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Abstract: A graph is m.JliJ-4:':olfmrahlle if its vertices can be coloured with m colours 

such that the maximum degree of the subgraph induced on vertices receiving 

the same colour is at most k. The k-defective chromatic number Xk(G) of a 

graph G is the least positive integer m for which G is (m,k)-colourable. In this 

paper we obtain bounds for Xl(G) + Xl (0) and Xl(G) . Xl (G) when G ranges over the 

class of all triangle-free graphs of order p. 

1. Introduction 

All graphs considered in this paper are undirected, finite, loop less and have no 

multiple edges. For the most part we follow the notation of Chartrand and Lesniak [5]. 

For a graph G, we denote the vertex set and the edge set of G by V(G) and E(G) 

respectively. The complement of a graph G is denoted by G and the size of G is 

denoted by s(G). For a positive integer n, Pn is a path of order nand Cn is a cycle of 

order n. For a subset U ofV(G), the subgraph of G induced on U is denoted by 

G[U] and the subgraph induced on V(G) - U is denoted by G - U. 

Let G be a graph and X a subset ofV(G). For a vertex u of G, let N(u) denote 

the set of all neighbours of u in G and let Nx(u) = N(u) n X. Let N[u] denote the 

dosed neighbourhood of u, that is, N(u) u {u}. A graph G is said to have the 

property tP3 if the maximum number of vertex disjoint paths of order 3 in G is t. G is 

said to have the property D(l,s) if G has a C4 and s vertex disjoint paths of order 3 

each, such that the vertex set of the C4 is disjoint from the vertices of the s paths of 
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order 3. 

Let F be a graph. A graph G is said to be F-free, if it does not contain F as 

an induced subgraph. A graph is said to be triangle-free if it is K3-free. The 

generalized Ramsey number R(K(l,m),K(1,n)) is the least positive integer p such that 

for every graph G of order p either G contains K(l,m) as a sub graph or G contains 

K(1,n) as a subgraph. We extend this definition to the class of triangle-free graphs. For 

positive integers m and n, we define R'(K(1,m),K(l,n)) as the least positive integer p 

such that if G is a triangle-free graph of order p either G contains K(l,m) as a subgraph 

or G contains K(1,n) as a subgraph. It is easy to see that 

R'(K(l,m),K(l,n)) ~ R(K(1,m),K(l,n)) = R(K(l,n),K(1,m)). 

A subset U ofV(G) is said to be k-independent if the maximum degree ofG[U] 

is at most k and U is said to be maximal k-independent ifU is k-independent and U u 

{x} is not a k-independent set for any x E V(G) - U. The size of a largest k­

independent set of G is called the k-independence number of G and is denoted by 

Uk(G). 

A graph is (m,k)-colourable if its vertices can be coloured with m colours 

such that the subgraph induced on vertices receiving the same colour is k­

independent. Note that any (m,k)-colouring of a graph G partitions the vertex set 

of G into m subsets VI ,V2, ... , Vm such that every Vi is k-independent. These 

sets Vi are sometimes referred to as the colour classes. The k-defective chromatic 

number 'Xk(G) of G is the smallest positive integer m for which G is (m,k)­

colourable. Note that 'Xo (G) is the usual chromatic number. Clearly 'Xk (G) ~ 

I k ~ Il, where p is the order ofG. 

These concepts have been studied by several authors. Hopkins and Staton [11] 

refer to a k -independent set as a k -small set. Maddox [15,16] and Andrews and 

Jacobson [3] refer to the same as a k-dependent set. The k-defective chromatic number 

has been investigated by Frick [7]; Frick and Henning [8]; Maddox [15,16]; Hopkins 

and Staton [11] under the name k-partition number; Andrews and Jacobson [ 3] under 

the name k-chromatic number. 
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The Nordhaus-Gaddum (N-G) problem [18] associated with the parameter Xk 

is to find sharp bounds for Xk( G) + Xk(G) and Xk( G). Xk( G) as G ranges over the 

class of all graphs of order p. Maddox [15,16 ] investigated the N-G problem for Xk and 

proved that if either G or G is triangle-free, then Xk(G) + Xk(G):S; 51- p-l where p 
13k+4 

is the order of G. When k = 1 he improved the above bound to 61 % l. Achuthan et al. 

- 2p+4 
proved that Xl(G) + XI( G) :s; -- for any graph G of order p. The k-defective 

3 

chromatic number of a graph is related to the point partition number Pk(G) defined by 

Lick and White [13]. It is well known that Xk(G) ;::: Pk(G). Lick and White [13] 

established that 

Pk(G)+Pk(G):S; p-l+2 
k+l 

for a graph G of order p. Maddox [15] suggested the following conjecture for k ;::: 1 : 

For a graph G of order p, 

Xk(G) + Xk(G):S; I p -11 + 2. 
Ik+l 

In [1] we disproved Maddox's conjecture for all k;::: 1 by constructing a graph G of 

orderp= l(mod (k+l)) with Xk(G) + Xk(G)=,P-
11 +3. ThesegraphshaveP4 as 

Ik+l 

an induced sub graph and hence Maddox's conjecture can be restated when Granges 

over the subclass of P 4-free graphs of order p. This restated conjecture is proved for the 

subclass of P4-free graphs in [1,19] for k = 1,2. Further, Achuthan et al. [1] established 

the following weak upper bound: 

For a graph G of order p, 

(G) (G) 2 p + 2 k + 4 
Xk + Xk s:; --=--k-+-2--

Furthermore, they established the following sharp lower bound for the product: 

For any graph G of order p, 

Xk(G),Xk(O);::: I-p-l 
I R-l 
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where R = R(K( 1 ,k+ 1 ),K( 1 ,k+ 1)). In the same paper they settled the associated 

realizability problem when k = 1 and G ranges over the subclass ofP 4-free graphs. 

