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Abstract 

A general partition graph (gpg) is an intersection graph G on a set S so that 
for every maximal independent set M of vertices in G, the subsets assigned to 
the vertices in M partition S. These graphs have been characterized by the 
presence of special clique covers. The Triangle Condition T for a graph G is 
that for any maximal independent set M and any edge uv in G M, there is a 
vcrtex W E M so that uvw is a triangle in G. Condition T is necessary but not 
sufficient for a graph to be a gpg and a computer search has found the 
smallest ten counterexamples, one with nine vertices and nine with ten 
verticcs. Any non-gpg satisfying Condition T is shown to induce a required 
subgraph on six vertices, and a method of generating an infinite class of such 
graphs is described. The main result establishes the equivalence of the 
following conditions in a chordal graph G: (i) G is a gpg (ii) G satisfies 
Condition T (iii) every edge in G is in an end-clique. The result is extended 
to a larger class of graphs. 

1. INTRODUCTION 

All graphs considered will be assumed to be connected and we will follow 
notation found in [6]. In particular, cliques are assumed to be maximal complete 
subgraphs. A graph G is a general partition graph (gpg) on a set S if it is possible to 
assign to each of its vertices v a subset Sv of S such that: 



(1) vertices u and v are adjacent if and only if Su n Sv =F <1>, 

(2) S= U Sw 
VEV(G) 

(3) for every maximal independent set M of vertices in G, 

the collection {Sm: m E M} partitions S. 

The term partition graph has been reserved for a graph G which is a gpg and in 

addition satisfies the closed neighborhood requirement that N[ u] =F N[ v] for all u =F v in 

V( G). These graphs (not to be confused with partition intersection graphs introduced in 
[8]) have been encountered in the geometric setting of triangulations of lattice polygons 
[4] and their theory developed in [2], [3] and [7]. The following conditions prove to be 
important in the theory of general partition graphs. 

Triangle Condition T. If M is any maximal independent set in G and uv 

is any edge in G - M then for some m E M, uvm is a triangle in G. 

Clique Condition C. If M is any maximal independent set in G, then no 

complete subgraph of G - M is a clique in G. 

Incidence Condition I for a Clique Cover. There is a collection e of 

cliques that contains all edges of G with the property that every maximal 
independent set in G has a vertex from each clique in e. 

Condition T is necessary but not sufficient for a gpg [2], Condition C is sufficient but not 
necessary for a gpg [2]; clearly Condition C implies Condition T. Condition I is a 
characterization for a gpg [7]. 

We add a fourth condition which, in a special form, has already been used 
implicitly in [7] and occurs again in the last section of this paper. An end-clique in a 
graph G is a clique that contains a vertex that lies in no other clique of G. 

End-clique Condition E. Every edge of G lies in an end-clique of G. 

Condition E is not necessary for a gpg (for example, the cycle on 4 vertices) but it is 
sufficient. 

Lemma 1 Condition E implies Condition 1. 

Proof: Let e be the collection of all end-cliques of G. / / 
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Conditions C and E are independent. The graph G* in Figure 2 satisfies E but not 
C. The cycle on 4 vertices satisfies C but not E. The path on 4 vertices satisfies neither 
condition while the path on 3 vertices satisfies both. 

One can ask whether there are settings in which Condition T is sufficient for a 
graph to be a gpg. In the next section we examine the situation where the triangle 
condition is not sufficient. The concluding section derives our main result, that the 
triangle condition is sufficient in chordal graphs. 

2. A NECESSARY SUBGRAPH FOR 

A GENERAL PARTITION GRAPH 

WHICH SATISFY CONDITION T BUT ARE NOT 

A computer search, in which Condition T is checked against Condition I, has 
found all of the connected graphs on ten or fewer vertices which satisfy the triangle 
condition but are not gpg's [1]. The smallest example, denoted by GT, has nine vertices 
and is shown in Figure lea). There are nine more such graphs on ten vertices, shown in 
Figure 1 (b)-(j). 

