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Abstract 

The chords of a twisted cubic in PG(3, q) are mapped via their Plucker 
coordinates to the points of a Veronese surface lying on the Klein quadric 
in PG(5, q). This correspondence over a finite field gives a cap in 
PG(5, q), that is, a set of points no three of which are collinear. The 
dual structure, namely the axes of the osculating developable, is also 
mapped to a Veronese surface. The two surfaces can be combined to 
give a larger cap. 

The constructions can be extended to the chords and axes of an arbi­
trary (q+ I)-arc in PG(3, q) when q is even. An alternative construction 
for the cap associated to a twisted cubic is given for q odd. 
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1. INTRODUCTION AND NOTATION 

The chords of a twisted cubic in PG(3, q) are mapped via their Plucker coordi­
nates to the points of a Veronese surface lying on the Klein quadric in PG(5,q). 
This correspondence over a finite field gives a cap in PG(5, q), that is, a set of 
points no three of which are collinear. The dual structure, namely the axes of the 
osculating developable, is also mapped to a Veronese surface. The two surfaces can 
be combined to give a larger cap. 

The constructions can be extended to the chords and axes of an arbitrary (q + 1)­
arc in PG(3, q) when q is even. An alternative construction for the cap associated 
to a twisted cubic is given for q odd. 

The following notation is used: 

"( is the Galois field GF(q) of order q = ph, h ~ 1; 
"(+ is "(U{oo}; 
"(' is a quadratic extension of "(; 
;Y is the algebraic closure of "(; 
PG(n, q) is the projective space of n dimensions over "(; 
P(X) is the point of PG(3, q) with coordinate vector X (xo, Xl, X2, X3); 
7T'(U) is the plane of PG(3, q) with equation UXt = 0, where U = (uo, Ul, U2, U3); 
1 = J(L) P(X)P(Y) is the line of PG(3, q) with coordinate vector 

L = (lOl' l02, l03, h2' l3l' 123 ), where Iij = XiYj - XjYi; 
U 0, U 1, U 2, U 3 are the vertices of the tetrahedron of reference in PG (3, q); 
U is the unit point; 
1{5 is the Klein quadric of PG(5, q) with equation XOX5 + X l X 4 + X 2X 3 = 0; 
vi is the Veronese surface of PG(5, q). 

2. PRELIMINARIES 

Consider a twisted cubic of PG(3, q) in its canonical form: 

where t 00 gives the point Uo. A chord of C is a line of PG(3, q) joining either a 
pair of real points of C, possibly coincident, or a pair of complex conjugate points 
of C. By a real point of C we mean a point of C defined over ,,(, and by complex 
conjugate points of C, we mean points P(h) and P(t2), such that tl and t2 are in 
"(' conjugate over "(. Let l(tl' t2) = P(h)P(t2). Then 

l(tl' t2) I(t12t22, tlt2(t l + t2), tI2 + tIt2 + t2 2, tlt2, -(tl + t2), 1) 

= I(CX22,CXICX2,CXI2 - CX2,CX2, -CXl, 1) 

where CXl tl + t2 and CX2 = tIt2' 
The criteria for the three types of chords are that the polynomial X2 - CXIX + CX2 

has 2, 1 or 0 roots in "(. If X2 - CXIX + CX2 has 2 roots in ,,(, that is, P(tl) and 
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P(t2) are distinct real points of C, then we will say that l(tl' t2) is a real chord of 
C; if x2 - (};IX + (};2 has one root in ,,(, that is, P(h) and P(t2) are coincident, then 
l(h, t2) is a tangent to C; if X2 - (};IX + (};2 has no roots in ,,(, namely P(tl ) and 
P(t2) are complex conjugate points of C, then l(tI, t2) is an imaginary chord of C. 
Note that imaginary chords are defined over "(. If tl = t2 = t, then 

is the tangent to C at the point P(t). 
At each point P(t) of C, there is an osculating plane 

which meets C only in P(t). Such osculating planes form the osculating developable 
r to C. In particular r is the dual of C. For p =I- 3, dual to the chords of C are the 
axes of r. An axis of r is a line of PG(3, q), which is the intersection of a pair of 
real planes of r, possibly coincident, or of a pair of complex conjugate planes of r 
(also called (2-) complex conjugate planes). 

