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ABSTRACT 

(v,5, 1) RBI BDs were known to exist for all but 109 values of v == 5 mod 20. Solutions 

are given for all but 6 of these. Also given is a new (45,5,3) RBIBD plus some new 

incomplete TDs, 14 new (v,6,1) BIBDs and some new PBDs with K = {6} u {Prime 

powers == 1 mod 5}. 

1. Introduction 

A design is a pair (X,5l) where X is a finite set (whose elements are called paints) and 

.9[ is a collection of subsets of X (called blocks). A group divisible design (GDD), 

denoted by GD(K, A, G, '" is a design on v points, divided into groups with sizes from 

G, and block sizes from K such that two points appear together in A blocks if in 

different groups, and in no blocks if in the same group. The parameter A is called the 

index of such a design. Also, if K = {k} or G = {g}, we sometimes write kfor {k} and 

9 for {g}. A pairwise balanced design (a (v, K, A) PBD) is a GO(K, A, 1, "'; if the block 

size is uniform, with K = {k}, then such a PBO is called a balanced incomplete block 

design, (a (v, k, A) BIBO). A transversal design, denoted TD(k, '" is a GD({k}, 1, {v}, 

k0. 
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The notations B(K), B(K) and T(K) respectively are used to represent the sets of 

v values for which a (v, K, 1) PBO, a (v, k, 1) BIBO and a TO(k, 0 exist. The notation 

K u k* for the block set of a design indicates that one block in the design has size k 

and all other block sizes come from K; if k E K, then other blocks of size k are 

possible. 

When dealing with GODs it is sometimes desirable to specify the number of groups of 

each size. Accordingly, a (K, A) GOD of type XSyb ... is a GOD with index A, block sizes 

from K and a groups of size x, b groups of size y, etc. 

An incomplete transversal design (an ITO) denoted by TO(k, 0 - TO(k, h) is a TO(k,0 

with a (sometimes hypotheticaQ sub-TO(k, h) removed. A list of known IT Os with 

v s 1000 and h s 50 can be found in [2]. 

A design is called resolvable if its blocks can be partitioned into resolution classes 

where a resolution class is a set of blocks containing every point exactly once. 

Resolvable designs are denoted by the prefix R; also, RRN(K) is used to denote the 

set of replication numbers for (v, k, 1) RBIBOs, i.e. the set of r values for which 

v = (k-1)r + 1 E RB(K). A transversal design is called idempotent if it contains at least 

one resolution class. 

A partial resolution class in a design is a set of blocks containing no paint more than 

once. Designs with partial resolution classes can sometimes be used to obtain 

resolvable designs (see for instance, Theorem 5.3). 

A useful class of GODs is frames, a GOD is a frame if its blocks can be partitioned into 

holey resolution classes where a holey resolution class is a set of blocks containing no 

pOints from one group and all other pOints exactly once. It is known that the number 

of holey resolution classes missing any group of size 9 is Ag/(k-1). 

A set Kis called PBO-closed if B(K) = K For any k and for any set K, it is known that 

the sets B(K), B(K) and RRN(K) are PBO-closed [12, 16]. 
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One major aim of this paper is to construct new resolvable BIBDs (RBIBDs) with k = 5 

and A. = 1. Simple counting arguments show that if v € RB(5), then v == 5 mod 20. 

Further, there are no v values in this class for which such an RBIBD is known not to 

exist. In [25] it was noted that these conditions are sufficient, except possibly for the 

109 values of v in Table 1.1. (Constructions for v = 805, 905 and 1505 were found by 

Paul Schellenberg and are given in [10]. Alternative constructions for these three 

values are given in Theorem 5.8.) 