Several of the lO-vertex graphs in Figure 1 have a simple relation to the 9-vertex 
graph GT at the top of the figure. For example, introducing the new vertex 0 with the 
same open neighborhood as vertex 7 of GT yields graph (d). Graph (e) is obtained 
similarly, but with closed neighborhoods, N[O] = N[7]. Graphs (f) and (g) are obtained 
from GT by using vertex 1 instead of 7. We also note that N(O) V(GT ) in graph (j). 
These examples suggest methods to generate an infinite class of non-gpg' s which satisfy 
Condition T. If G is such a graph, take any vertex U E V(G), introduce a new vertex v ~ 
V(G) and join edges so that N(u) = N(v) for the open neighborhoods, or N[u] = N[v] for 
the closed neighborhoods. Alternatively, introduce a new vertex u that is joined to every 
vertex of V(G). The resulting graphs are still a non-gpg satisfying Condition T, as follows 
from parts (a) and (b) of 

Lemma 2 Let G be a graph and u and v be vertices so that either N(u) = N(v), 
N[u] N[v], or N[u] = V(G). Then 

(a) G satisfies Condition I if and only if G - u satisfies Condition I. 

(b) G satisfies Condition T if and only if G - u satisfies Condition T. 

(c) G satisfies Condition C if and only if G - u satisfies Condition C. 

(d) G satisfies Condition E if and only if G u satisfies Condition E. 

Proof: Statement (a) is Theorem 4.3 in [7]. Statements (b), (c) and (d) are routinely 
justified by considering cases depending on how the particular maximal independent set 
intersects the appropriate vertex neighborhood. / / 
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Figure 1. The ten graphs on ten or fewer vertices which satisfy 
Condition T but are not general partition graphs. 
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Every graph in Figure 1 has the graph G* shown in Figure 2 as an induced 
sub graph. (Note that G* is a gpg satisfying Condition T but not Condition C.). 

/\ 
~G* 

Figure 2. G*, a required induced subgraph for graphs that satisfy 
Condition T but are not general partition graphs 

Theorem 1 If G satisfies Condition T but is not a gpg then G* is an induced subgraph of 
G. 

Proof: Since Condition I characterizes a gpg, for any clique cover e of the edges of G, 

there is a maximal independent set M and clique C E e with no member of Min C. Thus 

C lies in G - M. Clique C is not K2 because of Condition T. Choose mi E M so that 

I N(ml) n V(C)I is maximal. By Condition T, this maximum is at least two. Since Cis 

maximal, there is a vertex in C which is not adjacent to mI. For any edge xy where x E 

V(C) \ N(ml) and y E V(C) n N(ml), there is a vertex m2 E M adjacent to both x andy. 

Choose m2 so that IN(ml) n N(m2) n V(C)I is maximal. Since IN(ml) n V(C)I is 

maximal, there is a vertex a E V(C) n (N(ml) \ N(m2))' Let bE V(C) n (N(m2) \ N(ml))' 

There is a vertex m3 E M adjacent to both a and b and since IN(ml) nN(m2) n V(C) I is 
maximal, there must be a vertex c E N(ml) n N(m2) n V(C) which is not adjacent to m3. 

The vertices a, b, c, m}, m2, and m3 induce G* in G. II 

3. A CHORDAL GRAPH SATISFYING CONDITION T IS A GPG. 

A connected chordal graph can be defined recursively using the notion of 
simplicial vertices [5]. Equivalently, a chordal graph is a connected graph in which every 
cycle on more than three vertices has a chord. 

Theorem 2 For a chordal graph G, Conditions I, T and E are equivalent. 
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Proof: It follows directly from the definitions that all gpg's satisfy Condition T [2], and 
from Lemma 1 that Condition E implies Condition 1. It only remains to show Condition 
T implies Condition E. 