In this paper we will solve the N-G problem for the I-defective 

chromatic number over the class of triangle-free graphs. In Section 2 we state 

some results concerning the I-defective chromatic number that will be used 

repeatedly. In Section 3, we prove that if G or G is a triangle-free graph of order p 

~ 3 then Xr(G) + X/G)~rp~ll + 2 and that this bound is sharp. This proves 

Maddox's conjecture for k = lover the subclass of triangle-free graphs of order p. 

Furthermore, we establish a sharp lower bound for Xk(G). Xk(G) as G ranges over the 

class of triangle-free graphs of order p. 

To prove our results we need to investigate the problem of determining the 

smallest order of a triangle-free graph with respect to the parameter Xk(G). Let f(m,k) 

be the smallest order of a triangle-free graph G such that Xk(G) = m. The 

determination of f(m,O) is still an open problem (see Toft [21], Problem 29). However 

partial results concerning this problem have been obtained by several authors (see 

Mycielski [17], Chvatal [6], Avis [4], Hanson and MacGillivray [10], Grinstead, 

Katinsky and Van Stone [9], Jensen and Royle [12]). 

For notational convenience the path Ur,U2, ... ,Un and the cycle Ur,U2, ... ,Un,Ur will be 

denoted by UrU2 ... Un and UlU2 ... UnUl respectively. In all the figures a dotted line between 

a vertex u and a set A means that aU the edges between u and A belong to the 

complement. 

2. Some results concerning the 1-defective chromatic number 

The following theorem has been obtained independently by Lovasz[I4] and 

Hopkins and Staton [11]. 

Theorem 1: Let G be a graph with maximum degree Ll. Then 

o 

The following theorems have been established by Simanihuruk et aI. [20]. 
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Theorem 2: The smallest order of a triangle-free graph G such that ')(l(G) = 3 is 9, that 

is, f(3,1) = 9. o 

Theorem 3: Let G be a triangle-free graph of order 9. Then Xl(G) = 3 if and only if G 

is one of the graphs shown in Figure 1. o 

A B A B 

G 
1 

(a) (b) 

A B 

w 
1 

W
2 

w 
3 

W4 

G3 

(c) (d) 

Figure 1 

Theorem 4: For m ~ 4, the smallest order of a triangle-free graph G with Xl(G) = m is 

at least m2 + 1, that is, f(m, 1) ~ m2 + 1. 0 

3. Defective colourings of triangle-free graphs and the N-G problem: 

In this section we establish Maddox's [15] conjecture that 

when G ranges over the class of triangle-free graphs of order p. The proof is very 

technical and makes use of the consequences of the properties tP3 and D(1,t-l) in a 

triangle-free graph. These consequences are established in a series of lemmas. The 

assumptions made in the Lemmas 2 to 4 are closely related. We prove Maddox's 

263 



conjecture for triangle-free graphs in Theorem 5. Furthermore, we establish a sharp 

lower bound for the product of Xk(G) and Xk( G) when G ranges over the class of 

triangle-free graphs. 

Lemma 1: Let G be a triangle-free graph of order p :2: 7. If al (G) :2: P - 3 then 

Xl (G)::;; 2. 

Proof: Firstly if al (G) :2: P - 2 then clearly Xl (G) ::;; 2. Now assume that al (G) = p - 3. 

Let U be a I-independent set of cardinality p-3. If G-U has no P3 then Xl (G) ::;; 

2. Therefore we assume that G-U contains a P3. Since G is triangle-free it 

follows that G - U is isomorphic to P3. Let xyz be the P3 in G-U. We define 

sets A, B, and C as follows: A = NU(x) u NU(z), B = NU(Y) and C = U-(A u B). 

Now assign colour 1 to the elements of {x,z} u B u C and colour 2 to those of 

{y} u A. Therefore Xl (G) ::;; 2. Hence the lemma. o 

Lemma 2 : Let G be a triangle-free graph of order p with property tP3 

and without property D(1,t-I). Let QI,Q2,oo.,Qt be a collection of vertex 

disjoint paths of order 3 each. Let V(Qi) = {Ui,Vi,Wi} where Vi is the middle vertex ofQi, 

t 

1 ::;; i ::;; t; M = UV(QJ and F = V(G) - M. The following hold: 
i=l 

(i) If an end vertex of Qi is adjacent to a vertex of degree one in G[F] then 

Vi has no neighbours in F. 

(ii) The vertices Uj and Wi do not have a common neighbour in F. 