Table 1.1 

45 105 145 165 185 225 245 285 345 465 525 

565 585 645 665 705 765 785 825 885 925 945 

1005 1045 1065 1145 1165 1185 1245 1305 1385 1425 1485 

1545 1605 1665 1725 1845 1905 1965 2085 2145 2205 2265 

2325 2385 2445 2505 2565 2685 2745 2865 2985 3045 3105 

3165 3225 3345 3465 3525 3585 3645 3705 3765 3785 3885 

3945 4065 4185 4245 4365 4425 4485 4545 4605 4665 4725 

4785 4845 4905 4965 5025 5085 5145 5385 5445 5685 5745 

5865 5925 5985 6045 6165 6225 6285 6345 6585 6645 6705 

6945 7005 7065 7125 7185 7245 7365 7425 7485 7845 

In this paper the number of exceptions in this list is reduced to 6. First, we provide 

direct constructions for v = 105, 165 and give a new direct construction which would 

appear to work whenever v = 4p + 1 and p == 1 mod 10 is a prime ~ 61. Later, use is 

made of known recursive constructions, using these designs as ingredients to obtain 

several larger (v, 5, 1) RBIBDs. For many of these recursive constructions, some 

information is needed on PBDs whose block sizes include 6; examples of these 

designs, including 14 new (v, 6, 1) BIBDs are also provided. 

2. A new direct construction 

The following theorem summarises the main result of this section: 
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Theorem 2.1: If p == 1 mod 10 is prime and 61 s p s 1151 then there exists a 

resolvable (4p+1, 5, 1) BIBD. 

Proof: Take the point set as X = (Z2 X Z2 x GF(p)) u {oo}. Let x be a primitive root of 

unity in GF(p) , and for ° s t s 4, let Ct be the multiplicative coset consisting of all 

elements of the form x a with IX == t mod 5. We now construct 3 blocks: 

B1 = {(0,0,a1) , (O,O,a~, (O,O,a:J, (0,1,a4). (1,0,aJ} 

B2 = {(O,O,aJ, (0,1 ,a7) , (O,1,aJ, (1 ,0,a9) , (1,0,a10)) 

B3 = {oo, (0,0,0), (0,1,0), (1,0,0), (1,1,O)} 

The main problem here is to choose the values a1, a2, ... ,a10 so that when we multiply 

B1 and B2 by (1,1,XSt
) for ° s t s (p-11)/10, we can cycle B1, B2 and their multiples 

mod (2,2,p) and B3 mod (-,-,p) to produce the required BIBD. The first necessary 

condition is that for any t, ° s t s 4, and for any (y,.z) E (Z2 x Z~, there is a pair of 

pOints P1 = (Y1,z1,a j ) , P2 = (Y2' Z2' aj ) both in B1 or both in B2 such that (Y1,Z1) - (Y2'Z~ 

= (y,.z) and aj - aj € Ct. If this condition is satisfied, then the above procedure will at 

least give a (4p+ 1,5,1) BIBD (not necessarily resolvable). For resolvability, we require 

two extra conditions: (~ If a € {a1, a2, ... ,a10} then so is -a and (i~ For any t, ° s t s 4, 

exactly two of a1, a2 , ... ,alO lie in Ct. If these two conditions hold, then cycling B1, B2 and 

their multiples mod (2,2,-) and combining with B3 gives a resolution class; cycling 

these blocks mod p will then produce p resolution classes, completing the resolution. 

When p = 11, 31 or 41, there are no values of a1, a2, ... ,alO satisfying the above 

conditions; thus, for these values of p, this approach fails to produce a (4p+1, 5, 1) 

RBIBD. However, when p = 41, a slight modification of this construction works as will 

be seen in Theorem 2.2; also, for p = 31, a (125, 5, 1) RBIBD is easily obtainable from 

a 3-dimensional affine geometry. The above construction would appear to work 

whenever p ~ 61; in fact the number of non-isomorphic solutions increases very 

rapidly with p. For 61 s p s 1151, Table 2.1 gives a primitive element x in GF(p) plus 

the values of v = 4p + 1 which lie in RB(5) and a possible solution for 83, 8 4, ... ,810, 

(For all solutions, 8 1 = 1 and a2 = p-1.) We simplified the search procedure by 
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applying the extra restrictions that (Q a3 < p/2 and(iQ there was no ± pair in the set 

{a1, a3, a6, a7 , a9 }. These restrictions are convenient, as they frequently prevent us 

searching for partial solutions isomorphic to partial solutions already considered. 

