61 | 183 |2/ =~1 (mod 61)
3 Theorem 9 | Does not exist

2 Theorem 7 | Does not exist.

WC(132 + 13 + 1, k?) exists only for k = 13.
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Case | n=142 +14 +1
k |Theorem [p|t| m [ n [p/=-1 (modm)
14 Does not exist as 14 # sum of two squares
13 | 13 is a multiplier; orbit sizes 1135°%, |A| = 91, |B| = 78; impossible
12 | Theorem 3 | 2 [ 2] 211 | 211 | 2/ = ~1 (mod 211)
11 | 11 is a multiplier; orbit sizes 1'35%, |A| = 66, |B| = 55; impossible
10 | Theorem 3 | 2| 1] 211|211 |2/ =~1 (mod 211)
9 | Theorem 3 {3 | 2| 211 | 211 |3/ = —1 (mod 211)
8 | Theorem3 |2 |3 | 211|211 |2f=~1 (mod 211)
7 | Theorem 3 | 7 | 1| 211|211 |7/ =~1 (mod 211)
6 | Theorem3 |2 |1|211|211|2f=~1 (mod 211)
5 | 5 is a multiplier; orbit sizes 1'35%, |A] = 15, | B| = 10; impossible
4 | Theorem3 | 2|2 | 211|211 |2/ =-1 (mod 211)
3 | Theorem 9 | Does not exist
2 | Theorem 7 | Does not exist.
WC (142 + 14 + 1,k2) does not exist for any k.
Case | n=152+15+1
k |Theorem |p|t|m | n [p/=-1 (modm)
15 |39=5 (mod 241), so 5 is a multiplier; orbit sizes 1140,
|4] = 120, | B| = 105; impossible
14 | Theorem 3 | 7 | 1] 241|241 | 7/ =—1 (mod 241)
13 | Theorem 3 | 13 | 1 | 241 | 241 | 13 = —1 (mod 241)
12 | Theorem 3 | 2 | 2| 241 | 241 | 212 = -1 (mod 241)
11 | Theorem 3 | 11 | 1| 241 | 241 |11/ = -1 (mod 241)
10 | Theorem 3 | 2 |1 ]241 | 241 | 2!2=~1 (mod 241)
9 | Theorem3 | 3 | 2241 | 241 | 3% =~1 (mod 241)
8 | Theorem3 | 2 | 3241 | 241 | 22 =~1 (mod 241)
7 | Theorem 3 | 7 | 1|241 | 241 | 7f =~1 (mod 241)
6 | Theorem 3 | 2 | 1| 241 | 241{22=—1 (mod 241)
5 | Theorem3 | 5 |1|241 | 241 |52 =—1 (mod 241)
4 | Theorem3 | 2 |2|241 241 |22 =~1 (mod 241)
3 | Theorem 9 | Does not exist
2 | Theorem 7 | Does not exist.

WC(15% + 15 + 1, k?) does not exist for any k.

29




Case | n=162+16+1

k | Theorem plt]m]| n [p/=-1T (modm)
16 | Theorem 4 | Exists.

15 | Open

14 1 Theorem 3 | 7 | 1|91 |273 | 7%= —1 (mod 13)
13 | Theorem 3 |13 |1 l 91 ( 273 | 18' = -1 (mod 7)
12 | Corollary 1 | Exists

11 | Open

10 | Open

9 Corollary 1 | Exists

8 Open

7 |Theorem3 | 7 |1|91|273|78=—1 (mod 13)
6 Corollary 1 | Exists

5 Open

4 Corollary 1 | Exists

3 Theorem 9 | Exists

2 Theorem 7 | Exists.

WC(16® + 16 + 1,k?) exists for k = 2, 3, 4, 6, 9, 12, 16
and possibly for k = 5, 8, 10, 11, 15.

