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Abstract 
A graph G is said to be quasi 4 -connected if G is 3-connected and for 

each cutset K ~ V( G) with IKI = 3, K is the neighbourhood of a vertex of 

degree three and G - K has precisely two components. It is evident that such 

graphs need not be 4-connected and yet they exhibit many of the properties 

of 4-connected graphs. In this paper, we show that, given a set, N ~ E( G) 

of four independent edges, there is a cycle in G containing N. In fact, we 

show, more generally: that given a "free edge system" F of size at most 4, 

- in a quasi 4-connected graph G, there is a cycle in G containing F. We also 

consider the existence of cycles through a given set of vertices and avoiding 

another set of vertices. 

1. Introduction. 

A graph G is said to be quasi 4-connected if G is 3-connected and for each 

cutset K ~ V(G) with IKI = 3, K is the neighbourhood of a vertex of degree three 

and G - K has precisely two components. Thus, cyclically 4-edge-connected cubic 

graphs are quasi 4-connected. Quasi 4-connected graphs have been studied in [7], 

[9] and [10]. Through these studies it is apparent that quasi 4-connected graphs 

exhibit many of the properties of 4-connected graphs (particularly in relation to the 

presence of certain minors) without necessarily being 4-connected. In this way, the 

quasi 4-connected property offers a true refinement of the strict vertex connectivity 

notion. We shall determine further areas in which quasi 4-connected graphs exhibit 

properties of 4-connected graphs. 

The link between the connectivity of a graph and the nature of the cycles it 
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admits has long been studied and has yielded one of the most famous results in 

graph theory; namely the corollary to the -following theorem of Dirac [3]. 

Theorem 1.1. (Dirac). If G is an n-connected graph, then given any 2 edges and 

any n - 2 vertices there is a cycle in G containing all of these elements. I 

Corollary 1.2. Let G be an n-connected graph and let N ~ V(G) have INI = n. 

The there is a cycle in G containing N. I 

It is readily seen that this result is best possible by considering, for example, 

K n ,n+l' In the case of 3-connected graphs, this indicates the general form of all 

stoppers, as was shown by Watkins and Mesner [12] in the following theorem. 

Theorem 1.3. (Watkins and Mesner). A graph G of connectivity n, n ~ 3, 

contains a cycle through any nominated set of n + 1 vertices unless there is a set of 

n vertices, the removal of which disconnects G into at least n + 1 components. I 

An edge analogue of Corollary 1.2 has been conjectured by Lovasz [8]. 

Conjecture. (Lovasz). Let N be a set of n independent edges in an n-connected 

graph G. Then there is a cycle in G containing N, unless N is an odd cutset. 

The conjecture was verified in the case n = 3 along with the original mention 

of the problem. Since that time it has been verified for n = 4 by Erdos and Gyori 

[4] and for n = 5 by Sanders [I1J. Thus we have the following theorem. 

Theorem 1.4. Let N be a set of n independent edges in an n-connected graph G, 

n = 3,4,5. Then G has a cycle containing N, unless N is. an odd cutset. I 

In [5J, Haggkvist and Thomassen showed that strengthening the connectivity 

requirement slightly ensured a cycle through any n edges. 

Theorem 1.5. (Haggkvist & Thomassen). Let N be a set of n independent edges 

in an (n + I)-connected graph G. Then there is a cycle in G containing N. I 

It has also been observed that many graphs exhibit properties of more highly 

connected graphs even though their own connectivity is limited by the presence of 

trivial small cutsets. Indications of the enhanced "connectivity" present in such 

graphs may be obtained from properties such as cyclic connectivity and the quasi 

4-connected property with which much of this paper is concerned. 

In the case of cubic graphs, it is not possible to achieve connectivity higher than 

3. However, such graphs may be arbitrarily highly cyclically connected. Making use 

of the enhanced connectivity afforded, Aldred, Holton and Thomassen [I] showed 

the following theorem. 
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Theorem 1.6. Let G be a cyclically 5-connected cubic graph and let N ~ E(G) 

be an independent set of edges with INI :S 4. Then there is a cycle in G containing 

N. I 

In addition to this, Aldred and Holton [2] were able to extend the result as 

follows. 

Theorem 1.7. Let G be a cyclically 6-connected cubic graph and let N ~ E(G) 

be an independent set of edges with INI :S 5. Then there is a cycle in G containing 

N. I 

Note that in each case the cyclic connectivity assumption precludes the possi

bility that N incorporates an odd cutset. 

These results provide some partial confirmation of a conjecture, analogous to 

the Lovasz Conjecture, put forward by Aldred, Holton and Thomassen (see [1]). 

