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Abstract

We conjecture that if G is a graph of order sk, where s > 3and k > 1 are
integers, and d(z)+d(y) > 2(s—1)k for every pair of non-adjacent vertices
z and y of G, then G contains k vertex-disjoint complete subgraphs of
order s. This is true when s = 3, [6]. Here we prove this conjecture for
k <6.

1 Introduction

We put forward a conjecture which would generalize a deep theorem proved by Hajnal
and Szemerédi [4]. They proved that if G is a graph of order sk, where s > 3 and
k > 1 are integers, and the minimum degree of G is at least (s — 1)k, then G contains
k vertex-disjoint complete subgraphs of order s. The case s = 3 was first obtained
by Corradi and Hajnal [3]. We propose the following conjecture.

Conjecture A Let s and k be integers with s > 3 and k > 1. Let G be a graph of
order sk. If d(z) + d(y) > 2(s — 1)k for every pair of non-adjacent vertices z and y
of G, then G contains k vertez-disjoint complete subgraphs of order s.

Considering complements of graphs, this conjecture takes the following form.

Conjecture B Let s and k be integers with s > 3 and k > 1. Let G be a graph of
order sk. If d(z) + d(y) < 2k — 2 for every pair of adjacent vertices x and y of G,
then G contains k mutually disjoint independent sets of cardinality s.

In [6], we proved a stronger result than Conjecture A for the case s = 3, that is,

Theorem 1 Let k be an integer with -k > 1. Let G be a graph of order 3k. If
d(z) + d(y) > 4k — 1 for every pair of non-adjacent vertices z and y of G, then G
contains k vertez-disjoint triangles.

It is well known [2, 5] that if a graph G of order n > 3 has a pair of non-adjacent
vertices z and y with d(z) +d(y) > n, then G is Hamiltonian if and only if G +zy is
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Hamiltonian. If n = 2k and d(z)+d(y) > 2k—1 instead, then it is easy to see that G
contains k vertex-disjoint copies of K, if and only if G + zy does. However, we have
the following example for vertex-disjoint copies of K3 in a graph. Let G be a graph
of order 3k consisting of a path P = zzy and a complete graph of order 3(k — 1)
such that they are vertex-disjoint,  and y are not adjacent, d(z) = d(y) = 3k — 2
and d(z) = 2. It is clear that G does not contain k vertex-disjoint copies of K3 but
G + zy does. Tt is also clear that y is the only vertex not adjacent to z and vice
versa. As for vertex-disjoint copies of K (s > 4) in a graph, this example can be
easily generalized.

To further support the conjecture, we prove it for k < 6. We state the result as
follows:

Theorem 2 Let s and k be integers with s > 3 and 1 <k < 6. Let G be a graph of
order sk. If d(z) + d(y) < 2k — 2 for every pair of adjacent vertices z and y of G,
then G contains k mutually disjoint independent sets of cardinality s.

We shall deduce some general propositions based on Conjecture B being false.
Then we use these propositions to prove Theorem 2. We will use the following
terminology and notation. Let G = (V,E) be a graph. Let z € V and Y C V.
We use N(z,Y) to denote the set of neighbors of z that are in V" and let d(z,Y) =
|N(z,Y)|. Thus d(z,V) = d(z), ie, the degree of z in G. For a subset X C V,
N(X,Y) = UgexN(z,Y). A partition (¥,Y3,... ,Y) of YV is called an s-uniform
partition (s-UP in short) of Y if s = |¥j| and Y; is an independent set of G for all
i € {1,2,...,m}, and it is called an s-chain of Y if ¥; is an independent set of G
for all i € {1,2,...,m} such that s — 1 = V3], s + 1 = |V;;| and s = |Vj] for all
i€{2,3,...,m—1}. We define d(zy) = d(z)+d(y) for each edge zy € E. Let Ay (Y)
be the maximum of d(zy) for all zy € E with {z,y} C Y. Set Ay(G) = Ay(V). For
two disjoint subsets A and B of V, E(A, B) is the set of edges of G between of A and
B and let (A, B) = |E(A, B)|. We consider only finite simple graphs. Unexplained
terminology and notation are adopted from [1].

2 Preliminaries

First, we note that Conjecture A is true when s € {1,2}. This is trivial if s = 1. If
s =2, G contains k independent edges as G is Hamiltonian by Ore’s theorem [5].