Let l'(vI, V2) = 7r(VI) n 7r(V2)' Then 

l' (VI, V2) = J( V1 2V2 2, VI V2 (VI + V2), 3VIV2, (V12 + VI V2 + V22) /3, -(VI + V2), 1) 

= J({32 2 
, {3d32 , 3{32, ({312 {32)/3, -i3I, 1), 

where i31 = VI +V2 and i32 = VIV2. We will call1'(vl,V2) a real axis, a generator or 
an imaginary axis of r, according as X2 - i3lx + i32 has two, one or zero roots in "(. 
Note that the generator of r in 7r(t) is 

that is, a generator of r is self-dual with respect to the null polarity defined by 
the linear complex A to which the tangents to C belong (see [5, Theorem 21.1.2]). 

If p =I- 3, from [5, Lemma 21.1.4] we have that 

IJCII = q(q + 1)/2, where JCI is the set of all real chords of C; 
IJC2 1 = q + 1, where JC2 is the set of all tangents to C; 
IJC3 1 = q(q - 1)/2, where JC3 is the set of all imaginary chords of C. 

So the total number of chords of C is q2 + q + 1. Dually, the total number of axes 
of r is q2 + q + 1. 
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3. THE CONSTRUCTION OF THE VERONESE 

SURFACE OF PG(5, q) FROM THE CHORDS OF C 

3.1. CONSTRUCTION I 

Suppose that p ::/= 3 and consider the generic chord of C: 

(1) 

where, as above, al = tl + t2 and a2 = tlt2. We set al v /w and a2 = u/w. By 
substituting in (1), we obtain 

or equivalently, 

(2) 

for u, v, w E "y. Now, the Veronese surface of PG(5, q) has parametric equations 
(see [6, Ch. 25]) 

for all u, v, w E "y. Also the Veronese surface is embedded in 1{5 by the linear map 

<p_ :(Xo, .. . ,X5 ) H (Xo, Xl, X 2 X 3 , X 3 , X 5 ) 

( 2 2 2) (2 2 2) U ,UV,v ,uw,vw,w H u ,UV,v -uw,uw,-vw,w . 

Hence, the Plucker coordinates of a chord of C, considered as homogeneous projec­
tive coordinates of PG(5, q), represent a point of a Veronese surface Vi, embedded 
in 1{5. 

Dually, the generic axis of f is 

(3) 

Set /32 = u/w and (31 = v/w. By substituting in (3), we obtain that 

l'(u,v,w) = I(u2 ,uv,3uw, (v 2 
- uw)/3, -vw,w2

). (4) 

The Plucker coordinates of an axis of f, considered as projective coordinates of 
PG(5, q), represent a point of a Veronese surface Vi embedded in 1{5. This surface 
Vi, when embedded in 1{5, is the image of vi under the linear transformation 

Since p ::/= 3, the two surfaces vi and vi are distinct. 
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3.2. CONSTRUCTION II 

Now, we present another construction involving the Veronese surface of PG(5, q), 
q odd, and the chords of C. Consider the embedding 

ffi • ( 2 2 2) (2 2 2) '±'+. U ,UV,V ,UW,VW,W H U ,UV,V -UW,UW,VW,W . 

Then Z = (u 2
, UV, v 2 

- UW, UW, VW, w 2
), for u, v, wE" is a point of a Veronese 

surface vi embedded in 1-[5 : XOX5 - X 1X 4 + X 2 X 3 = O. In the open set U = 1 of 
PG(5, 1'), the tangent plane to vi at Z is 

4 (8Z 8Z) 
Tz(V2 ) = span Z, 8v '8w ' 

where Z = (1, V, v 2 
- W, W, VW, w 2 ). It follows that 

8Z 
8v = (0,1, 2v, 0, w, 0), 

8Z 
8w = (0,0, -1, 1, v, 2w). 