Conjecture (Aldred, Holton & Thomassen). Let G be a cyclically n + 1-

connected cubic graph ,and let N ~ E( G) be an independent set of edges with 

INI .:S n. Then there is a cycle in G containing N. 

2 .. Preliminaries 

That n independent edges containing a minimal odd cutset cannot lie on a cycle 

is immediately obvious. If we consider a more general collection of edges, there are 

clearly further configurations of edges which cannot lie on a common cycle. The 

notion of a "free path system" (see [1], [2]) is that of a set of vertices and edges, 

not necessarily independent, which does not immediately preclude the existence of a 

cycle containing the set. With this notion in mind we make the following definitions. 

Definition: Let F ~ E(G) be such that (F) is a linear forest (a disjoint union 

of paths) with at least two components. If v is an endvertex of the path n in (F), 

then the free neighbourhood of v with respect to F, f N F (v), is defined as follows. 

fNF(v) = {u E Nc(v): u ~ VeIl) and deg{F)(u) =I- 2}. In addition, for a set, A, of 

endvertices of paths in (F) we define fNF(A) = UvEAfNF(v). 

Definition: A:. free edge system of size k in a graph G is a set of edges F ~ E( G) 

with IFI = k such that F contains no odd cutset, there is no contraction of G onto 

the cubic graph H in Figure 0 below, with {el,e2,e3,e4} contained in the image of 

F and either: 

(i) (F) is a linear forest with at least two components such that if A is a set of 

endvertices of paths in (F), then If N F(A)I 2: IAI. Furthermore, if (F) has at 

39 



least three components, IAI = 2 and A consists of both ends of the same path 

in (F), then fNF(A) is not just both ends of some component of (F); 

(ii) (F) ~ Pk +1 (a path on k + 1 vertices) and neither endvertex has only interior 

vertices of the path as neighbours; or 

(iii) (F) ~ Ck' 

:H 

Figure 0 

In [1] Theorem 1.4 was generalized for 3-connected graphs to include free path 

systems of size 3. A free edge system defined above is also a free path system in 

the sense of (1] which gives us the following result. 

Lemma 2.1. Let G be a 3-connected graph and let F be a free edge system of size 

at most 3 in G. Then there is a cycle in G containing F. 

Lemma 2.2. Let G be a 4-connected graph and let F be'a free edge system of size 

at most 4 in G. Then there is a cycle in G containing F. 

Proof. Let G and F be as in the statement of the theorem. We may assume that 

F is not an independent set in G as, by Theorem 1.4, the required cycle is known to 

exist in this case. Thus, there is a path segment uvw in (F). Form a new graph G' 

from G by deleting the vertex v and adding the edge uw.The edge set F' ~ E(G'), 

F' = (F - { uv, vw} ) U uw forms a free edge system in the 3-connected graph G' and 

thus, by 'Lemma 2.1, there is a cycle in G' containing F'. This cycle clearly lifts to 

a cycle in G containing F. 

(Note that we may proceed by induction to show that if the Lovasz conjecture 

is true, then for each free edge system F of size at most n in an n-connected graph 

G, there is a cycle in G through F.) 

In a similar way the following result may be obtained. This result is essentially 

a corollary of Theorem 1.5. 
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Lemma 2.3. Let G be an n + I-connected graph and let F be a free edge system 

in G of size at most n, then there is a cycle in G containing F. II 

We shall establish that if we weaken the condition that G is 4-connected in 

Lemma 2.2, and require only that G is quasi 4-connected, then the conclusion will 

still follow. To prove this stronger result, we first introduce the following structural 

definition and lemma. 

Definition: Let G =1= K4 be a quasi 4-connected graph and let v E V( G) be 

such that Nc(v) = {U1,U2,U3} (Le. degc(v) = 3).The quasi reduction of G at v is 

the graph G' = (G - v) + {u1 u2, U2 u3, u3 u1 } (edges added only when not already 

present in G). 

Lemma 2.4. Let G =1= K4 be a quasi 4-connected graph and let v E V(G) be such 

that Nc(v) {U 1 ,U2,U3} (i.e. degc(v) = 3). Then G', the quasi reduction of G at 

v, is also quasi 4-connected. Furthermore, unless G is a quasi 4-connected spanning 

subgraph of G 1 or G2 (see Figure 1 below), G' has fewer vertices of degree 3 than 

G. 

u'1llo-=:---_____ ..a V 

v 

Figure 1. 