Proof: Since G has property tP3 , it follows that F is I-independent. Now (i) and (ii) 

follow from the assumptions that G is triangle-free, G has property tP3 and does not 

have property D(l,t-l). o 



Lemma 3 : Let G be a Inaln2:Le-Iree graph of order p satisfying the hypothesis ofLernma 

2. In addition, the paths Ql,Q2, ... ,Qt are chosen such that the number of edges in G[F] is 

as as possible. Let A = {x : x E F and the degree of x in G[F] is I} and B = F - A. 

The following hold . 

(i) The end vertices Ui and Wi of Qi have at most one neighbour each in B, 

for all i, 1 ::;; i ::;; t; 

(ii) Ifal(G)::;; p - 3t + 1, then t::;; 1. 

Proof: note that F is l-independent and thus B is O-independent. We will 

present the proof of (i) for i = 1. The proof is identical for i ~ 2. 

Recall that the paths Ql,Q2, ... ,Qt have been chosen such that the number of 

edges in G - M = G[F] is as large as possible. Assume that UI has at least two 

neighbours, say x and y in B. Clearly VI and WI are not adjacent to any 

element of F, for otherwise G would have t+I vertex disjoint P3'S, a 

contradiction to the assumption that G has property tP3. Now XUlY, Q2, ... ,Qt form a 

set of t vertex disjoint paths of order 3. Thus for F' = (F - {x,y}) U {Vl,Wl}, note that 

I E(G[F'D I > I E(G[FD I, a contradiction to the choice of the t paths Ql,Q2, ... ,Qt. Thus 

UI has at most one neighbour in B. Similarly it can be shown that WI has at most one 

neighbour in B. This proves (i). 

To prove (ii), let al(G) ::;; p - 3t + l. Now suppose that UI and WI are not 

adjacent to any vertex of A. Then it follows from (ii) of Lemma 2 and part (i) 

above, that F U {UI,Wr} is a I-independent set of cardinality p - 3t + 2, a contradiction. 

Thus UI or WI is adjacent to a vertex of A and hence, by (i) of Lemma 2, VI is not 

adjacent to any vertex ofF. 1ft ~ 2, a similar argument will prove that V2 is not adjacent 

to any vertex ofF. But then F U {VI,V2} is a I-independent set of cardinality p - 3t + 2. 

This contradiction proves (ii). o 

Lemma 4: Let G be a triangle-free graph of order p satisfying the hypothesis of 

Lemma 3. Furthermore, suppose that every sub graph of order at most 9, of G is (2,1)­

colourable. Also let t = 2 or 4 and XI(G) = 3 or 4 according as t = 2 or 4. Then 



(i) Ul(G) = P - 3t+2, 

(ii) for 1 ~ i ~ t, either Uj or Wi has no neighbours in B, 

(iii) there is an i, 1 ~ i ~ t, such that the end vertices Uj and Wi of Qi have no 

neighbours in A and, for every j -.::j:. i, every vertex of Qj is adjacent to 

atmost one vertex of Qi, 

(iv) for every i, 1 ~ i ~ t, the vertices Uj and Wi have no neighbours in A. 

Proof: It follows from (ii) of Lemma 3 that Ul(G) ~ P - 3t + 2. 

If possible let Ul(G) ~ P - 3t+3 and S be a 1-independent set of G with 

I S 1= Ul(G). If t = 2 then Ul(G) ~ P - 3. By Lemma 1 it follows that Xl(G) ~ 2, a 

contradiction to our assumption. On the other hand, if t 4 then G - S is a graph of 

order at most 9. By our assumption Xl(G-S) ~ 2. Thus Xl(G) ~ Xl(G-S) + Xl(G[S]) ~ 

3. Again this is a contradiction to our assumption that Xl(G) = 4 if t = 4. Thus it 

follows that al(G) = p - 3t + 2 and proves (i). 

To prove (ii) we suppose that for some i, 1 ~ i ~ t, both the vertices Ui and Wi 

have a neighbour in B. Let x be the neighbour of Uj and y be the neighbour of Wi. 

Clearly x -.::j:. y. Now we can easily construct paths QLQ2, ... ,Qi such that 

t 

I E(G-U V(QD) I > I E(G[F]) I a contradiction to the choice of Ql,Q2, ... ,Qt. This 
i=l 

proves (ii). 

To prove the first part of (iii) assume that for each i, 1 ~ i ~ t, an end vertex of 

Qi has a neighbour in A. Without any loss of generality assume that Uj has a neighbour, 

say ai, in A, for each i, 1 ~ i ~ t. Note that ai may be equal to aj for some i -.::j:. j. Let bi 

be the neighbour of ai in A. If for some i, Wi has a neighbour in F - {bd then G 

would have t + 1 vertex disjoint P3'S, a contradiction to the maximality of t. Thus it 

follows that Wi has no neighbours in F - {bi }, for 1 ~ i ~ t. 

Now we prove the following claim. 
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Claim: For each i, 1 sis t, wi is adjacent to bi' 

Suppose not. Without any loss of generality we assume that wI is not adjacent to bl. 