The generic tangent line to vi at Z is ofthe form P(Z)P(V), where V = A ~~ +/l ~~, 
with A, /l E" (A, /l) -=J (0,0) and VQV t = 0, where 

0 0 0 0 0 1 
0 0 0 0 -1 0 

Q= 0 0 0 1 0 0 
0 0 1 0 0 0 
0 -1 0 0 0 0 
1 0 0 0 0 0 

is the symmetric matrix associated to 1£5. It follows that 

V = (0, A, 2VA - /l, /l, AW + /lV, 2/lw) 

with A(AW + /-Lv) = /l(2AV - /l); that is, 

A2W A/lV + /l2 = O. (5) 

Since the discriminant of this quadratic form is not zero, there are two tangent 
lines (real or complex conjugate) at the generic point of vi. To these tangent 
lines through Z correspond two pencils in PG(3, q) each containing the line z 
corresponding to Z and another line in the neighbourhood of z. By putting A = 1 
in (5) and by using the PlUcker embedding, we find that the points P(Z) and P(V) 
are spanned by the rows of 

-W 

V 

-VW ) 
v 2 -w 

and 
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These two lines of PG(3, q) intersect in a point 

R = P ( 1, J-l, J-lv - W, (v2 - w) J-l - vw ) . 

Using the relation (5), we find that 

R = P (1, J-l, J-l2, J-l3) 

with J-l E 'Y. This means that vi represents the congruence of the chords of a 
twisted cubic C, where C is the set of the focal points of such a congruence; see [7]. 

4. A NEW FAMILY OF CAPS 

In [3], it has been shown that by starting from the set of all conics of PG(2, q), q 
odd, which are inscribed in a triangle, it is possible to construct a cap of PG(5, q) 
of size 2q2 - q + 2. Such a cap turns out to be the union of two Veronese surfaces of 
PG(5, q) which meet in the union of three conics pairwise intersecting in one point. 
Now, we have seen that by starting from the chords and axes of a twisted cubic C, 
it is possible to construct two Veronese surfaces of PG(5, q), which we have called 

vi and Vi· 
Our aim in this section is to construct a new family of caps of PG(5, q), q = ph, 

P ::/= 3, embedded in the Klein quadric 1-l5 , by glueing vi and vi together along 
their intersection. 

Lemma 4.1. The Veronese surfaces vi and Vi meet in q + 1 points, belonging to 
a parabolic quadric P4, namely, the intersection of1-l5 by a non-tangent prime. 

Proof. The surfaces vi and Vi meet in q + 1 points, since the tangents to Care 
self-dual with respect to the null polarity defined by A. Since, for p f 3, the 
tangents to C lie in a general linear complex (see [5, Th. 21.1.2 (ii))) , their images 
under the Plucker embedding are q + 1 points on a parabolic quadric P4 , obtained 
by cutting 1-l5 by a non-tangent prime. 0 

Proposition 4.2. The set K = vi u vi is a (2q2 + q + I)-cap embedded in ?i5. 

Proof. From Lemma 4.1, IKI = 2q2 + q + 1. By way of contradiction, suppose that 
there exist three collinear points PI ,P2 ,P3 on K and let l be the line containing 
them. By Bezout's theorem, l is contained in 1-l5

. The three points above cannot 
belong to vi or Vi, since both vi and vi are caps [6, Lemma 25.2.5]. By virtue of 
the Plucker embedding, the collinearity of the points PI, P2 , P3 on ?i5 means that 
the corresponding lines in PG(3, q) belong to the same pencil. So, in our setting, 
there would be two chords of C and one axis of r or two axes of r and one chord 
of C belonging to the same pencil. 