Table 2.1 

v p x 

245 61 2 

285 71 7 

405 101 2 

525 131 2 

605 151 7 

725 181 2 

765 191 21 

845 211 3 

965 241 7 

1005 251 6 

1085 271 26 

1125 281 3 

1245 311 17 

1325 331 28 

1605 401 3 

1685 421 2 

1725 431 7 

1845 461 3 

1965 491 7 

2085 521 3 

2165 541 2 

2285 571 3 

2405 601 7 

2525 631 3 

2565 641 3 

2645 661 2 

6 

11 

5 

5 

11 

8 

2 

2 

6 

12 

2 

2 

2 

7 

6 

2 

20 

6 

8 

2 

2 

6 

2 

2 

12 

4 

55 18 7 

60 9 36 

90 82 19 

33 105 98 

140 47 62 

173 96 6 

189 86 44 

112 209 4 

235 62 10 

117 216 35 

268 118 3 

132 279 14 

33 269 42 

316 36 15 

376 19 25 

403 419 5 

325 411 29 

314 449 12 

233 470 21 

498 518 3 

274 539 7 

545 120 26 

593 60 8 

620 115 11 

594 628 13 

656 643 5 
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33 54 43 28 

29 35 62 42 

11 96 33 68 

26 57 74 126 

78 89 104 73 

40 175 85 141 

42 147 105 149 

25 207 99 186 

29 212 179 231 

9 239 134 242 

153 72 199 269 

128 267 1 49 1 53 

130 309 278 181 

295 8 323 324 

28 373 382 395 

18 416 77 344 

1 06 1 9 41 2 402 

147 455 204 257 

22 483 258 469 

23 519 252 269 

71 534 267 470 

45 526 451 565 

213 388 541 599 

132 499 516 629 

47 

18 

629 143 498 

332 329 657 



2765 691 3 6 97 689 2 8 685 594 683 

2805 701 2 2 698 498 3 203 300 401 699 

3005 751 3 7 161 742 9 562 744 590 189 

3045 761 6 6 488 755 4 227 757 273 534 

3245 811 3 2 809 714 3 97 316 495 808 

3285 821 2 6 819 392 2 131 690 429 815 

3525 881 3 7 873 717 8 164 646 235 874 

3645 911 17 18 906 249 5 268 643 662 893 

3765 941 2 2 292 939 3 17 938 649 924 

3885 971 6 10 950 709 21 262 612 359 961 

3965 991 6 2 153 983 8 239 989 838 752 

4085 1021 10 10 588 1011 2 255 1019 433 766 

4125 1031 14 6 684 1025 2 292 1029 347 739 

4205 1051 7 4 1041 1043 8 10 1047 56 995 

4245 1061 2 2 1058 537 3 78 983 524 1059 

4365 1091 2 6 962 1085 7 129 937 154 1084 

4605 1151 17 2 1149 775 3 360 791 376 1148 

Theorem 2.2: There exist (165, 5, 1) and (45, 5, 3) RBIBDs. 

Proot For (165, 5, 1), take the point set as X = (Z2 X Z2 x Z41) u {co}. Consider the 

following blocks: 

B1 = {(0,0,1), (0,0,40), (0,0,7), (0,1,15), (1,0,6)} 

B2 = {(0,0,2), (0,1,17), (0,1,36), (1,0,5), (1,0,20)} 

B3 = {(0,0,10), (0,0,31), (0,0,34), (1,0,21), (1,1 ,38)} 

B4 = {(0,0,24), (1,0,3), (1,0,39), (1,1,26), (1,1 ,35)} 

B5 = {oo, (0,0,0), (0,1,0), (1,0,0), (1,1,0)} 

Note that x = 7 is a primitive element in Z41' Multiply each of B1, B2, B3, B4 by (1,1 ,y) 

for y = 1 and y = 710 = 9; then cycle these blocks mod (2,2,-) and combine with 85, 