Now from (i) of Lemma 2 it follows that F U {VI,wt} is I-independent. From part 

0) of this lemma, it follows that F u {vt,wt} is a maximal I-independent set. Let 

1= F U {vI,wt} (see Figure 2.a). Consider the centre vertex V2 of Q2 . Since v2 is 

not adjacent to any vertex of F and I is maximal I-independent it follows that v2 is 

adjacent to one of vI and wI. Since G is triangle- free it follows that v2 is adjacent to 

exactly one of v 1 and wI. 

(a) (b) 

U2 v2 w2 

Qt 

Ul 1 
.~ 

(e) 

Figure 2 
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Firstly let v2 be adjacent to wI (see Figure 2.b). Since G is triangle-free and does 

not possess the property D(1,t-l) it follows that the vertex u2 is not adjacent to either of 

wI and vI. For the same reason we can conclude that W2 is not adjacent to either of vI 

and WI. Recall that a2 is the neighbour ofu2 in A. Now ifw2 is not adjacent to b2 then 

I U {w2} would form a I-independent set contradicting the maximality of I. Therefore 

w2 is adjacent to b2. Note that the edge (a2,b2) may be the same as the edge (al>bI) 

(see Figure 2.c). Now consider the set l' = I U {u2,w2} - {a2} of size p - 3t + 3. It is 

easy to see that l' is I-independent contradicting the fact that al (G) = p - 3t + 2. Hence 

the claim is proved in case v2 is adjacent to wI. A similar contradiction can be arrived 

at, if we assume that V2 is adjacent to VI. This proves the claim. 

To complete the proof of the first part of (iii) we will consider the cases t = 4 

and t = 2 separately and arrive at a contradiction in each case. 

Firstly let t = 4. Consider the set F U {VI,V2,V3,V4}. Recall that Vi is the 

central vertex of the path Qi and that Vi has no neighbours in F, for 1 ::;; i ::;; 4. Now 

I F I = p - 12 and al(G) = p - 10. Hence for every subset S of size 3 of {VI,V2,V3,V4}, 

G[S] contains a P3. It can easily be seen that G[{VI,V2,V3,V4}] is isomorphic to a cycle, 

say C = VIV2V3V4VI. Now if the edge (al,b 1) ::f. the edge (a2,b2) then G has 5 vertex 

disjoint P3'S namely Ula1bl, WIVIV2, U2a2b2, Q3, Q4, contradicting the property tP3 i.e. 

4P3. Thus (al,b l) = (a2,b2). Similarly it can be shown that (a2,b2) = (a3,b3) = (a4,b4). Let 

4 

W = UV(Qi)U {al,b1}. Note that Iwi = 14. From Theorem 4, it follows that 
i=l 

Xl(G[W]) ::;; 3. It is easy to show that there are no edges between Wand F - {al,br}. 

Thus Xl(G) = Xl(G[W]) and hence Xl(G) ::::; 3, a contradiction to our assumption that 

Xl(G) = 4. 

Next let t = 2. We will first assume that (al,b 1) ::f. (a2,b2) (see Figure 3.a). 
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Figure 3 

Consider the cycle C = UIVIW1b1alUl. If there is an edge between V(C) and 

V(G) - V(C), then there are three vertex disjoint P3'S, a contradiction to the property tP3 

with t = 2. Thus there are no edges between V(C) and V(G) - V(C). Similarly there 

are no edges between the vertices of the cycle U2v2w2b2a2u2 and the rest of the vertices 

in G. Thus it follows that every connected component of G is either a Cs or a K2 or a 

K1. Thus ')(l(G) = 2, a contradiction to our assumption that Xl(G) = 3. 

Now assume that (aI,bI) = (a2,b2) (see Figure 3.b). Since G is triangle-free, 

(wJ,w2), (uJ,u2), (u},wI), and (u2,w2) are not edges ofG. Clearly there are no edges 

between {uJ,wI,u2,w2} and F - {aI,bl}. Thus {uJ,wI,u2,w2} u F - {aI,bd is a 1-

independent set. Now we assign colour I to {u},wI,u2,w2} u F - {a},bJ} and colour 2 

to {v},v2,aJ,bJ}. Thus Xl (G) ~ 2, a contradiction. This completes the proof of the 

first part of (iii). 

To prove the second part of (iii), we assume without any loss of generality that 

UI and WI of QI have no neighbours in A. Now using part (ii) of Lemma 2 it follows 

that F U {UI,Wt} is I-independent. Define J = F U {UI,Wt}. Since UI(G) = P - 3t + 2 it 

follows that J is a maximal I-independent set. Note that by (ii), either UI or WI has no 

neighbours in B. Without loss of generality we assume that WI has no neighbours in B. 
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Also note that by (i) of Lemma 3, UI has at most one neighbour in B. We now consider 

the two cases separately to establish the second part of (iii). 

Case 1: u I has no neighbours in B. 

Note that B U {ul,wd is O-independent. Since J = F U {UI,Wt} is a maximal 1-

independent set, it follows that for any vertex z of Qi, for i ::::: 2, either z has a neighbour 

in A or has two neighbours in B U {uI,wd. Suppose z is a vertex ofQi, i ::::: 2, such that 

z is adjacent to UI and WI (see Figure4). 