We shall use the following notation for edge uv in a connected chordal graph G. 

euv the set of cliques in G that contain edge uv. 

Tuv the union of vertex sets of all cliques in euv' 

§'uv = the set of cliques in G that contain vertices in both Tuv and its complement. 

Em = the set of edges uv in G that lie in no end-clique of G and for which f3uv is minimal. 

F C = the set of vertices from Tuv that lie in clique C from f?uv. 

We call Fc thejoot of C in T UV' 

Let uv be an edge in Em and x any vertex in Tuv' We show that x lies in a clique from f?uv' 
If not, then x belongs to two cliques C] and C2 from euv' Lety be a vertex in V(C])\V(C.z}. 

All vertices of any clique C containing edge xy must lie in Tuv otherwise C belongs to f?uv' 
Moreover C contains uv. Hence f3xy is a subset of euv' Then xy lies in no end-clique of G 
but also lies in fewer cliques than uv since xy is not in C 2. This contradicts our definition 
ofuv. 

Thus we can choose cliques C], C2J ... from §'uv with distinct feet FCI J Fc2, ... whose 

union equals Tuv and we can assume that each Fe k is maximal with respect to set inclusion 

over all feet generated by cliques in f?uv' For distinct i and j let x E V(CJ I T uv and y E 

V(C)I Tuv. We show that there is a vertex z in FcjlFcinot adjacent to x. Suppose not, 
then there is a vertex w' in Fc ilFcj that is not adjacent to some vertex z' in FCjlFc i 

otherwise x, w', and FCj lie in a clique from §'uv whose foot properly contains Fcj. This 
means one of the 4-cycles x w'u z' or x w'v z' is chordless contradicting the definition of 
G. Similarly we have a vertex w in F C i IF C j that is not adj acent to y. Suppose now that x 
and yare adjacent. Then wand z are not adjacent otherwise we have the chordless 4-
cycle xwzy. By considering the 5-cycle xwuzy, we see that u is adjacent to both x andy. 
Hence v is adjacent to neither x nor y and cycle xwvzy is chordless. We conclude that x 
and yare not adjacent. 

Choose Xi E V(CJI Tuvand extend {x], X2, ... } to a maximal independent set Min G. Edge 

uv lies in G M yet forms no triangle with a vertex in M. Thus condition T fails. / / 

Corollary 1 The only tree which is a gpg is the star K1,n-
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The conditions given in Theorem 2 are equivalent in a more general class of 
graphs. 

Theorem 3 Let G be any connected triangle-free graph with edges elo e2, ... , eq. On 

each edge ej construct any connected chordal graph Gi containing edge ei so that for i * j, 
Gi and Gj have no vertices in common other than the vertex which may be common to ei 

and ej. Let H denote the graph so constructed. If H * Km, n for m, n ~ 2, then conditions 
I, T, and E are equivalent for H. 

Comment: Notice that by construction, each edge of H lies in exactly one sub graph Gi 

for some i and a Gi may consist only of ei' Also notice that the graph Km, n, m, n ~ 2, is 
a gpg which satisfies Condition T but has no edge in an end-clique. 

Proof: Only T implies E needs to be checked; as before, we show the contrapositive. In 
all that follows we let uv be an edge in H that lies in no end-clique of H, and if uv lies in 
the chordal graph G i then the edge e i is denoted by xy. We consider three cases: (l) e i is 
all of G, (2) ei is a pendant edge in G, but not all of G; or, (3) the degrees of both x and y 
are at least two in G. 

Case 1. If G j H then Theorem 2 applies directly to give the result. 

Case 2. Let deg(x) = 1 and deg(y) ~ 2 in G, and suppose thatyw is the edge ej in G with 
w :j: x. Let~· be the subgraph of H consisting of Gi along with edge ej. Then is chordal 
and uv belongs to no end-clique in Hi' (It could be in an end-clique in subgraph Gi .) From 
Theorem 2 we know that Hi contains an edge e and a maximal independent set Mi which 
lead to a violation of Condition T in Hi' If Mi is extended to a maximal independent set in 
H, the violation remains in H. 