Suppose that we have two concurrent real chords of C, necessarily meeting in 
one point P of C since no plane contains four points of a twisted cubic. Since C 
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is fixed by a 3-transitive group [5, Lemma 21.1.3], let P U 3 . Denote by 1r the 
real plane containing these two chords. If there was an axis 1 of r through P, this 
would be a generator of f, which is excluded by the first part of the proof. This 
means that 1 is a chord; this contradiction completes the proof. 0 

Remarks 
(a) The chords of C form a (1, 3)-congruence, namely a line congruence of order 1 
(the number of chords through a general point of PG(3, q)) and class 3 (the number 
of chords of C in a general plane). Dually, the axes of f form a (3, I)-congruence. 
For more details, see [1, p. 49]. 

From Proposition 4.2, it follows that the chords and axes through a point are 
contained in at least one quadratic cone and the chords and axes in a plane are 
contained in at least one dual conic. 
(b) Some tests performed for low values of q show that the caps constructed above 
are far from being complete. 

Corollary 4.3. The (2q2 + q + I)-cap K has a collineation group isomorphic to 
PGL(2, q) ~ C 2 , namely, the semidirect product of PGL(2, q) by a cyclic group of 
order two. 

Proof. The collineation group of Cis PGL(2, q); it acts 3-transitively on the points 
of C [5, p. 234], and partitions the chords of C into three orbits [5, Lemma 21.1.4], 
namely the real chords, the tangents and the imaginary chords. So PGL(2, q) leaves 
vi invariant. The null polarity defined by the general linear complex containing 
the tangents to C induces an involutory collineation, which interchanges chords and 
axes [5, Th. 21.1.2]. It follows that PGL(2, q) also leaves Vi invariant. 0 

5. A PLANE REPRESENTATION OF THE CHORDS OF C FOR q ODD 

Again, consider a twisted cubic C of PG(3, q) in its canonical form: 

XO=t3, XI=t
2

, X2=t, x3=I, 

t E ')'+. We recall that C is the complete intersection of three quadrics YI = 0, 
Y2 = 0, Y3 = 0 of PG(3, q), q 2:: 7 [5, Lemma 21.1.6 (i)], where 

Associate to a point P(X) of PG(3, q), X (xo, Xl, X2, X3), the point with ho­
mogeneous coordinates (YI, Y2 , Y3 ) of a projective plane 1r isomorphic to PG(2, q). 
Hence a point (AI, A 2 , A 3 ) E 1r corresponds to those points of PG(3, q) such that 

(6) 

But, we observe that the quadrics Ii = 0 are linearly independent and contain 
C. This means that the points (6) are on the intersection of two quadrics through 
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C, say Y1 0 and Y3 = O. This intersection consists of the twisted cubic C and 
residually of one chord of C, say 1. In particular, if l is the chord of C joining the 
points P(t1) and P(t2), associate to 1 the point of'!f given by 

In this way, we obtain a one-to-one correspondence between the chords of C and 
the points of '!f; call this correspondence W. In particular, for the tangents to C, we 
have t1 t2 and so their images under Ware the points of the conic w of'!f given 
parametrically as 

and with equation 

It follows that 

(i) the images in '!f of the real and imaginary chords of C are respectively the 
external and internal points of w; 

(ii) the image of a regulus of chords is a line in '!f; 

(iii) w- 1 (w) is the quartic surface n containing the points on the tangents of C 
[5, Lemma 21.1.10], where 

(iv) the chords of C can be partitioned into q + 1 reguli sharing one chord; 
(v) if the axes of r are represented as the lines of '!f, then the null polarity defined 
by the linear complex containing the tangents to C corresponds to the polarity 
induced by the conic w in '!f. 

A collection of q2 +q+ 1 nondegenerate conics in a projective plane PG(2, q) that 
mutually intersect in exactly one point is called a projective bundle [2]. So these 
conics can be considered as the lines of another projective plane. In particular, a 
circumscribed bundle is a set B of q2 + q + 1 nondegenerate conics containing the 
three vertices of a triangle defined over a cubic extension of 'Y. There is a connection 
between the set of chords of a twisted cubic and a projective circumscribed bundle 
of a projective plane as is shown as follows. 