J 

A~ 
(:\ B Q'm WW 

Figu.re 4 

Let z' be a neighbour of z in Qi. Since G is triangle-free, z' is not adjacent to 

ulor Wi. From the maximality of J, either z' is adjacent to a vertex of A or is adjacent 

to at least two vertices ofB. In either case G has the property D(l,t-l), a contradiction 

to our assumption. This proves (iii) in Case 1. 

Case 2: Ul has a neighbour, say x, in B. 

Note that {wI} U B - {x} is O-independent. Again since J = F u{uI,wd is a 

maximal I-independent set, it follows that for any vertex z of Qi, i ::::: 2, either z has a 

neighbour in A U{UI,X} or it has two neighbours in {Wl} U B - {x}. 

Suppose z is a vertex of Qi, i ::::: 2, such that z is adjacent to UI and WI (see Figure 

5). Let z' be a neighbour ofz in Qi. 



Qi 

J 
B Qt 

VI 

t Ul [!J A 

Figure 5 

Firstly note that z' is not adjacent to Ul or WI. From the maximality of J we have one of 

the following : 

(a) z' is adjacent to a vertex of A; 

(b) z' is adjacent to at least two vertices ofB - {x}; 

(c) z' is adjacent to x. 

If (a) or (b) is true then G has the property D(l,t-l), a contradiction to our assumption. 

Thus z' is adjacent to x. 

Now suppose that Z is an end vertex of Qi, say Z = Ui. Then z' = Vi. The cycle 

UiWIVIUlUi, the paths x ViWi and Qu, a * 1 and i imply that G has the property D(l,t-l), a 

contradiction to our assumption. Thus it follows that z is the centre vertex Vi of Qi (see 

Figure 6). 

Z=Vi 

11\1---6---------..... Z' = Wi 

Affi-. : -
- . -

B 

Figure 6 



Now consider the vertex Uj. By part (ii), Uj has no neighbours in B. Since G is 

triangle-free Uj is not adjacent to either UI or WI. The maximality of J implies that Uj is 

adjacent to a vertex of A. Again it can be shown that G has the property D(I,t-I), a 

contradiction. This completes the proof of (iii) in Case 2. 

We now present the proof of (iv). Since J is I-independent, dearly (iv) is true 

for i = 1. We will prove (iv) for i = 2. The proof for i ~ 3 is identical. 

Suppose U2 is adjacent to a vertex al in A. Let bl be the neighbour of al in A 

(see Figure 7.a). From (i) of Lemma 2, it follows that V2 is not adjacent to any vertex 

of Au B. Since J = {UI,Wt} U F is maximal I-independent, the vertex V2 has to be 

adjacent to at least one of the vertices UI and WI. Combining this with (iii) of this 

lemma, we conclude that the vertex V2 is adjacent to exactly one vertex of {ul,wd. 

Without any loss of generality assume that V2 is adjacent to UI (see Figure 7.b). Now 

consider the set J u {V2}. It has p - 3t + 3 vertices. Since UI(G) = P - 3t + 2 and V2 is 

not adjacent to any vertex of F (by Lemma 2) it follows that Ul is adjacent to a vertex, 

say d, ofB (see Figure 7.c). 

(a) (b) 

U2 V2 W2 

Qt 

i 
(c) (d) 

Figure 7 



Now if (w2,wI) E E(G) then G has (t+l) P3'S namely w2wIVI, V2uId, u2albl and the 

t-2 paths Q3, ... ,Qt. This is a contradiction to the assumption that G has the property tP3 . 

Thus w2 is not adjacent to wI. Also since G is triangle-free, w2 is not adjacent to u 1. 

Using (ii) of Lemma 2 and the fact that t is the largest number of vertex disjoint 3-

paths in G, we conclude that w2 has no neighbours in F - {bd. Now if w2 is 

not adjacent to bI> then J U {w2} forms a I-independent set contradicting part (i). 

Thus it follows that (w2,bI) E E(G) (see Figure 7.d). Consider the vertex u2 in 

Figure 7.d. Clearly u2 is not adjacent to wI, otherwise G has (t+I) P3's. 

Now J U {u2,w2} - {ad is a I-independent set of cardinality p - 3t + 3, a 

contradiction to the fact that al (G) = p - 3t + 2. This proves that u2 does not have any 

neighbours in A. Similarly it can be shown that w2 has no neighbours in A. 

This completes the proof of (iv) and hence Lemma 4. o 

Theorem 5 : Let G be a triangle-free graph of order p. Then 

Xl (G) + Xl (n) :s; I p ~ Il + 2. 

Moreover this bound is sharp for p ~ 3. 

Proof: Firstly let Xl (G) :s; 2. If Xl (G) = 1 then Xl (G) = I ~ l· Hence Xl (G) 

+ Xl (n) S I p ~ Il + 2. If Xl (G) = 2 then G has a path P of order 3. The 

vertices of the path P form a I-independent set in G and consequently Xl ( G ) 

:s; I p ~ 3l + 1 = I p ~ ll· Hence the required inequality. 