Proof. Let G, v, G' be as in the statement of the lemma. Suppose, by way of 

contradiction, that G' is not quasi 4-connected. Then either G' has a vertex of 

degree 2 or G' has a nontrivial 3-cut. In the former case, we may assume that the 

vertex is u 1 (as the vertex must be in the neighbourhood of v) and thus {U2' u3} 

is a 2-cut in G. This contradicts the assumption that G is quasi 4-connected. So 

we may assume that G' has a nontrivial 3-cut K = {x, y, z}. But K must also 

be a nontrivial 3-cut in G, again contradicting our assumption that G is quasi 

4-connected. Thus G' is quasi 4-connected. 

If G' were to contain as many vertices of degree 3 as G, then at least one of 

the vertices in {U 1 ,u2 ,U3 }, say U 1 , must have degree 3 in G'. However, if this were 
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the case, then No' (Ul) would be a nontrivial 3-cut in G unless G is a spanning 

subgraph of G1 or G2 · I 

3. Cycles in quasi 4-connected graphs. 

We are now in a position to analyse how closely the cycles present in quasi 

4-connected graphs parallel what we would expect from 4-connected graphs. To 

begin with we may determine that while a quasi 4-connected graph need only be 

3-connected, it must contain a cycle through any four nominated vertices. 

Theorem 3.1. Let G be a quasi 4-connected graph and let lvI ~ V(G) be a set of 

at most 4 vertices. Then there is a cycle in G containing M. 

Proof. We may assume that IlvII = 4 as G is 3-connected and Corollary 1.2 ensures 

the existence of the desired cycle if IMI ::; 3. Now, by Theorem 1.3, G contains 

a cycle through lvI unless there is a cutset of size 3 in G the deletion of which 

disconnects G into at least 4 components. This is impossible by the definition of 

quasi 4-connected. I 

In the next two results, we see that cycles through edges in quasi 4-connected 

graphs also parallel those in 4-connected graphs. 

First we introduce a lemma which shows that the special quasi 4-connected 

graphs Gland G2 have the desired cycle properties. 

Lemma 3.2. Let G be a graph on at most 6 vertices and let F be a free edge 

system of size 4 in G. Then there is a cycle in G containing F. 

Proof. Denoting by Pk a path on k vertices, the only free edge systems of size 4 

covering at most six vertices, apart from a 4-cycle, are: 

(i) (F) S;:; P3 U P3 ; 

(ii) (F) S;:; P4 U P2 ; 

(iii) (F) S;:; P5 . 

Note that (i) and (ii) require that IV( G) I = 6 

In case (i), let F = {ab, bc, xy, yz}. Then the cycle required exists in G if and 

only if both ax and cz or both az and cy are present in G. So, without loss of 

generality, assume that neither ax nor az is present in G. Thus F is not free, as a 

only has neighbours in its own P3 or interior to the other. 

In case (ii), let F = {ab,bc,cd,xy} Then the cycle required exists in G if and 

only if both ax and dy or both ay and dx are present in G. It no\\' follows that the 

cycle exists if and only if F is free. 
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Finally, in case (iii), let F = {ab, be, cd, de} and let x be the possible further 

vertex in G. The cycle exists if and only if the edge ae is present or, in the case 

of a further vertex, both ax and xe are present. In the event that neither of these 

occurs, F cannot be free. 

Theorem 3.3. Let F bea free edge system of size at most 4 in the quasi 4-

connected graph G. Then there is a cycle in G containing F. 

Proof. First we note that if IV(G)I :S 6, then by Lemma 3.2, there is a cycle 

inG through F. Also, if IFI :S 3, then the cycle exists, since G is 3-connected. 

Consequently, we may assume that IFI = 4, IV(G)I 2: 7 and proceed by induction 

on t, the number of vertices of degree 3 in G. 

When t = 0, Gis 4-connected and by Lemma 2.2, there is a cycle in G containing 

F. 

Assume that the result is true for all t such that 0 :S t :S n and consider the 

quasi 4-connected gTaph G with n+ 1 vertices of degree 3. Let v E V(G) be a vertex 

of degree 3, with Nc(v) = {u1 ,u2 ,u3 }, and let G' be the quasi reduction ofG at v. 