Let Q={F'\,I-£,vl,X, IL, 1/ E ')'} be the net of quadrics through the twisted cubic C 
and let '!fa be a plane meeting C in three conjugate points Q1,Q2,Q3; that is, the 
parameters of the three points are conjugate over ')' in a cubic extension. Let T 
be the set of chords of C. The plane '!fa meets a quadric F,\I-£v in a nondegenerate 
conic through Q1,Q2,Q3. Let N be the net of conics '!fa n F,\I-£v, Then any two 
conics in N meet residually in a real point P. This gives a mapping from N to '!fa. 
A chord of C maps to a point of '!fa simply as the intersection of the line with the 
plane. Hence we have a map 

¢ : T -+N. 
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In fact, there is a natural bijection between any two of the four sets Q, N, T, 7ro, 

all of which have size q2 + q + 1 as is shown in the following diagram: 

Q B N 
t :xl t 
T B 7ro 

6. THE CHORDS OF (q + I)-ARCS IN PG(3, q), q EVEN 

We now consider the analogous properties for the chords of an arbitrary (q + 1)­
arc in PG(3, q), q even. 

In PG (3, q), q = 2h, a (q + 1 )-arc is projectively equivalent to a set 

C(m) = {pet) = P(tm+\ tm, t, 1) : t E ')'+}, 

where m = 2n , (n, h) = 1 [5, Th. 21.3.15]. 
The osculating developable of C(m) is f(rn) = {7r(t) 

')'+}. 
The chord P(r)P(s) has Plucker coordinates 

m m rs(rm + sm) rm+l + sm+l 
l(r,s) = l(r s , ,-----

r+s r+s r+s 

The axis 7r ( u) n 7r ( v) is 

rm+sm 
---,1). 

r+s 

The tangent at pet) is let) = let, t) = l(t2m , 0, tm, tm, 0, 1), and this coincides 
with the generator of f(m) in 7r(t). 

The tangents form a regulus lying on 1-l3 : XOX3 +XI X2 = 0 whose correspond­
ing null polarity U is P(ao, aI, a2, a3) +---+ 7r(a3, a2, aI, ao). So U interchanges C(m) 
and f(m). 

Theorem 6.1. The chords and axes of the (q + I)-arc C(rn) and its osculating 
developable rem) form a (2q2 + q + I)-cap on 1-l5. 

Proof. The arguments of Proposition 4.2 can be copied if (n, 2h) = 1 since then 
C(rn), m 2n , defines a (q + I)-arc in PG(3, q) and a (q2 + I)-arc in PG(3, q2). 
Hence, we only consider the case (n, 2h) = 2; that is, h is odd and n is even. 

When (n,2h) = 2, then C(m) does not define an arc in PG(3, q2). We first 
determine the maximum number of points of C ( m), extended to ')", in a plane of 
PG(3, q). 

Let 7r 7r(ao, aI, a2, a3). This intersects C(m) where aotm+l + altm + a2t + a3 = 
O. 

By letting t = tf + a, with a a solution of this equation in ')", we can reduce this 
equation to one with a3 = O. So it suffices to study an equation aotm+l + altm + 
a2t = O. 
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If ao 0, then altm + a2t = 0 if and only if t = 0 or altm- l + a2 = O. The 
latter equation has at most three solutions in "(' since (m - 1, 22h - 1) = 3. 

So there are at most 4 distinct solutions; together with the solution t = 00, this 
gives at most 5 solutions in "('. 

When ao -# 0, by introducing homogeneous coordinates (t, l) such that (t, 1) == t, 
by making the equation homogeneous to aotm+l + altm[ + a2tlm = 0 and by 
interchanging t and l, an equation aoZm+1 + altlm + a2tml 0 is obtained. Letting 
l = 1, the equation ao + alt + a2tm = 0 is obtained. So, again, in "(', there are at 
most 5 solutions. 

We now check that no three chords lie in a pencil. 
If a plane of PG(3, q) contains exactly 5 points in PG(3, q2), at least one of 

them is defined over "(. If three of them are defined over ,,(, by the 3-transitivity 
of the group of C(m) [5, p. 249], we can assume that this plane is Xl = X2 • This 
does contain the two points P(w2,w,w, 1),P(w,w2,w2, 1), where w2+w+l = 0, in 
PG(3, q2) but no three of the real chords and the imaginary chord are concurrent. 