This produces the first resolution class in the BIBD. Finally, cycling mod 41 completes 

the resolution. 
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The construction for (45, 5, 3) is similar. Here we take X = (Z2 X Z2 x Z11) u {oo} and 

use the following base blocks: 

B1 = {(O,O,1), (0,0,10), (0,0,7), (0,1,5), (1,1,4)} 

B2 = {(0,0,3), (0,1,2), (0,1,6), (1,1,8), (1,1 ,9)} 

B3 = {(0,0,3), (0,0,8), (0,0,10), (0,1,4), (1,1, 1)} 

B4 = {(0,0,9), (0,1,6), (0,1,7), (1,1,2), (i,i,5)} 

B5 = {(0,0,5), (0,0,9), (0,0,10), (1 ,0,6), (1,1 ,8)} 

B6 = {(0,0,2), (1,0,4), (1,0,7), (1,1,1), (1,1,3)} 

B7 = {oo, (0,0,0), (0,1,0), (1,0,0), (1,1,O)} (3 times) 

Cycling any of the following 3 pairs of blocks mod (2,2,-) and combining with B7 

produces a resolution class: (B1,B~, (B3,B4), (B5,Bs). Finally cycle mod 11 to complete 

the resolution. 

Theorem 2.3: There exists a (105, 5, 1) RBIBD over Z5 x Z21' 

Proof: Consider the following base blocks: 

B1 = {(O,1), (0,13), (0,16), (0,17), (4,3)} 

83 = {(0,8), (1,5), (1,7), (3,9), (3,19)} 

85 = {(O,O), (1,0), (2,0), (3,0), (4,0)} 

82 = {(0,6), (0,20), (1,10), (2,4), (2,12)} 

84 = {(O,i8), (1,14), (2,15), (3,2), (4,11)} 

B6 = ((O,O), (1,3), (2,8), (3,14), (4,9)} 

Cycling each of 81, B2 , B3 , B4 mod (5,-) and combining with B5 produces a resolution 

class; then cycling mod 21 produces 21 resolution classes. Cycling 86 mod (5,21) 

produces 5 resolution classes since all points in 86 are distinct mod 5. 

The next design, although not resolvable itself, will be useful for some recursive RBI8D 

constructions in Theorem 5.3. 

Theorem 2.4: There exists a GD(5,1 ,9,45) over Z5 x GF(32
, X=x+1) whose blocks can 

be partitioned into 18 partial resolution classes, each of 5 blocks, in such a way that 

either all or no pOints from each group appear in each partial resolution class. 
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Proof: Groups in this GOD are of the form Z5 x {y} for y € GF(3~. Let B1 = 

{(O,O) , (1, 1), (1 ,2), (4,X] , (4,2X]} and B2 = {(a, a} , (1 ,x), (1 ,2x), (4,,x3) , (4,2x)}. Cycling 

either B1 or B2 mod (5,-) produces a partial resolution class with the required property; 

cycling mod 32 then gives 18 such partial resolution classes. 

3. Some New (v,6,1) BIBDs 

The set RRN(5) is PBO-closed (Le. if a (v, RRN(5), 1} PBO exists, then v € RRN(5}}. 

Since 6 is the smallest element of RRN(5}, it is no surprise that the existence of (v,6,1) 

BI BOs has a major impact on the establishment of the set RRN(5}. The following result 

is given in [3]: 

Lemma 3.1: If v;: 1 or 6 mod 15 then a (v, 6, 1) BIBO exists, except when 

v E {16, 21, 36} and possibly when v € {46, 51, 61, 81, 141, 166, 196, 201, 226, 231, 

256, 261, 276, 286, 291, 316, 321, 346, 351, 376, 406, 411, 436, 441, 466, 471, 496, 

501, 526, 561, 591, 616, 646, 651, 676, 706, 741, 766, 771, 796, 801, 916, 946, 1096, 

1221, 1246, 1251, 1396, 1456, 1486, 1521, 1611, 1671, 1851, 2031}. 