Henceforth we assume that Xl (G) ~ 3. From Theorems 2 and 4, it follows that 

p ~ 9. We prove Theorem 5 by induction on p. Let G be a triangle-free graph of order 

9. From Theorem 4 we have Xl (G) S 3. Thus Xl (G) = 3. Now by Theorem 3, G is 

isomorphic to one of the graphs Gi, 1 s i :s; 4, in Figure 1. It is easy to see that 
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uIw3u2wIuI and u3w4u4w2u3 form vertex disjoint C4's in Gi, for 1 ::;; i ::;; 3. Similarly 

the two 4-cycles uIw3u2wlui and u3w2u4zu3 are vertex disjoint in G4. Now the 

vertex sets of these C4's are I-independent in the graph G. Thus Xl (G) ::;; 3. Hence 

Xl (G) + Xl (G) ~ 6. This establishes the basis for induction. 

Now let p ~ 10. We make the induction hypothesis that the theorem is true for 

any triangle-free graph of order less than p and then prove it for any triangle-free graph 

of order p. 

Case 1 : There is a subset L of cardinality 9 of V(G) such that Xl (G[L]) ~ 3 . 

From Theorem 4 we have Xl (G[LD ~ 3. Thus Xl (G[L]) = 3. By 

Theorem 3, G[L] is isomorphic to one of the graphs shown in Figure 1. As mentioned 

before, each of these graphs has two vertex disjoint C4's. Recall that the vertex set of a 

C4 in G is a I-independent set in G. Now if X is the vertex set of the union of the two 

C4's in G[L] then Xl (G [X]) ~ 2. From Theorem 2 we have Xl (G[X]) ~ 2 since 

I V(G[X]) I 8. Now using these inequalities and the induction hypothesis we have 

XI (G) + Xl (G) ~ Xl (G-X) + Xl (G -X) + Xl (G[X]) + Xl (G [X]) 

~ I p ; 9l +2 + 2 + 2 = I p 2 Il + 2. 

This proves the theorem in this case. 

Case 2 : For every subset L of cardinality 9 ofV(G), Xl (G[LD ~ 2 

Since Xl (G);::: 3, G contains a P3. Let t be the largest number of vertex disjoint 

paths of order 3 in G, i.e. G has the property tP3. Let QI , Q2 , ... ,Qt be t vertex 

t 

disjoint paths of order 3 in G. Let M = UV(Qi) and V(QD ={ ui,vi,wi} such that ui and 
i=l 

Wi are the end vertices of Qi for 1 ~ i ~ 1. 

Note that V(G) - M is I-independent in G. Without any loss of generality we 

can assume that the paths Q 1 , Q2 , ... ,Qt have been chosen such that the number of 

edges in G-M is as large as possible. This means that ifRI, R2, ... ,Rt are vertex disjoint 



t 

paths of order 3 in Gand y= UV(Ri ) then IE(G-M)I ~ IE(G-Y)I. Note that the 
i=l 

subgraph G [V(Qi)] is for each i. Thus 

Xl ( G [MD ::;; t. (1) 

Since G - M is a graph of order p - 3t, we have Xl (G - M) ::;; I p ~ 3t l. Combining this 

with (1) we have 

Also 

since V(G) M is I-independent in G. 

8 

First let t ~ 8 and let N = UV(Qi). Note that I N I 24. By Theorem 4, 
i=l 

(3) 

f(5,1) ~ 26 and thus we have Xl (G[ND::;; 4. Since V(QD is a I-independent set in G 

for each i, 1 ::;; i::;; t, it follows that Xl ( G [ND ::;; 8. Now Xl (G)::;; Xl (G[ND + Xl (G-N) 

and Xl (G)::;; Xl [ND + Xl (G-N). Thus 

Xl (G) + Xl (G)::;; Xl (G[ND + Xl (G [ND + Xl (G-N) + Xl (G-N) 

::;; 12 + Xl (G-N) + Xl (G-N). 

By the induction hypothesis 

- I P- 25l Xl (G-N) + Xl (G-N)::;; ,-2- + 2. 

Therefore, 

Thus the theorem is proved when t ~ 8. 

Henceforth let us assume that t::;; 7. From (2) and (3) we have 



Xl (G) + Xl(G)S Xl (G[M])+ 1 + IP~tl (4) 

Note that t?: 2, for otherwise, Ul (G) ?: P - 3 and thus by Lemma 1, we have XI(G) s 2, 

contradicting our assumption that XI(G)?: 3. 

Subcase 2.1 : t is odd, 2 s t s 7. 

Firstly let t 3. Since every subgraph of order 9 can be coloured with 2 colours 

and I M I = 9, it follows that Xl (G[M]) = 2. Incorporating this in (4) we have 

'Xl (G) + XI (G)s2+ 1 + I P 2 3l = IP~ll+2. 

Hence the theorem is proved in this case when t 3. 

Finally let t = 5 or 7. Accordingly G[M] has order 15 or 21. From Theorems 2 

and 4 we have Xl (G[M]) s 3 or 4 according as t = 5 or 7. Incorporating this in (4) we 

have the required inequality. This proves the theorem in Subcase 2.1. 