We suppose that Conjecture B fails. Let G = (V, E) be a graph of order sk with
s >3, k>1and Ay(G) < 2k — 2 such that G is a counter-example to Conjecture
B with |E| as small as possible. We use the idea in [1, pp.351-357] to prove the
following propositions.

Proposition 2.1. V has an s-chain.

Proof. Let zy € E. By the minimality of G, V has a partition (U1, Us, . . ., Uy) such
that |Us;| = s and U; is an independent set of G — zy for all 7 € {1,2,...,k}. Hence
{z,y} C U, for some i € {1,2,...,k}, say {z,y} CUi. As d(zy) < 2(k — 1), we may
assume that d(z) < k—1. Thus, d(z,V —Uy) < k—2. This implies that d(z,U;) = 0
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for some i € {2,3,...,k}, say d(z,Uy) = 0. Then (Uy — {z},Us, ..., Up_1, U U {z})

is an s-chain. ]
Let (Vi,Va,..., Vi) be an s-chain of V. We say that V;, is accessible if there
are distinct indices iy,142,...,i, € {1,2,...,k} and a vertex z;; € V;, for each j €

{2,3,...,n} such that i; = 1,4, = m and d(z;;, Vi;_,) = 0forall j € {2,3,...,n}. In
this case, we also say that x;, is accessible or an accessible vertex of V; . Furthermore,
we say that the set {V;,,V},,...,V;.} is a justification of the accessibility of V;,
or z;,, respectively. Clearly, each V;; in this justification in accessible, too. In
particular, Vi is accessible. By this definition, V} is not accessible. For if 4, = k
in the above, then we obtain an s-UP (V{,VJ,...,V)) of V where V] = V; U {z;,},
Vi =V, U{mi, }—{mi} forall j € {2,3,...,n—1}, Vi = Vi — {z;,} and V] =V for
each i€ {1,2,...,k} — {i1,dy,...,4,}. For two distinct accessible sets V; and Vj, we
write V; <V} if every justification of the accessibility of V; contains V;. An accessible
set V; is said to be terminal if V; £ V; for every accessible set V;. Clearly, there is
a terminal set. From these definitions, it is easy to see that if V; is a terminal set
such that V; # V; and z € V,, then z is accessible if and only if d(z, V;) = 0 for some
accessible set V; 5 V.

Let A be the union of all accessible sets in (V},...,V;) and set B = V — A,
Assume that A includes p accessible sets V; as subsets and so B includes ¢ = k — p
inaccessible sets V; as subsets.

Proposition 2.2. Ay(B) < 2(q — 1). Furthermore, for any non-empty set X C B
with | X| =0 (mod q), X has an s'-UP where s' = |X|/q. In particular, B —{z} has
an s-UP for oall x € B.

Proof. As every vertex of B is inaccessible, we see that d(z, V;) > 1 for each vertex
z € B and each accessible set V;. Therefore d(x, B) < d(z) — p for all x € B. This
implies that Ag(B) < Ax(G)—2p < 2(k—1) = 2p=2(g—1). As Ay(X) < 2¢ -2,
the second statement of the proposition follows by the minimality of G. O

Proposition 2.3. Let V; be a terminal set. If Vi # Vi, then for each accessible
vertezx ¢ € V;, (A — Vi) U {z} has an s-UP.

Proof. As z is accessible, there exists an accessible set V,, such that m # ¢ and
d(z,Vn) = 0. As V; is terminal, there is a justification {V;,V,,,..., Vi, } of the
accessibility of V;,, (with 4; = 1 and i, = m) such that V; does not belong to it.
Let z;; € V;; be such that d(z;;,V;; ;) = 0 for each j € {2,3,...,n}. Clearly,
Viu{mi,}, Vi, Udmig } = {23}, -+, Vi, U{mi,, } = {24,}) is an s-UP of UL, Vi, U {z}
where z;,,, = z. This, together with accessible sets not in the justification except
V;, forms an s-UP of (4 — V;) U {z}. o

Proposition 2.4. Let V; be a terminal set. Lety € B and z € V,. Suppose V; # V1,
d(y, Vi) =1 and zy € E. Then x is inaccessible.