Case 3. Assume deg(x) ~ 2 and deg(y) ~ 2 in G. Choose vertices w andz, neither of 
which is x or y, so that wx is edge ej and yz is edge ek in G. Let Hi be the subgraph of H 
consisting of Gi along with ej and ek. Again Hi is chordal and uv is not in an end-clique in 
Hi' Applying Theorem 2, let Mt be a maximal independent set in Hi creating a violation 
of Condition T for some edge of Hi' 

Case 3.1. wand z are not adjacent. 
If wand z are not adjacent we may extend Mi to a maximal independent set M for 

H which leads to a violation of Condition T in H for that same edge. 

Case 3.2. wand z are adjacent. 
In each of the following three subcases we will be able to replace ej and/or ek by 

other edges xg and yf where neither f nor g is in V( Gi) and they are non-adjacent in H. 
Then we can simply repeat the argument given in Case 3.1. 
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Since G is triangle-free, the subgraph ofG induced by {x,y, z, w} is isomorphic 
to K2,2. Let G' = Km,n + K n , m, n ~ 2, be a maximal complete bipartite induced 
subgraph of G which contains e i. Label the vertices of K m as r1, ..• , r m (where one of 
them is x and m ~ 2) and the vertices of Kn as SJ,oo., Sn (where one of them is y and n ~ 2). 

Since H 7:- Km,m there is a vertex hE V(H) not in Km,n which is adjacent (wlog) to rl. If h 

E V(G), h is not adjacent to some rj by the maximality of Km,n in G. If hE V(G), h can be 
adjacent only to rl in Km because h is a vertex in a chordal graph built on an edge of G. 

So we can assume that h is not adjacent to rj' rj+boo" r m, for somej > I and find a 
maximal independent set Min H which contains h, rj' •.. , r m' Then edge r1S1 lies in H - M 
and in order not to violate Condition T, there must be a vertex h' in M (necessarily not in 
V(G)) so that r1h's] is a triangle in H. Arguing as above, h' is not adjacent to any of the 
vertices r2,"" rm or S2,.'" Sn- We consider three subcases. 

Subcase (a). r]::/: x and S] ::/: y. 

Construct a maximal independent set M which includes h', r2, ... , r m' Edge r]y lies 
in H - M so Condition T requires a vertexf E V(H) such that r]yjis a triangle in H. 

Similarly extending h', S2. ... , Sn to a maximal independent set generates another vertex g 
with s]xg a triangle in H Furthermore,j and g are not adjacent in Hbecause they belong 
to chordal graphs built on different edges of G. 

N ow let H/ be the subgraph consisting of Gi along with edges xg and yf Since j 
and g are not adjacent we are back to Case 3.1. 

Subcase (b). r1 = x and s] ::/: y. 

Let Hi'be Gi along with edges xh' andyr2. Now h'lies in the chordal graph built 
on edge r1S1' Hence h' is not adjacent to r2 and we are again back to Case 3.1. 

Construct a maximal independent set M containing h', r], ... , I'm' Edge xS2lies in 
H - M so by Condition T there is a vertexffor whichfts2 is a triangle in H. Similarly, 

extending h', S2,.'" Sn to a maximal independent set generates a triangle gyr2. Letting H/ 
be Gi along with edges xf and yg we again return to Case 3.1. / / 

Corollary 2 For any triangle-free graph G other than Km, n for m, n ~ 2, conditions I, T, 
and E are equivalent for G. 

All graphs in Figure 1 are non-planar, and Condition T is sufficient for any planar 
graph H in Theorem 3 to be a gpg. This suggests the following. 
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Open Question: Is every planar graph which satisfies Condition T a gpg? 
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