Subcase 2.2: t is even, 2 s t s 6. 

We will first show that if G has the property D(l,t-I) then Xl (G) 

+ Xl (G) s 2 + I p ~ Il Assume that G has the property D(I,t-I). Let Rl, R2, 

... ,Rt -1 be t -1 vertex disj oint paths of order 3 and C a cycle of order 4 which is vertex 

disjoint from each Ri. Let Z = {QV(Ri)}U V(C). Clearly I z I = 3t + I. It is easy to 

see that Xl (G [Z]) stand Xl (G -Z) s I p - ~t Il. Therefore 

- IP-3t- 1l- IP-t-Il 
Xl ( G) s t + 1 2 - 1-2- . (5) 

We will now prove that Xl (G) s 3 or 4 or 5 according as t = 2 or 4 or 6. Note that 

G[Z] has order 7 or 13 or 19 according as t 2 or 4 or 6. From Theorems 2 and 4 we 

have Xl (G[Z]) s 2 or 3 or 4 according as t = 2 or 4 or 6. From the maximality of t, it 

follows that V(G) - Z is I-independent in G and hence Xl (G - Z) = 1. Thus Xl (G) s 

Xl (G[Z]) + Xl (G-Z) s 3 or 4 or 5 according as t = 2 or 4 or 6. Now combining this 
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inequality with (5) we have the required inequality. This proves the theorem when G 

has the property D(1,t-l). 

From now onwards we will assume that G does not possess the property 

D(1,t-l). We will first introduce the following notation. Let F = V(G) - M. Clearly F is 

I-independent in G. Now Let A = {x: x E F and the degree ofx in G[F] is 1} and 

B = F - A. Clearly B is O-independent in G. Recall that Ui and Wi are the end vertices 

and Vi is the centre vertex of the path Qi, 1 :::; i :::; t. We divide the rest of the proof into 

two more subcases based on the value of t. 

Subcase 2.2.1: t = 6. 

From (ii) of Lemma 3, it follows that aiG) ~ p-3t + 2 = P - 16. Thus 

there is a I-independent set R of size at least p - 16. Since f(4,1) ~ 17, the 

sub graph G-R is (3,1 )-colourable. Hence Xl (G) :::; 4. Combining this with inequality (2) 

we have Xl(G) + Xl(G):::; 4 + I p; 6l :::; I p; ll+ 2 , which proves the theorem in this 

subcase. 

Subcase 2.2.2 : t = 2 or 4. 

Recall that Xl (G) ~ 3 and G does not possess the property D(1,t-l). Note that 

G[M] is a graph of order 6 or 12 according as t = 2 or 4. Thus from Theorems 2 and 4 

it follows that Xl (G[M]):::; 2 or 3 according as t = 2 or 4. Incorporating this in 

inequality (3) we have Xl (G):::; 3 or 4 according as t = 2 or 4. Thus we have 

{

3' if t = 2, 
Xl (G) = 

3 or 4, if t = 4. 

Firstly let t = 4 and Xl (G) = 3. From (2), Xl «}):::; I P; 4l. Thus 

Xl(G)+Xl(G):::; 3+I P ;4l:::; 2+I
P;ll 

This proves the theorem when t = 4 and Xl (G) = 3. Henceforth we will assume that 
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{

3, ift = 2 

Xl (G) = 
4, ift = 4. 

(6) 

We will show that this will lead to a contradiction. By (ii) of Lemma 2 and (iii) of 

Lemma 4 we may assume that F U {Ul,Wt} is a I-independent set and that each vertex 

ofQ2 is adjacent to at most one vertex OfQl. Define J = F U {ul,wd. Note that J is 

maximal I-independent by (i) of Lemma 4. 

Now we arrive at the final contradiction. Using Lemma 4 we can assume 

without any loss of generality that, the vertices Wl,W2, ... ,Wt do not have any neighbours 

in F (see Figure 8.a). 

(a) (b) 

U2 "2 W2 
U2 "2 w2 

//. .... J 

Qt 

·El 
(c) (d) 

Figure 8 

If wI is not adjacent to u2 then F U {wI,u2,w2} is a I-independent set of 

cardinality p - 3t + 3, a contradiction to the fact <Xl(G) = P - 3t + 2. Similarly iful is not 
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adjacent to w2 then J U {w2} forms a I-independent set of cardinality p - 3t + 3, a 

contradiction. Thus (U2,WI) and (u},w2) are edges of G. This implies that (u2,uI) and 

are not of G Figure Consider the vertex u2 of Figure S.b. By 

Lemma 4, u2 is not adl.aceltlt to any vertex of A. Since J is maximal it follows that U2 is 

adl.:lCelrlt to a vertex ,say q, ofB S.c). 