Proof. If z is accessible, then by Proposition 2.3, (4 — V;) U {z} has an s-UP. By
Proposition 2.2, B — {y} has an s-UP. Clearly, V; U {y} — {z} is an independent set.
Therefore V has an s-UP, a contradiction. O
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3 Proof of Theorem 2

We still use notation and terminology of Section 2. Let G = (V, E) be a counter-
example to Conjecture B as defined in Section 2. We choose an s-chain of V, say
(Vi, Va, ..., Vi) such that

|A] is mazimum. 1)
Subject to (1), we further choose (V4,Va, ..., Vi) such that
e(A, B) is minimum. (2)
Let V; be an arbitrary terminal set, and define

B, = {z € Bld(z,V,) = 1} and R, = N(B:, V); (3)
bt = |Btl and Tt = IRti (4)

We may assume that A = V;UVaU---UV, and B = Vpyq U -+ U Vpyq Where
k = p +¢. We shall prove p > 6 and therefore Theorem 2 follows. It is easy to see
that Conjecture B is true when k =1 or k = 2. Thus we have k > 3.

Proposition 3.1. For each z € V;, d(z,B) <2k —p —3.

Proof. Let y be arbitrary in N(z, B). As y is inaccessible, d(y,V;) > 1 for all 4,
1 < i < p. Therefore d(z, B) < d(zy) —d(y) < 2k—p—2. If d(z, B) = 2k—p—2, we
must have that d(y, B) = 0, d(y, Vi) = L and d(z, Vi) = 0 forall 4,1 < ¢ <p. Ifp > 2,
then V; # V; and therefore x is accessible. This is in contradiction to Proposition 2.4
asd(y,V;) = 1. lfp=1,let (U, Us,...,Us) be an (s ~1)-UP of B — {1, 22, .. Tk}
where N(z, B) = {z1,%2, ..., %23}, whose existence is quaranteed by Proposition
2.2. Clearly, some U; does not contain any of Zx41,. . ., T2t—3, and we may assume it
is U,. Note that y is arbitrary in {z1,22,...,%2%-3}. It follows that (V3 U {Z1,22} —
{z},Up U {2}, Us U {23},...,Ux U{zx}) is an s-UP of V, a contradiction. O

Proposition 3.2. For each z € Ry, d(z,B) <k —p.

Proof. Suppose that there exists zo € R, such that d(zo,B) > k —p+ 1. Let
z, € B, be such that zoz; € E. By Proposition 2.4, zo is inaccessible and therefore
d(ze, Vi) > 1 for all i # ¢, 1 < i < p. Thus d(zo) > k. By Proposition 2.2, B — {1}
has an s-UP (Upy1, ..., Ux). As Ay(G) < 2k —2, we have d(wo, B—{z1}) <2k—-2-
d(z)—d(zo, A)~1 < 2k—2—2p = 2(g—1). This implies that some U, say Ui = Up,
contains at most one neighbor of zg. If Upy1 N N(zo, B) = 0, we add zq to Upyr. If
Up+1NN(z0, B) = {y}, then d(y, B) < 2%k —2—d(z¢)—d(y, A) < 2k—2—k—p=q—2.
This implies d(y,U;) = 0 for some j,p +2 < j < k. We then move y to U; and add

Zo to Upy1. In either case, we obtain an s-chain (V; — {20}, Vo1, Voyar - 7} of
BUV, — {z:1}. Let V/ = VU {21} — {zo} and V/ = V; for all ¢ # ¢,1 <4 < p.
Then (V{,..., V) is an s-chain of V. Clearly, each accessible vertex with respect to

(Vi,..., Vi) is still accessible with respect to (V{,...,Vy). Therefore V},.. ., V, are
accessible sets in (V/,...,V}). Let A’ =U_,V/ and B'=V — A’. Then we have

E(A’, B,) S C(A, B) - d(l’o,B) - d(iL’l, A) -+ d(dio, A) -+ d(fL‘l, B) +2
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< e(A, B) + 2k — 2 — 2d(zo, B) — 2d(z1, A) + 2
< e(A,B)+2k—2-2(k—p+1)—2p+2
= ¢(A4,B)—2.
This is in contradiction with (2) while (1) is maintained. 0