In this section we obtain 14 new (v, 6, 1) BIBOs for v = 276, 466, 706, 741, 946, 1096, 

1246, 1396, 1456, 1486, 1521, 1611, 1671 and 2031. First however, we need to obtain 

some new (v, {6} u f*, 1) PBOs and some new incomplete TOs with k = 6: 

Lemma 3.2: A (v, {6} u f*, 1) PBO exists if either 

(0 v = 5f + 1 and 4f + 1 € RB(5) 

(iO v = 6(f - IX) + IX where IX € {a, 1, 6}, f - IX € T(6} and f € B(6) 

(iiO f= 16 and v€ {141, 171,201,231, 261}, or f= 21 and v€ {i66, 196, 226} , or 

f = 26 and v € {221 , 251, 281}, or f = 31 and v € {246, 276} or f = 41 and v E 

{266, 296} or f = 51 and v = 346. 

Proof: For (0, construct a (4f + 1, 5, 1) RBIBO, and add each of f infinite points to a 

separate resolution class. For (iO, construct a TO(6, f - a); then form a (f,6,1) BIBO on 

each of 5 groups plus IX infinite points. If IX = 6, let one block in each (f,6,1) BIBO 
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contain the infinite points and delete it. Then form a block of size f on the sixth group 

plus the infinite paints. For f = 16 and v = 141, see [3]. For the other designs in (iiQ 

except (v, f) = (266,41), we construct a (v - f, {5, 6}, 1) PBD over Z5 x Z(V-f)/5 in such a 

way that no two points in any base block of size 5 have the same first coordinate 

mod 5. This ensures that the blocks of size 5 can be partitioned into resolution 

classes; further, there will always be f such resolution classes. By adding each of f 

infinite paints to a separate resolution class and forming a block on the infinite paints, a 

(v, {6} u f*, 1) PBD is obtained. In each case there is one base block of the form 

{(O,O), (1,0), (2,0), (3,0), (4,0)} which should be developed mod (-, (v-f)/5); the 

others, which are given below, should be developed mod (5, (v-f)/5). 

(v,f) = (171,16): 

{(O,O), (0,1), (0,5), (0,14), (0,20), (1,25)} 

{(O,O), (0,3), (0,10), (2,14), (2,16), (4,13)} 

{(O,O) , (0,8), (1,30), (2,26), (3,24), (4,27)} 

(v,f) = (201,16): 

{(O, 17), (0,22), (0,35), (0,14), (0,29), (0,31)} 

{(O,O), (0,1), (1,20), (2,9), (3,13), (4,31)} 

{(O,O), (1,1), (2,10), (3,23), (4,8)} 

{(O,O), (1,2), (2,9), (3,19), (4,14)} 

{(O,O), (1,6), (2,20), (3,8), (4,16)} 

{(O,O), (1,9), (2,7), (3,1), (4,26)} 

Multiply the last two blocks by (1,10) and (1,26) mod (5,37) to produce 4 further base 

blocks. 

(v,f) = (231,16): 

{(O,O), (0,1), (0,16), (0,26), (0,40), (1,2)} 

{(O,O), (0,2), (0,7), (0,13), (2,3), (2,11)} 

{(O,O), (0,20), (1,11), (1,33), (2,14), (4,36)} 

{(O,O), (0,9), (1,21), (2,17), (3,33), (4,5)} 

{(O,O), (0,12), (1,9), (2,32), (3,30), (4,18)} 
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{(O,O), (1,6), (2,23), (3,8), (4,7)} 

{(O,O) , (1,8), (2,26), (3,36), (4,13)} 

{(O,O), (1,14), (2,36), (3,19), (4,8)} 



(v,f) = (261,16): 

{(O,O), (0,1), (0,4), (1,11), (1,24), (3,40)} 

{(O,O), (0,25), (0,42), (1,19), (2,12), (2,2B)} 

{(O,O), (1,29), (2,34), (3,3), (4,11)} 

Multiply these blocks by (1, 1B) and (1,30) mod (5,49) to produce 6 further base blocks. 