Then, by Lemma 2.4, G' is quasi 4-connected and has fewer vertices of degree three 

than G. Let F' ~ E(G') be defined as follows. If no edge in F is incident with v in 

G,-then F' = F. Ifuiv and vUj are edges in F, then F' = (F-{uiv,v'uj})U{UiUj}' 

In either case it is easy to see that F' is a free edge system in G' \vith size at most 

4. Thus, by induction, there is a cycle in G' through F' and this cycle easily lifts 

to a cycle in G through F. So we must consider that there is precisely one edge in 

F incident with v, say u 1 V. It is clear that if F consists of four independent edges 

and Uj E Nc(v) {ud is such that deg(F) (Uj) :S 1, then F' = (F {u1V})U{UIUj} 
is free in G' and the result follows by induction. Thus there must be a vertex 

x E V( (F) such that deg(F) (x) = 2. Let x have neighbours w, y in (F). We form 

G' from G by deleting x and adding the edge wyand F' = (F - {wx, xy}) U {wy}. 

If x is not a neighbour of a vertex of degree 3 in G, other than w or y, then G' is 

3-connected and contains a cycle through F', giving the desired cycle in G. As such, 

we may assume that x ENe (v) but xv tj, F, say x = u 2 . It is now straightforward 

to check that F' = (F - {u1 v}) U {u1 u3} is free in G' and the result follows by 

induction. I 

Corollary 3.4. Let G be a quasi 4-connected graph and !vI ~ V(G), N ~ E(G) 

be such that IMI + INI :S 4. Then G contains a cycle through !vI and N if and only 

if M U N can be covered by a free edge system. I 

In particular, Corollary 3.3 says that if IMI INI 2, then G has a cycle 
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through !vI and N unless (N) rs a path on three vertices all of which lie in the 

neighbourhood of the same vertex of degree 3 in M, giving just the obvious exception 

to Dirac's Theorem for 4-connected graphs. 

Finally, let us consider an interesting variation on the cycles through given 

vertices problem which was introduced by Hemminger, Plummer and Wilson in [6] 
and involves specifying two disjoint sets of vertices one of which is to be included 

in a cycle and the other to be excluded by the cycle. This idea is specified precisely 

in the next definition 

Definition. A graph G is said to be O(j, k) if, for each pair of sets J, K ~ V( G) 

with J n K = 0, IJI = j, IKI = k, there is a cycle in G containing J and avoiding 

K. 

From Corollary 1.2, one immediately sees that an n-connected graph G is C(n

i, i), 0 S; i S; n 2 and clearly, if vertices of degree n are present in G, it cannot 

be 0(1, n 1) (although the obvious exception here is the only one possible). By 

the same token, a quasi 4-connected graph cannot be 0(2,2) if there are vertices of 

degree 3 present (i.e. if it is not 4-connected). 

Theorem 3.5. Let G be a quasi 4-connected graph and let J, K ~ V(G) with 

J n K = 0, IJI = 4 - k, IKI = k, k = 0,1,2. Then there is a cycle in G through J 
and avoiding K unless: 

(i) k = 1 and G has the form shown in Figure 2; 

(ii) k 2 and K is contained in the neighbourhood of a vertex u E J with degc (u) = 

3. 

x 

G 

Figure 2 
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Proof. By Theorem 3.1, the desired cycle exists if k = 0, so we may assume that 

k = 1 or 2. If k = 1 and thus K consists of a single vertex, x say, then G - x is 

3-connected, and hence contains the desired cycle, unless x E Nc(z), degc(z) = 3. 

Thus we assume that x E Nc(z), degc(z) = 3 and let J {u, v, w} be a set of 

three vertices which do not lie on a cycle in G - x. For each zEN c (x) such that 

degc(z) = 3, "suppress" z in G-x (Le. if Nc(z) = {X'Yl,Y2}, then delete x,z and 

add the edge Yl Y2 if not already present) and thereby form a new graph G'. The 

graph G' so formed is obviously 3-connected and thus contains a cycle through J 

unless J contains a vertex of degree 3 in the neighbourhood of x. But for each such 

member of J we require that the edge corresponding to its suppression be included 

in the cycle. This can readily be done unless all three vertices in J are of degree 3 

and lie in the neighbourhood of x. In this case, the structure of G is precisely that 

depicted in Figure 2. 

It remains only to consider the case when k = 2. Let J = {u, v} and K = {w, x} 
be vertex sets such that there is no cycle in G - K containing J. Thus, by Corollary 

1.2, G - K is not 2-connected, from which we may deduce that K is contained in the 

neighbourhood of a vertex of degree 3. Furthermore, since G is quasi 4-connected, 

deleting any vertices of degree 1 arising from the deletion of K gives a 2-connected 

graph. Hence, if neither vertex in J has degree 1 in G - K, there is a cycle in G - K 

through J. This completes the proof. I 

From Theorem 3.4, we see that the C(j, k) properties of quasi 4-connected 

graphs are very close to those of 4-connected graphs confirming further the general 

similarities between cyclic properties of both classes of graphs. 
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