By Proposition 3.2,
|Ri| > |Bil/(k —p), v.e., (k=p)re > by (5)
Let dy = max{d(z, B)|z € V;}. By Proposition 3.2, we obtain
(k = p)|Re| +de(s — |Rel) 2 e(Vi, B) 2 2((k — p)s + 1) — | By|. (6)
Combining (5) and (6), we obtain
2k —p) —do)re = (2(k — p) — di)s + 2. (7)

By Proposition 2.4, Ry # V; if V; # V; and so r, < s — 1. We deduce from (7)
that d; > 2(k — p). As d; < 2k — p — 3 by Proposition 3.1, we obtain

p>4andk>5. (8)

Let Uy =V, — R, and s; = s — r; = |U;|. Let W, = B — N(R;, B). By Proposition
3.2, |N(Ry, B)| < (k — p)r¢. Hence |Wy| > (k — p)s; + 1. Clearly,

Uy, Wy) = > d(z,Up) > 2|Wy| > 2(k — p)s; + 2. (9)
reEW;
To show p > 6. We distinguish two cases: p =4 or p =5.

Case 1. p=4.
In this case, d(u, W;) < 2k — 7 for all u € U; by Proposition 3.1. Let U = {u €
Uyld(u, Wy) = 2k — 7} and W} = N(U;, W,). By (9) with p =4, U{ # 0. We claim
For every uw € E(U], W/) withu € U] and w € W}, d(u, A) = 0, (10)
d(w,V;) =1 for all i € {1,2,3,4} — {t} and d(w,U;) = 2.

Proof of (10). As w & N(Ry, B) and w is inaccessible, we have d(w,U;) > 2 and
d(w,V;) > 1forall i € {1,2,3,4} — {t}. As d(uw) < 2k — 2, (10) follows.
Without loss of generality, assume Vj is terminal. We claim

For every w € W}, there exists a unique z,, € Uy — Uj such that (11)
wxy € E and d(z,,, Wy) < 2k — 10.

Proof of (11). Let u € Uj be such that uw € E. By (10), d(w,Us) = 2 and
d(w, A) = 5. Let z, € Uy — {w} with wz,, € E. We need to show that d(x,, Wy) <
2k — 10. Suppose that d(x,, Wy) > 2k — 9. As d(wz,,) < 2k — 2, d(2y, Vi) = 0 for
some i € {1,2,3}, i.e., T, is accessible. By Proposition 2.3, (A — V) U {z,,} has an
s-UP (V{, V5, V4). As d(u,A) = 0 by (10), Vo A V4 and V3 A V. It follows that,
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if Vo < V3 then V3 is terminal, and if V, £ V3 then V; is terminal. Without loss of
generality, say V3 is terminal. By (10), there exists v € Uj such that d(v, 4) = 0. We
have d(w, V3) = 1 by (10). By Proposition 2.4, wv € E as v is accessible. Without
loss of generality, say v € V4. Then (V{,Vy, V5 U {u} — {v}, Vi U {v,w} — {u,2,})
together with an s-UP of B — {w} forms an s-UP of V, a contradiction. So (11)
holds.

By (10) and (11), N(u, Ws)NN (v, W) = @ for any {u, v} C U} with u # v. Hence
|Wi| = (2k — 7)|U;]. Tt follows that |N(Wy,Us — Uy)| > [Wy|/(2k — 10) > |Uy]. Let
X C N(W;,Uy — Uy) with | X| = |Uj]. Then e(X, W) +e(Uy, Wy) < (2k — 10)|X | +
(2k — T)|Uy| < (2k — 8)|X U Uy|. It follows e(Uy, Wy) < (2k — 8)sy4, contradicting (9)
witht=p=4.

The idea of Case 1 is used in Case 2. However, Case 2 is more complicated.

Case 2. p = 5.
In this case, d(u, W) < 2k — 8 for all u € U, by Proposition 3.1. Let

Ul = {u € Uyld(u, Wy) = 2k — 8};
U?Z = {u € Uy|d(u, W,) = 2k — 9};
UP = U, — (U} UU?) and W! = N(UL U U2, W,).

By (9) with p =5, we see that U} UUZ # §. Similar to the proof of (10), we can
readily show

For every uw € E(U} U U2, W/) with u € U} UU? and w € W}, (12)
d(u,A) <1,1 <d(w,V;) <2forallie {1,2,3,4,5} — {t} and

We divide case 2 into the following two subcases.