Now consider the vertex v2 in S.C. Since G is triangle-free, v2 is adjacent 

to neither u 1 nor wI. Since J is a maximal set, v2 is adjacent to at least 

one vertex of Au B. Now if v2 has a neighbour in A, it is easy to show that G 

has the property (t + I)P3, a contradiction. Hence v2 does not have neighbours in A 

and thus it has a neighbour in B. If v2 has at least two neighbours in B, again we can 

show that G has the property (t + I)P3' Thus it follows that v2 has exactly one 

neighbour, say c2, in B. Since G is triangle-free, c2 -:f::. ci (see Figure 8.d». Clearly c2 is 

adjacent to ub otherwise J u {v2} is a I-independent set of cardinality p- 3t + 3, a 

contradiction to Ul(G) = P - 3t + 2. Now the paths Q'l = vIwIU2,Q3, ... ,Qt and the 

cycle C4 = c2uIw2v2c2, imply that G has the property D(l,t-I), a contradiction. 

This forms the final contradiction for the Subcase 2.2.2. 

Thus we have shown that Xl (G) + Xl (G) ::; I p ~ Il + 2. The graph 

G == K(l,p-I) shows that the above inequality is sharp for p ~ 3. This completes the 

proof of Theorem 5. 0 

We now determine the Ramsey number R'(K(I,k+l),K(l,k+l», for every 

positive integer k. Consider a triangle-free graph G of order R(K( 1 ,k+ 1 ),K( 1 ,k+ 1». By 

the definition of the generalized Ramsey number R(K( 1 ,k+ 1 ),K(1 ,k+ 1», it follows that 

either G or G contains K( 1 ,k+ 1). Thus we have the inequality 

R'(K(1,k+l),K(1,k+l»::; R(K(l,k+l),K(l,k+l» (7) 

The fonowing theorem is useful to determine the exact value ofR'(K(l,k+l),K(l,k+l». 
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Theorem 6 (Chartrand and Lesniak [5]): For a positive integer k, 

R(K(l,k+l),K(l,k+l)) = ' {
2k + 1 

2k +2, 

Lemma 5: For a positive integer k, 

R'(K(l,k+ l),K(l,k+ 1)) = ' {
2k + 1 

6, 

ifkisodd, 

otherwise. 

ifk :;t:2, 

ifk=2. 

o 

Proof: Consider the graph H == K(k,k). Clearly H is triangle-free, ~(H) = k and 

~ (If) =k -1. Thus R' (K(l ,k+ 1 ),K( 1 ,k+ 1)) ;?: 2k+ 1, for every positive integer k. 

Combining this with inequality (7), we have R'(K(1,k+l),K(l,k+l)) = 2k+l, whenever k 

is an odd positive integer. Similarly the graph C5 in conjunction with (7) implies that 

R'(K(1,3),K(l,3)) = 6. 

Henceforth we will assume that k ;?: 4 and is even. We now prove 

that R'(K(I,k+l),K(1,k+l)) s 2k+1. Consider a traingle-free graph G of order 2k+l 

such that ~(G) s k. We will show that G contains K(l,k+l) as a subgraph. 

Suppose not, that is, ~(G) s k. This implies that Gis k-regular. 

Let u be a vertex ofG, A = N(u) and B = V(G) - N[u]. Since G is triangle-free, 

A is O-independent. Thus every vertex of A has exactly k-l neighbours in B and hence 

the number of edges between A and B is k(k-l). Thus IE(G[BDI =~. Firstly assume 
2 

that ~(G[B])?:: 2 and let v E B such that v has at least two neighbours in B. This implies 

that a neighbour v' of v such that v' E A has at most k-2 neighbours in B, a 

contradiction. Thus ~(G[BD s 1. Since E(G[B]) = ~, it follows that G[B] is isomorphic 
2 

to a matching of size ~(;?: 2). Again this implies that every vertex of A has at most k 
2 2 

neighbours in B. This is a contradiction since ~ < k - 1. This contradiction implies that 
2 

G contains K(l,k+l) as a subgraph. Hence R'(K(1,k+l),K(1,k+l));?: 2k+l, for aU even 
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integers k ;:::: 4. The graph establishes the sharpness of the above inequality. This 

completes the proof of the lemma. 0 

For notational convenience we denote R'(K(1,k+1),K(1,k+1)), by R'. From the 

definition ofR' it foHows that for any positive t s R - 1, there exists a graph H of 

order t such that neither H nor If contains a vertex of at least k+ 1. We refer to 

such a 

can be 

as a and denote it by H[t]. The fonowing lemma is easy and 

the same lines as Lemma 6 in Achuthan et al. 

Lemma 6: Let G be a rflcmQle-ITee graph of order p with Xk(G) 1. Then 

Xk(G);:::: . 
R'-1 

o 

We now present a sharp lower bound for Xk(G),Xk(O), where G is a triangle­

free graph. 

Theorem 7: Let G be a triangle-free graph of order p. Then 

Xk (G). Xk (0) ;:::: I R'P- 11· 
Moreover this bound is sharp. 

Proof: Let Xk(G) = m and consider a partition of V(G) into m k-independent sets 

Vl,V2, ... ,Vrn such that IVil = max IViI. Since Xk(O);:::: xk(G[Vd), it follows from 
i 

Lemma 6 that 

(0) > M > --=---
Xk - R' -1 - meR' -1) 

Thus 

To establish the sharpness we define a graph G, of order p, to be the disjoint union of A 

Ramsey graphs H1,H2, ... ,HA, where each Hi has at most R-1 vertices. This completes 

the proof of the theorem. o 
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