(v,f) = (166,21): 

{(O,O), (0,1), (0,3), (0,19), (0,25), (1,12)} 

{(O,O), (O,B), (0,20), (1,15), (3,14), (3,2B)} 

{(O,O), (1,20), (2,25), (3,22), (4,1 a)} 

(v,f) = (196,21): 

{(O,O), (0,1), (0,3), (0,11), (0,15), (1,31)} 

{(O,O), (0,5), (O,1B), (1,B), (2,7), (4,34)} 

{(O,O), (0,7), (0,16), (2,30), (3,4), (3,10)} 

{(O,O), (1,7), (2,2B), (3,17), (4,9)} 

(v,f) = (226,21): 

{(O,O), (0,1), (0,14), (0,22), (0,26), (1,4)} 

{(O,O), (0,2), (0,5), (0,11), (2,3), (2,21)} 

{(O,O), (0,7), (1,6), (1,37), (2,11), (4,23)} 

{(O,O), (0,17), (1,14), (2,30), (3,32), (4,24)} 

(v, f) = (221,26): 

{(O,O), (0,3), (0,9), (0,11), (0,26), (1,29)} 

{(O,O), (0,14), (O,1B), (0,19), (1,12), (3,31)} 

{(O,O), (0,29), (1,17), (1,24), (3,6), (3,33)} 

((O,O), (1,22), (2,11), (3,3), (4,iB)} 

(v, f) = (251,26): 

{(O,O), (0,3), (0,27), (0,31), (0,32), (1,36)} 

{(O,O), (0,2), (0,10), (0,36), (1,25), (2,41)} 
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{(O,O), (1,4), (2,17), (3,9), (4,15)} 

((O,O), (1,10), (2,12), (3,13), (4,2)} 

{(a, 0) , (1,23), (2,26), (3,5), (4,1)} 

{(O,O), (1,4), (2,1), (3,24), (4,22)} 

{(a, 0), (1,22), (2,5), (3,16), (4,iB)} 

{(O,O), (1,10), (2,15), (3,9), (4,23)} 

{(a, 0), (1,7), (2,15), (3,39), (4,20)} 

{(a, 0) , (1,9), (2,22), (3,34), (4,21)} 

{(O,O), (1,10), (2,37), (3,7), (4,2)} 

{(a, 0) , (1,26), (2,17), (3,5), (4,40)} 

{(a, 0) , (1,2), (2,37), (3,36), (4,3)} 

{(a, 0) , (1,5), (2,24), (3,37), (4,14)} 

{(a, 0) , (1,9), (2,10), (3,21), (4,35)} 

{(O,O), (1,30), (2,1), (3, B) , (4,i6)} 

{(O,O), (1,3), (2,11), (3,10), (4,31)} 

{(a, 0) , (1,20), (2,32), (3,22), (4,23)} 



{(O,O), (0,15), (0,38), (1,17), (2,27), (3,1)} 

{(O,O), (0,12), (1,18), (1,38), (3,36), (3,42)} 

{(O,O), (1,39), (2,1), (3,32), (4,17)} 

(v, f) = (281 ,26): 

{(O,O), (0,3), (0,5), (0,24), (0,25), (1,6)} 

{(O,O), (0,4), (0,15), (0,38), (1,8), (2,39)} 

{(O,O), (0,9), (0,44), (1,36), (2,20), (3,46)} 

{(O,O), (0,6), (0,43), (1,15), (3,9), (3,48)} 

{(O,O), (0,18), (1,30), (1,40), (2,17), (3,11)} 

(v,f) = (246,31): 

{(O,O), (0,1), (0,8), (0,10), (0,21), (0,39)} 

{(0,20), (0,23), (1,3), (1,40), (4,14), (4,29)} 

{(0,8), (0,35), (2,13), (2,30), (3,12), (3,31)} 

{(O,O), (1,43), (2,25), (3,17), (4,13)} 

{(O,O), (1,42), (2,26), (3,37), (4,32)} 

{(O,O), (1,25), (2,38), (3,33), (4,2)} 

{(O,O), (1,41), (2,19), (3,15), (4,49)} 

{(O,O), (1,50), (2,47), (3,20), (4,37)} 

{(O,O), (1,16), (2,4), (3,22), (4,41)} 

{(O,O), (1,11), (2,2), (3,39), (4,46)} 

{(O,O), (1,2), (2,16), (3,35), (4,3)} 

{(O,O), (1,4), (2,31), (3,41), (4,13)} 

{(O,O), (1,5), (2,36), (3,29), (4,8)} 

Multiply each of the blocks in the right-hand column by (1,-1) mod (5,43) to produce 3 

further base blocks. 