Case 2.1. There exist two distinct terminal sets V; and V; such that d(z,V}) > 1
for all z € V;.

Without loss of generality, say i = 5 and j = 4. As Ay(G) < 2k — 2 and by (12)
with ¢t = 5, we have

For every uw € E(U} UUZ, W) with u € U} UU? and w € WY, (13)
d(u, ViuVaUVs) =0, d(u, Vi) = 1, d(u, Ws) = 2k -9, d(w, V) =
1for alls € {1,2,3,4} and d(w,Us) = 2.

By (13), U2 = 0. We claim that one of V, and V3 is terminal. To see this, let
ug € U? and ufy € U} UUZ. By (12), d(uf, A) < 1. As d(ug,V4) = 0, Vo £ V5 and
Vi £ Vs. As either d(ug, V1) = 0 or d(ug, Vs) = 0, we see that V5 £ V4 and Vi £ Vi
It follows that, if V, < Vj then Vj is terminal, and if V5 £ V3 then V; is terminal.
This shows the claim.

Without loss of generality, say Vj is terminal. We shall show that d(z, V5) > 1 for
all z € V3. To see this , we suppose that d(vg, V5) = 0 for some vy € V3, and therefore
vy is accessible. Then we claim that, for each w € W}, there exists a unique z,, € U?
such that wz,, € F and d(z,, Ws) < 2k—12. By (13), d(w, Us) = 2. Let N(w,Us) =
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{u, 2} with u € U?. We need to show that d(z,, Ws) < 2k — 12. Suppose instead
that d(z,, Ws) > 2k—11. Asd(wz,) < 2k—2 and d(w, A) = 6 by (13), d(z,,V;) =0
for some i € {1,2,3}. Hence x,, is accessible. Note that as d(w,V;) = 1 by (13),
vw &€ E by Proposition 2.4. Let N(u,Vy) = {v'}. If (4 — V;) U {z,} has an s-UP
(V/, V4, V4, V]) such that {vy,u'} € V for every i € {1,2,3,4}, say without loss of
generality vy € VJ, then (V/, V5, Vi, VU {u} — {vo}, Vs U {w, v} — {u, z,,}) together
with an s-UP of B — {w} forms an s-UP of V, a contradiction. Therefore, all we
need is to show that there is such an s-UP of (A — V5) U {z,}. This is obvious if
there exists a justification of the accessibility of z, which does not contain V3 or
Vy. In particular, this is true if d(a,V;) = 0 for some a € V5 and d(b,V;) = 0 for
some b € V. Therefore we may assume that either d(z,V;) > 1 for all z € V3, or
d(z,V1) > 1 for all z € V4. Without loss of generality, say the former holds. Similar
to obtaining (13), we see that Uy = @ and d(z,A) = 1 = d(z, V1) for all z € UZ.
By (9) with p = 5 and t = 3, UZ has at least two distinct vertices, say v; and vj.
Without loss of generality, say v; = vg. Clearly, any justification containing no Vs of
the accessiblity of V3 is a justification of the accessibility of both vy and v;. Then we
see that a desired s-UP of (A — V) U {z,,} is yielded from any given justification of
the accessibility of z,,. Therefore our claim is true. This claim, together with (13),
implies that N(u, Ws) N N(v, Ws) = 0 for any {u,v} C U2 with u # v. Therefore
Wil = (2k — 9)|UZ| and |[N(W{,US)| > |Wi|/(2k — 12) > |UZ|. As in Case 1, it
follows that e(Us, Ws) < (2k — 10)ss, contradicting (9) with ¢ = p = 5. This shows
that d(z, V5) > 1 for all z € V3.

With V3,V and Vs playing the roles of Vi, V3 and Vj, respectively in the above
argument, we obtain d(z,V3) > 1 for all x € V. Similar to obtaining (13), we see
that for each i € {3,4,5}, there exists a vertex u; € U? such that d(u;, V3 U V) =
0. Therefore V, is terminal. By (12), there is a vertex up, € Ul U U2 such that
d(uy, A) < 1. Hence d(us, V;} = 0 for some 7 € {3, 4,5}, say without loss of generality
d(ug, Vs) = 0. With V; playing the role of V3 in the above argument, we again obatin
e(Us, Ws) < (2k — 10)ss, a contradiction.