Case | n =172 +17+1

k | Theorem plt]m [ n [p=—1 (modm)
17 | Theorem4 - Exists

16 | Theorem 3 and Lemma 2 | 2 | 4| 307 | 307 (%) =1

15 | Theorem 3 and Lemma 2 | 5 | 1| 307 | 307 (-3?) =-1

14 | Theorem 3 and Lemma 2 | 2 | 1| 307 | 307 (52) = —1

13 | Theorem 3 and Lemma 2 | 13 | 1 | 307 | 307 (%) =-1

12 | Theorem 3 and Lemma 2 | 2 | 2 | 307 | 307 (—2—7) =-1

i

=2 ol

11 | 11 is a multiplier; orbit sizes 111532, |A] = 66, |B| = 55; impossible

10 | Theorem 3 and Lemma 2 | 2 | 1] 307 | 307 | () = —1

9 | 3 is a multiplier; orbit sizes 1!34°, | A| = 45, |B| = 36; impossible
8 | Theorem 3 and Lemma 2 | 2 | 3| 307 | 307 | (5%) = ~1

7 | 7 is a multiplier; orbit sizes 111532, | 4| = 28, | B| = 21; impossible
6 | Theorem 3 and Lemma 2 | 2 | 1] 307 | 307 (3-§7) = ~1

5 | Theorem 3 and Lemma 2 | 5 | 1| 307 | 307 (W) = -1

4 | Theorem 3 and Lemma 2 | 2 | 2| 307 | 307 (597) = —1

3 Theorem 9 Does not exist

2 Theorem 7 Does not exist.

WC(17% + 17 + 1, k?) exists only for k = 17.
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Case | n =182 +18+1
k | Theorem plt]m | n [pf=-1 (modm')
18 | Theorem 3, Lemma 1 | 3 [ 2[343 | 343 [ 3*=~1 (mod 7) = 3/ = -1 (mod 7°)
17 | Theorem 3, Lemma 1 | 17 | 1 {343 | 343 | 17=3 (mod 7) = 3/ = ~1 (mod 73)
16 | 2 is a multiplier; orbit sizes 11322121472, |A| = 136, | B| = 120; impossible
15 | Theorem 3, Lemma 1 | 3 | 1|343 | 343 |3%=~1 (mod7) =3/ =~1 (mod 73)
14 | Theorem 3 7 |1(343|343 | 7=~1 (mod 1)
13 | Theorem 3, Lemma 1 | 13 | 1 { 343 | 343 | 13 = —1 (mod 7) = 13 = -1 (mod 73)
12 | Theorem 3, Lemma 1 | 3 | 1| 343 | 343 | 3° = (mod 7) = 3/ = -1 (mod 7°)
11 | 11 is a multiplier; orbit sizes 11322121472, |A| = 66, [B| = §55; impossible
10 | Theorem 3, Lemma 1 | 5 [ 1]343 | 343 | 53=~1 (mod 7) =5/ = ~1 (mod 73)
9 | Theorem 3, Lemmal | 3 |2 |343 | 343 | 3*=-1 (mod7) =3’ =-1 (mod 73)
8 | 2is a multiplier; orbit sizes 11322121472, |A| = 36, | B| = 28; impossible
7 Theorem 3 7 | 11343 343 | 7=-1 (mod1)
6 | Theorem 3, Lemma 1| 3 | 1{343 {343 | 3*=-1 (mod7) =3/ =-1 (mod 7)
5 Theorem 3, Lemma 1 | 5 | 1{343 | 343 | 5 =~1 (mod 7) = 5/ = -1 (mod 73)
4 | 2is a multiplier; orbit sizes 11322121472, |4| = 10, | B| = 6; impossible
3 Theorem 9 Does not exist
2 Theorem 7 Exists.
WC(18% + 18 + 1, k?) exists only for k = 2.
Case [n=192+19+1

k | Theorem plt] m] [p/ =-1 (modm)

19 | Theorem 4 Exists

18 | Theorem 3 32381381 |3%=-1 (mod 127)

17 | 17 is a multiplier; orbit sizes 11216321262, |A| = 153, | B| = 136; impossible

16 | 2 is a multiplier; orbit sizes 1}217'81418, | 4| = 136, | B| = 120; impossible

15 | Theorem 3 3]1|381|381]3%=-1 (mod127)

14 | Theorem 3 and Lemma 2 | 7 | 1 | 127 | 381 (127) = -1

13 | 13 is a multiplier; orbit sizes 13635, |A| = 91, | B| = 78; impossible

12 | Theorem 3 | 3 | 1]381|381|3%=-1 (mod 127)

11 | 11 is a multiplier; orbit sizes 11216321262, |A| = 66 |B| = 55; 1mpos31ble

10 | Theorem 3 and Lemma 2 | 5 | 1 | 127 } 381 (137) = -1

9 | Theorem 3 3 381|381 | 3% = -1 (mod 127)