(v,f) = (276,31): 

{(O,O), (0,1), (0,8), (0,10), (0,23), (1,45)} 

{(O,O), (0,4), (0,16), (0,35), (2,11), (2,40)} 

{(O,O), (0,6), (0,11), (1,32), (2,3), (4,1)} 

{(O,O), (0,3), (0,24), (1,9), (1,41), (3,43)} 

{(O,O), (0,1), (2,13), (3,29), (4,31)} 

(v,f) = (296,41): 

{(O,O), (0,3), (0,12), (0,17), (0,25), (0,35)} 

{(O,O), (0,6), (0,30), (0,50), (1,16), (2,13)} 

{(O,O), (0,4), (0,15), (1,3), (2,45), (2,47)} 

{(O,O), (1,12), (2,44), (3,18), (4,2)} 

{(O,O) , (1,21), (2,29), (3,48), (4,50)} 

{(O,O), (1,5), (2,25), (3,47), (4,10)} 
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{(O,O), (1,3), (2,14), (3,41), (4,35)} 

{(O,O), (1,4), (2,27), (3,14), (4,21)} 

{(O,O), (1,8), (2,33), (3,23), (4,7)} 

{(O,O), (1,13), (2,42), (3,12), (4,9)} 

{(O,O), (1,15), (2,39), (3,37), (4,19)} 

{(O,O), (1,18), (2,49), (3,36), (4,21)} 

{(O,O), (1,29), (2,40), (3,49), (4,24)} 

{(O,O), (1,15), (2,11), (3,39), (4,28)} 

{(O,O), (1,6), (2,39), (3,43), (4,38)} 

{(O,O), (1,34), (2,26), (3,50), (4,6)} 



(v,f) = (346,51): 

{(O,O), (0,1), (0,7), (0,21), (0,34), (0,36)} 

{(O,O), (0,3), (0,8), (0,19), (0,50), (1,42)} 

{(O,O), (0,4), (0,22), (1,44), (3,45)' (3,55)} 

{(O,O), (1,1), (2,37), (3,16), (4,22)} 

{(O,O), (1,2), (2,45), (3,31), (4,7)} 

((O,O), (1,3), (2,51), (3,49), (4,1)} 

{(O,O), (1,4), (2,13), (3,37), (4,32)} 

{(O,O) , (1,5), (2,12), (3,3), (4,44)} 

{(O,O), (1,8), (2,55), (3,42), (4,3)} 

{(O,O), (1,10), (2,35), (3,9), (4,28)} 

{(O,O), (1,12), (2,40), (3,36), (4,6)} 

{(O,O), (1,13), (2,27), (3,43), (4,1 O)} 

{(O,O), (1,17), (2,47), (3,6), (4,27)} 

For (v,f) = (266,41), we work over l5 x l3 X l15' There is one short block, {(O,O,O), 

(0,0,3), (0,0,6), (0,0,9), (O,0,12)} which generates a resolution class on the non-infinite 

pOints by adding each of the triples (x,y,.z) for x E l5' Y E Z3 and Z E {0,1 ,2}. The other 

10 blocks given below should be developed mod (5,3,15). As before, no 2 pOints in 

any base block of size 5 have the same first coordinate mod 5; this ensures that the 

blocks of size 5 each generate 5 resolution classes on the non-infinite points. 