Case 2.2. For any two distinct terminal sets V; and Vj}, there exist x € V; and
y € V; such that d(z,V;) = 0 and d(y, V;) = 0.

In this subcase, we claim first that V; is terminal for all ¢ € {2,3,4,5}. As there
is a terminal set, say without loss of generality Vs is terminal. Let us € Ui U UZ.
Then d(us, A) < 1 by (12). If d(us, V1) = 0, then V; £ V; for all i € {2,3,4}, and
consequently, V; is terminal for some i € {2,3,4}. If d(us, V1) = 1, then d(us, A —
V1) = 0 and there exists exactly one of V5, V3 and Vj, say V5, such that V, < V5. Then
Va A Vo and Vi A V. Therefore one of V3 and Vj is terminal. In either case, say
without loss of generality V, is terminal. Let uy € UfUUZ. Then d(uy, A) < 1 by (12).
If V3 < V3, then for each 1 € {4,5}, V3 A V; as either d(u;, Vi) = 0 or d{u;, V2) = 0,
and consequently, V3 is terminal. If V5 £ V3 and V5 is not terminal, then V2 < V}
or Vo < Vs. Say without loss of generality Vo < Vs. Then d(us, V1) = 1 = d(us, 4),
V3 A V5 and there exists a € V5 such that d(a,V;) = 0. Thus V3 £ V5. As either
d(uq, V1) = 0 or d(u4, V5) = 0, we see that V3 £ V4, and consequently V3 is terminal.
Finally, we need to show that V5 is terminal. If V, is not terminal, then V5 < V;
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for some i € {3,4,5}, say without loss of generality V2 < V5. Then d(u, V1) > 1
for all uw € Vs and d(a, Vi) = 0 for some a € V,. Similar to obtaining (13), with
d(u, V1) = 1 replacing d(u, V4) = 1, we see that all the other equalities in (13) hold.
Then for each w € WY, it is easy to see that if N(w, Us) = {u, 2y} with u € UZ and
d(zy, Vi) = 0 for some i € {2,3,4}, then z,, is accessible and (A —V5) U {z,,} has an
s-UP (V{, V4, V4, V)) with z,, & V{ 2 V4. Moreover, either vy ¢ V{ or v; ¢ V| where
d(ve, Vs) = 0 and d(vy,Vs) = 0 with vy € V3 and v € Vj. Say w.lo.g, d(ve, V5) =0
and vy € VJ. Then (V}, V3, V3, V{U{u} — {vo}, Vs U {vo, w} — {u, 2, }) together with
an s-UP of B — {w} forms an s-UP of V, a contradiction. Hence d(z,,V;) > 1
for all i € {1,2,3,4}, and therefore d(z,, Ws) < 2k — 12 as d(wz,,) < 2k — 2 and
d(w,A) = 6. As in Case 2.1, this yields e(Us, W5) < (2k — 10)ss, a contradiction.
Hence we conclude that V; is terminal for all 7 € {2, 3,4, 5}.

For each i € {2,3,4}, let a; € V; be such that d(a;, V5) = 0. So each a;(2 < i < 4)
is accessible. We claim

For every w € W}, there exists z,, € U$ such that wz,, € E and (14)
A(zw, Ws) < 2k — 12.