8 Corollary 1 Exists

7 | Theorem 3 and Lemma 2 | 7 | 1 | 127 | 381 | (&) = -1

6 Theorem 3 3113811381 3‘1’% = -1 (mod 127)

5 | Theorem 3 and Lemma 2 | 5 | 1 | 127 | 381 (%.7) =~1

4 | 2 is a multiplier; orbit sizes 1121781418 |A| = 10, |B| = 6; impossible

3 Theorem 9 Does not exist

2 Theorem 7 Does not exist.

WC(192 + 19 + 1, k?) exists only for k = 8 and 19.
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Case | n=202+20+1

k Theorem

20 | Theorem 3 and Lemma 2
19 | Theorem 3 and Lemma 2
18 | Theorem 3 and Lemma 2

17 | Theorem 3

16 | Theorem 3 and Lemma 2

15 | Theorem 3

14 | Theorem 3 and Lemma 2
13 | Theorem 3 and Lemma 2
12 | Theorem 3 and Lemma 2
11 | 11 is a multiplier; orbit sizes 1!

p
2
19
2
17
2
5
2
13
2

t|m [ n |[pf=-1 (modm)
21421 [ 421 | () = —1

1]421 | 421 (%—):—1

1] 421|421 (@-E):.wl

11421 421 [ 17 = —1 (mod 421)
41421 | 421 | (&)= —~1

1| 421 | 421 | 5105 = 4 (mod 421)
1421|421 (Zél—)z——l

1421 | 421 (z%—x)=—1

2421 | 421 | () = -1

105, |A| = 66, | B| = 55; impossible

10 | Theorem 3 and Lemma 2 | 2 | 1] 421 | 421 | (&) = ~1

Theorem 9
Theorem 7

NWH UTO N 0O

(
3 is a multiplier; orbit sizes 111054, |A| = 45, | B|
Theorem 3 and Lemma 2 | 2 (
7 is a multiplier; orbit sizes 11705, |A| = 28, | B| = 21; impossible
Theorem 3 and Lemma 2 | 2
Theorem 3 and Lemma 2 | 5
Theorem 3 and Lemma 2 | 2

| 1

1
1
2

= 36; impossible
| 421 | 421 | (&) =1
1
421 | 421 | (g7)
421 | 421 | 5% = —1  (mod 421)
421 | 421 | (&) = -1

Does not exist
Does not exist.

WC(202 + 20 + 1,k2) does not exist for any k.

Case| n =212 +21 +1
k | Theorem Pl tlm | n [pf=-1 (modm)
21 | Theorem 3, Lemma 2 | 3 |1 [ 463 | 463 | 3 is a primitive root mod 463, s0 (553) = -1
20 | Theorem 3, Lemma 2 | 5 | 1 | 463 | 463 | (;%) = -1
19 | Theorem 3, Lemma 2 | 19 | 1 | 463 | 463 | ( ;lzﬁs =1
18 | Theorem 3, Lemma 2 | 3 | 2 | 463 | 463 | 3 is a primitive root mod 463, so (%) =-1
17 | 17 is a multiplier; orbit sizes 1}2312, | 4| = 153, | B| = 136; impossible
16 | 2 is a multiplier; orbit sizes 112312, |A| = 136, | B| = 120; impossible
15 | Theorem 3, Lemma 2 | 3 | 1 | 463 | 463 | 3 is a primitive root mod 463, so (£5)=-1
14 | Theorem 3, Lemma 2 | 7 | 1 | 463 | 463 (%33) =1
13 | Theorem 3, Lemma 2 | 13 | 1 | 463 | 463 | (%) = -1
12 | Theorem 3, Lemma 2 | 3 | 1 | 463 | 463 | 3 is a primitive root mod 463, so (%) =-1
11 | Theorem 3, Lemma 2 | 11 | 1 | 463 | 463 (4—12%) =-1
10 | Theorem 3, Lemma 2 | 5 | 1 | 463 | 463 | (%) = -1
9 | Theorem 3, Lemma 2 | 3 | 2 | 463 | 463 | 3 is a primitive root mod 463, so () =-1
8 | 2 is a multiplier; orbit sizes 112312, [A| = 36, | B| = 28; impossible
7 | Theorem 3, Lemma 2 | 7 | 1| 463 | 463 | (&) = -1
6 | Theorem 3, Lemma 2 | 3 | 1| 463 | 463 | 3 is a primitive root mod 463, so ( 4%3) = -1
5 | Theorem 3, Lemma 2 | 5 | 1 | 463 | 463 (&) =~-
4 | 2 is a multiplier; orbit sizes 112312, {A] = 10, | B| = 6; impossible
3 | Theorem 9 Does not exist
2 | Theorem 7 Does not exist.