If the plane contains one point of PG(3, q), and the tangent to C(m) at that 
point, then the plane contains at most one extra point of C(m). For, we can assume 
that this point is U 3 , and the planes through the tangent line Xo = Xl = 0 to this 
point contain at most one other point of C (m). If the plane contains one point of 
PG(3, q), and two pairs of complex conjugate points in PG(3, q2), then the plane 
only contains two imaginary chords. 

If the plane contains exactly four points of C(m) in PG(3, q2), then if these 
four points consist of two pairs of complex conjugate points, there are only two 
imaginary chords in the plane, and similarly, if the plane contains two real points, 
and two conjugate imaginary points, there are again only two chords in the plane. 

If a plane contains exactly three points, one of them is real. If all three are 
real, they form a 3-cap, and if only one is real, then this plane only contains an 
imaginary chord. 

This shows that no plane contains three concurrent chords. So the chords form 
a (q2 + q + I)-cap. 

From the null polarity U, also the axes define a (q2 + q + I)-cap on 1-{5. 

Consider now the chords and the axes. Suppose they do not define a (2q2+q+l)­
cap. Assume that three points are collinear where two correspond to chords of 
C(m). 

If the two chords are real chords, suppose they are U 0 U 3 and U 3 U. The third 
point then must correspond to an axis passing through U 3. The only axis passing 
through this point is its tangent to C (m), but this does not lie in a pencil with two 
real chords. 

If the two chords are one real chord and a tangent, let the tangent be Xo = 
X I = 0 and the chord be U 0 U 3. Again, there is no other chord or axis passing 
through U 3 and lying in the plane of the real chord and tangent. 

Assume the two chords are one real chord and an imaginary chord. By [4, Th. 
5], an imaginary chord and an imaginary axis never intersect. So the third line is 
a real axis. 

Since an imaginary bisecant cannot pass through a real point of C (m), assume 
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that the real chord is V 0 V 3 and that the real axis lies in the plane X 0 + X I + 
X 2 + X3 = 0. Then the vertex of the pencil is P(I, 0, 0,1). The planes of the 
osculating developable through P(I, 0, 0,1) satisfy tm + l = 1, and there must be at 
least a second solution since there is a real axis passing through P(I, 0, 0,1). So 
(m + 1, 2h - 1) > 1; hence (m + 1, 2h - 1) 2: 5, since h is odd. This would imply 
that there are at least 5 planes through P(I, 0, 0,1). This is false. 

When the two chords are imaginary chords, by [4, Th. 5], the third line must 
be a real axis. Suppose it is the intersection of Xo = ° and X3 = 0. Then the two 
imaginary chords intersect in the same point of Xo = X3 = 0; assume that this 
point is P(O, 1, 1,0). 

Then, three points P(O, 1, 1,0), P(h), P(t2), with t2 = tf and h E ry'\ry, are 
collinear if and only if (tl + t2)m-1 = 1 and t;.n+l = t~+l. Since (n,2h) = 2, 
necessarily h + t2 E {I, w, w2}. Hence h + t2 = 1, since w ¢ ry, which shows that 
tf +h + 1 = 0. 

Then t;.n+l = t~+l implies f'1 + h + 1 = 0; so f'1 = tf which implies tl = 1 
since m = 2n , (n, h) = l. 

This shows that the chords and axes of C (m) and r (m) define a (2q2 + q + 1 )-cap 
on 1{5. 0 

Theorem 6.2. The (2q2+q+ I)-cap constructed in Theorem 6.1 is the intersection 
of the hypersurfaces 

(X2 + x 3)m-1 X5 + X,r = 0, 

(X2 + x3)m-1 Xo + X;n = 0, 

XOX5 + X I X 4 + X 2X 3 = 0. 