Proof of (14). Let u € U} U U? be such that uw € W. By (12), we may set
N(w,Us) = {u, Ty, T, } with z, = 2}, if d(w, Us) = 2. Suppose, for a contradiction,
that d(zy, Ws) > 2k — 11 and d(z),, Ws) > 2k — 11. Assume first that d(w, Us) = 3.
As d(uw) < 2k — 2 and by (12), we see that d(u,A) = 0 and d(w,V;) = 1 for
all i € {1,2,3,4}. As d(wzy) < 2k — 2 and d(wz,,) < 2k — 2, it follows that
d(zy, A) < 2 and d(z!,, A) < 2. Hence there exists {i,j} C {1,2,3, 4} with 1 # j
such that d(z,,V;) = 0 and d(z,,V;) = 0. Let r € {1,2,3,4} — {4, 5} be such that
r=1if 1 ¢ {i,5}. Without loss of generality, say » = 1,4 = 2 and j = 3. By
Proposition 2.4, aow ¢ E and agw ¢ E. Then (Vi U{u},Va U {zy} — {a2}, V3 U
{z!} — {as}, Vi, Vs U {w, as, a3} — {u, zw, 7} }) together with an s-UP of B — {w}
forms an s-UP of V, a contradiction. Hence z,, = 7. Then we see that d(z,, 4) <3
as d(wz,) < 2k—2. Hence d(z,, Vi) = 0 for some i € {1,2,3,4}, i.e., z is accessible.
Clearly, (A — V) U {=,} has an s-UP (V{, V3, V4, V{) such that {as, a3, as} € V; for
all 7 € {1,2,3,4}. As d(uw) < 2k — 2 and by (12), we see that if d(u,A4) = 1,
then d(w, V;) = 1 and therefore wa; ¢ E by Proposition 2.4 for all ¢ € {2, 3,4}, and
if d(u,A) = 0, then d(w,V;) > 2 for at most one i € {1,2,3,4}, and therefore by
Proposition 2.4, a;w € E for at most one 7 € {2,3,4}. Hence we can always choose
an a; and a V} such that a; € V/, a;w ¢ E and d(u,V/) = 0. Without loss of
generality, say i = j = 4. Then (V/,VJ, V4, ViU {u} — {as}, V5 U {w, as} — {u, z})
together with an s-UP of B — {w} forms an s-UP of V, a contradiction. This proves
(14).

Let {us,ui}(1 < i < r) be a list of all distinct pairs of vertices of Uz U UZ such
that N(us, Ws) N N(ul, Ws) # 0 for all i € {1,2,...,7}. As Ay(G) < 2k — 2 and
by (12) and (14), we see that for each i € {1,2,...,7}, {us, ui} C UZ, and x,, € U3
and d(w,Us) = 3 for all w € N(u;, Ws) N N(u}, Ws). For each i € {1,2,...,7}, we
choose a fixed w; € N(u;, Ws) 0 N(ul, Ws). Then w;(1 < i < r) are distinct. Let
v;(1 < i < n) be a list of the vertices in U} UUZ — {us, uj]l <4 < r}. Let Q be the
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bipartite graph induced by the edges in {w;u;, wiuj|l <1 <r}. Then dg(w;) = 2 for
all i € {1,2,...,r}. This implies that each block of Q is either a cycle or an edge.
Let A=V(Q)NUs and D = V(Q)NWs;. Let Q;(1 <4 < m) be a list of components
of Q. Foreach i € {1,2,...,m}, let A, =V(Q;)NAand D; =V(Q;)N D, and then
we see that |4;] < |D;| + 1. Furthermore, we have

N(Ai,W5)ﬁN(A]-,W5) 20,1 <t <j<m (15)
N(A;, Ws) N N(vj,Ws5) =0,1<i<mand1<j<m; (16)
N(’Ui,W5) ﬂN(vj,W5) = @,1 <i <]S n. (17)

By (15)-(17), |[Wi] > (2k — 9)(n + m). Let X = {zyjw € W{}. Then |X| >
2k -9 (n+m)/(2k—12) > n+m. Let Y C X with Y| =n+m. If Z =
Us — (AUY U {;|1 <1 < n}), then

Z d(.’E, Ws) =+ z d(.’E, Ws) -+ id('l}i, Ws) + Z d(.’L’, W5)

z;k - 9)|A| + (:z€+ m)(2k — 1£)=+ (2k —8)n :-6(219 - 10)|Z]
(2k — 10)|A| + (ID] + m) + (2k — 12)m + 2(2k — 10)n + (2k — 10)|Z]
(2k — 10)s5 + | D|,

6(U5, W5)

INIA A

and on the other hand, we have

e(Us,Ws) = 3 d(z,Us)+ Y d(y,Us)

z€D yEWs5—D

> |D|+2\W5| > |D|+2(k —5)s5 + 2.
This is a contradiction. This completes the proof of the theorem.

Remarks. It seems possible to prove the conjecture for more small values of k by
refining the above idea. However, it seems very difficult to prove the conjecture in
general. It would be interesting to prove it for s = 4.
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