WC(21% + 21 + 1,k2) does not exist for any k.
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Case | n =222 +22+1
k | Theorem plt][m ][ n [p=-1 (modm)
22 Does not exist as 22 # sum of two squares
21 | Theorem 3 and Lemma 2 | 7 | 1| 169 | 507 (7275) =1
20 | Theorem 3 and Lemma 2 | 2 169 | 507 | (-5) = -1
19 | Theorem 3 and Lemma 2 | 19 | 1 | 169 | 507 (g) = -1
18 | Open
17 | 17 is a multiplier; orbit sizes 112165785, |4| = 153, | B| = 136; impossible
16 | Theorem 3 and Lemma 2 | 2 | 4| 169 | 507 | (&) = —1
15 | Theorem 3 and Lemma 2 | 5 | 1 | 169 | 507 (E) =-1
14 | Theorem 3 and Lemma 2 | 7 | 1 | 169 | 507 (-g) = -1
13 | Theorem 3 131|169 | 507 | 13' = -1 (mod 1)
12 | Theorem 3 and Lemma 2 | 2 | 2| 169 | 507 | (&) = —1
11 | Theorem 3 and Lemma 2 | 11 | 1 | 169 | 507 (ﬂ) = -1
10 | Theorem 3 and Lemma 2 | 5 | 1 | 169 | 507 (—1]5;) = -1
9 | Open
8 | Theorem 3 and Lemma 2 | 2 | 3| 169 | 507 | (&) = ~1
7 | Theorem 3 and Lemma 2 | 7 | 1 | 169 | 507 (g) = -1
6 Open
5 | Theorem 3 and Lemma 2 | 5 | 1| 169 | 507 | (§) = -1
4 | Theorem 3 and Lemma 2 | 2 | 2 | 169 | 507 (;2~) = -]
3 | Theorem 9 Exists
2 | Theorem 7 Does not exist.

WC(22% + 22 + 1,k?) exists for k = 3 and possibly for k = 6, 9 and 18.
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Case | n =232 +23+1
k | Theorem plt] m [ n [pf=-1 (modm)
23 | Theorem 4 Exists
22 | 11"=4 (mod 553) = 4 is a multiplier; orbit sizes 11323914, |A| = 253,
| B} = 231; impossible
21 | Theorem 3 and Lemma 2 | 7 | 1 | 553 | 553 | () = ~1
20 |5/ =8 (mod 553) = 8 is a multiplier; orbit sizes 171342, |A| = 210,
| B] = 190; impossible
19 | 19 is a multiplier; orbit sizes 1161392780, | 4| = 190, | B| = 171; impossible
18 |3/ =8 (mod 553) = 8 is a multiplier; orbit sizes 171342, |A| = 171,
| B] = 153; impossible
17 | 17 is a multiplier; orbit sizes 1161263785, | A| = 153, | B| = 136; impossible
16 | 2 is a multiplier; orbit sizes 11323914, | 4| = 136, | B| = 120; impossible
15 |3/ =25 (mod 553) = 25 is a multiplier; orbit sizes 1132394, | 4| = 120,
| B| = 105; impossible
14 | Theorem 3 and Lemma 2 |7 | 1 | 553 | 553 | (#) = —1
13 | 13 is a multiplier; orbit sizes 112339278°, | A} = 91, | B| = 78; impossible
12 | Open
11 | 11 is a multiplier; orbit sizes 1132394, |A| = 66, | B = 55; impossible
10 |5/ =8 (mod 553) = 8 is a multiplier; orbit sizes 1713%2, | A| = 55,
|B| = 45; impossible
9 | 3 is a multiplier; orbit sizes 1161787, |A| = 45, |B| = 36; impossible
8 | 2 is a multiplier; orbit sizes 11323914, | A| = 36, |B| = 28; impossible
7 | Theorem 3 and Lemma 2 | 7 | 1 | 553 | 553 | (&) = ~1
6 |3/=8 (mod 553) = 8 is a multiplier; orbit sizes 1713%2, | 4| = 21,
|B] = 15; impossible
5 | 5is a multiplier; orbit sizes 1161392786, |A| = 15, | B| = 10; impossible
4 | 2 is a multiplier; orbit sizes 11323914, |A| = 10, | B| = 6; impossible
3 | Theorem 9 Does not exist
2 | Theorem 7 Exists.