Proof. By [4], the coordinates of the chords and axes can be rewritten as 

J(R2m pm, R m+l p, Rm(1 + p+ p2 + p4+ . .. + pm/2), Rm(p+ p2 + ... + pm/2), R m- l , 1) 

and 

J(U 2m J-tm, Um+IJ-t, Um(J-t+ J-t2 + ... + J-tm/2) , Um(1 + J-t+ J-t2 + ... + J-tm/2) , um-I, 1). 

For a point lying in the intersection of the hypersurfaces, if X5 = 0, then the 
points are (1, tm-\ 0, tm, 0, 0), (0,0,0,1,0,0), (1, tm-\ tm, 0, 0, 0), (0,0,1,0,0,0) 
which correspond to the axes in X3 = ° and the chords through Vo. 

H X5 = 1 and X 4 = 0, then (Xo, ... ,X5 ) = (t2m , 0, tm, tm, 0,1). If X5 = 
1 and X 4 =f=. 0, letting X 4 = Um- l implies X 2 + X3 = Um and u m2 - m Xo = 
Xl' Substituting Xl = Um+lJ-t implies X 2 + X3 = um, Xo = u 2m J-tm, X 2X 3 = 
U2m (J-tm + J-t). 

So X 2, X3 are solutions to X 2 + Um X + (J-tm + J-t)U2m = 0. Hence the caps form 
the intersection of the hypersurfaces. 0 

Remark. The last result is not valid for odd characteristic. In PG(5, q), q odd, 
the Klein quadric is the only quadric containing the (2q2 + q + 1 )-cap constructed. 
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7. AN ALTERNATIVE CONSTRUCTION IN PG(5, q), q ODD 

To obtain a result similar for q odd to Theorem 6.2, consider the chords 

1(S2, rs, r2 - s, s, -r, 1) 

of the cubic C and the axes 

1(v2
, uv, V, u2 

- V, -u, 1) 

of the developable r, which correspond to each other under the null polarity 

defined by the linear complex l03 = h2 of PG(3, q) or equivalently by the section 
X 2 = X3 of 1{5 in PG(5, q). 

LeIllma 7.1. The set of points 

{(S2, rs, r2 - s, s, -r, 1) : r, s E ')'}U 

{(v 2
, uv, V, u2 

- V, -u, 1) : u, v E ')'}U 

{(s2,s,I,0,0,0),(s2,s,0,1,0,0): s E ')'}U {(1,0,0,0,0,0)} 

is the intersection of the quadrics 

XOX5 + X I X 4 + X 2X 3 = 0, 

(X2 + X 3)X5 - xl 0, 

(X2 + X3)XO - xi 0. 

Proof. To prove this, the arguments of Theorem 6.2 can be used. 0 

Theorem 7.2. The set considered in Lemma 7.1 is a (2q2 + 2)-cap of PG(5, q), q 
odd. 

Proof. Suppose three of the points are collinear on a line l; then this line is con­
tained in the intersection of the three quadrics. So it consists only of points defined 
above. 

Since the set consists of two (q2 + q + I)-caps; necessarily III :s; 4. So q = 3. 
When q = 3, it was checked by computer that the set is a cap. 

The size of the cap is 2q2 + 2 since the points (1,0,0,0,0,0), (S2, 0, -s, s, 0,1), 
s E ')', and (r4 /4, r3/2, r2/2, r2/2, -r, 1), r E ,)" define both chords and axes. 0 

ReIllark. The two parts of the (2q2 + 2)-cap intersect in the conic xi = XOX5 
in the plane Xl = X 4 = 0, X 2 + X3 = 0, and in the normal rational curve 
{( t4 / 4, t3 /2, t 2 /2, t 2 /2, -t, 1) : t E ')'+} of the hyperplane X 2 = X 3 . 

The conic defines the regulus in PG (3, q) consisting of the lines U 0 U I, U 2 U 3, 

P(t)P( -t) for t E ')'\ {O} or t E ')"\')' with tq = -to 
The normal rational curve in X 2 = X3 defines the lines 1(S2, rs, r2 - s, s, -r, 1), 

where s = r 2/2 = t l t 2, r = h + t2 with ti = -t~. 
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