WC(232 + 23 + 1,k?) exists only for k = 2, 23 and possibly k = 12.
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Case | n =242 +24 +1

k | Theorem [plt]m ]| n [p/=-1 (modm)

24 | Open

23 | Theorem 3 23| 1]601{601]23%0 =—~1 (mod 601

22 | Theorem 3 and Lemma 2 | 11 | 1 | 601 | 601 | (&)= -1

21 | Theorem 3 and Lemma 2 | 7 | 1 {601 | 601 | (557) = —1

20 | Theorem 3 5111601601 |5 =~1 (mod 601)

19 | Theorem 3 and Lemma 2 | 1 | 1| 601 | 601 | (&%) =—1

18 | 2% =27 (mod 601); 27 is a multiplier; orbit sizes 1'25%, |4 = 171,
| B| = 153; impossible

17 | Theorem 3 and Lemma 2 | 17 | 1 | 601 | 601 | (g) = —1

16 | 2 is a multiplier; orbit sizes 112524, |A| = 136, |B| = 120; impossible

15 | Theorem 3 5]1]601]|601]|5 =-1 (mod 601)

14 | Theorem 3 and Lemma 2 | 7 | 1 | 601 | 601 (3-07—%)) =1

13 | Theorem 3 and Lemma 2 | 13 | 1 | 601 | 601 | 13'° = ~1 (mod 601)

12 |2 =27 (mod 601); 27 is a multiplier; orbit sizes 1'25%*, | A| = 78,
| B] = 66; impossible

11 | Theorem 3 and Lemma 2 | 11 | 1 | 601 | 601 | (&%) = —1

10 | Theorem 3 5 | 11601 | 601 5g = —-1 (mod 601)

9 | 3 is a multiplier; orbit sizes 1'75%, |A| = 45, |B| = 36; impossible

8 | 2 is a multiplier; orbit sizes 112524, |A| = 36, |B| = 28; impossible

7 | Theorem 3 and Lemma 2 | 7 |1 [ 601 [ 601 [ (601) = -1

6 |2%=27 (mod 601); 27 is a multiplier; orbit sizes 11252, [4] = 21,
|B| = 15; impossible

5 | Theorem 3 | 5]1]601]|601]5%=-1 (mod601)

4 | 2is a multiplier; orbit sizes 112524, |A| = 10, | B| = 6; impossible

3 Theorem 9 Does not exist

2 Theorem 7 Does not exist.

WC(24% + 24 + 1, k?) exists only possibly for k = 24.
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Case | n =252 +25+1
k | Theorem plt][m [ n [p/=-1 (modm)
25 Theorem 4 | Exists
24 | Theorem 3 | 3 | 1651|651 |3%=-1 (mod 217)
23 | Theorem3 |23 | 1| 93 | 651 | 23°=—1 (mod 93)
22 | Theorem 3 | 11 | 1| 93 | 651 | 11 =—1 (mod 93)
21 | Theorem3 | 3 | 1651|651 |3®=—-1 (mod 217)
20 | Corollary 1 | Exists
19 | 19 is a multiplier; orbit sizes 136315630'8, | 4| = 190,
|B| = 171; impossible
18 | Theorem 3 | 3 | 2| 651 | 651 | 3" =~1 (mod 217)
17 | Theorem 3 | 17 | 1 | 651 | 651 | 17" = —1 (mod 651)
16 | Corollary 1 | Exists
15 | Theorem 3 | 3 | 1| 651|651 |35 =~1 (mod 217)
14 | Open :
13 | Theorem 3 | 13 | 1| 217 | 651 | 13" = ~1 (mod 217)
12 | Theorem 3 | 3 | 1|651 | 651 |3 =—1 (mod 217)
11 | Theorem 3 | 11 | 1| 93 | 651 | 11¥=—~1 (mod 93)
10 | Corollary 1 | Exists
Theorem 3 | 3 |2 651 | 651 | 3% = —1 (mod 217)
Corollary 1 | Exists
Open
Theorem 3 | 3 | 1| 651|651 |3%=~1 (mod 217)
Corollary 1 | Exists
Corollary 1 | Exists
Theorem 9 | Does not exist
Theorem 7 | Exists.

WC(25% + 25 + 1, k2) exists for k = 2, 4, 5, 8, 10, 16, 20, 25 and possibly for k = 7, 14.

B2 W Uty = 0
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