{(O,O,O), (0,0,1), (0,0,11), (0,1,4), (0,2,14), (1,O,O)} 

{(O,O,O), (0,1,6), (0,1,14), (0,2,4), (0,2,6), (2,0,0)} 

{(O,O,O), (1,0,6), (2,2,4), (3,0,4), (4,2,11)} 

{(O,O,O), (1,0,7), (2,2,6), (3,0,13), (4,2,7)} 

{(O,O,O), (1,2,3), (2,1,7), (3,2,13), (4,1,10)} 

{(O,O,O), (1,0,13), (2,1,12), (3,0,3), (4,0,4)} 

{(O,O,O), (1,2,8), (2,1,3), (3,1,5), (4,0,5)} 

{(O,O,O), (1,0,12), (2,2,13), (3,0,1), (4,1, 13)} 

{(O,O,O), (1,0,5), (2,0,8), (3,1,10), (4,2,4)} 

{(O,O,O), (1,1,10), (2,2,8), (3,2,1), (4,0,6)} 

Theorem 3.3: Let v = (k - 2)h + 1. If k - 1 is a prime power, and there exist both a 

TD(k, v+h) - TD(k, h) and an idempotent TO(k, 0, then there exists a TD(k, kv - 1) -

TD(k, (k 2) h). 
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Proof: The proof of this theorem can be divided into four steps. Thus: 

(0 The point set for TD(k, kv-1) - TD(k ,(k-2) h) will be taken as Ik x [(Iv x Ik_1) u 

(H x Ik-:J] where for any x, Ix denotes a set of size x, and H has size h. Groups will 

consist of points with the same values from 1/(1 and the hole set will be taken as Ik x (H x 

Ik_:J. Let D be a TD(k, v+~ - TD(k,h) on Ik x [Iv u H], the hole set being Ik x H. The 

design D contains v blocks with no paints from Ik x H; further, simple counting shows 

every point in Ik x Iv appears in exactly one of these blocks. 

(iO If B is a block in D containing no point from Ik x H, then construct a TD(k, k-1) 

on Ikx B. 

(iiO If B is a block in D containing one point, P, from Ik x H, then construct a 

resolvable TD(k-1, k-1) on (B\P) x Ik- 1 in such a way that one resolution class 

consists of the k-1 blocks (B\P) x {y}, for y E Ik_1• The(e remain k-2 resolution 

classes in this design; add each point from P x Ik_2 to one of them. 

(iv) Two points not both in the hole set Ik x (H x Ik-:J will appear in a block from (iO 

or (iiO unless they both have equal coordinates from Ik-1 and unequal coordinates from 

Iv' So for each y E Ik_1, we construct a TD(k, '" - v·TD(k, 1) on Ik x [Iv x {y}], the v 

holes of size 1 being on Ik x {z} x {y}, for Z E Iv' 

The blocks in (0, (i0, (iiO and (iv) give the required TD(k, kv - 1) - TD(k, (k - 2) h). 

Remark 3.4: Examples of new ITDs obtainable from Theorem 3.3 are TD(6,77) -

TD(6,12) and TD(6,101) - TD(6,16). These two designs are used later in Tables 3.1 

and 5.1 to obtain a (466,6,1) BIBD and a (2445,5,1) RBIBD respectively. 

We now give a few more ITDs using quasi-difference matrices (QDMs). A (Z,k,A,1,A,2;h) 

QDM over an abelian group G of size v is an array Q = (qi,j) with k rows and 

A,1 (z-1 + 2~ + A,2 such that (Q each entry is either blank (denoted by -) or contains an 

element of G, (iQ for any two rows i,j the multi-set of differences qi,l - qj.l with qi,l' % 
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both not empty contains each non-zero element of G A.1 times and zero A.2 times. If 

A.1 = A.2 = 1, then existence of such a QOM implies existence of a TO(k,z+h) - TO(k,h). 

Theorem 3.5: If (v,h) € {(20,4), (30,6), (31,5), (56,11)} then a (v-h,k,1,1;h) QOM and a 

TD(6,0 TO(6,h) both exist. 

Proof: For (v,h) = (20,4) consider the following array over GF(16, Jt = x+1): 

A= X
13 X14 X- 0 1 

X- X
13 X14 0 

X14 X- X
13 0 

0 X X
13 

X X' 

X 0 )(l X
13 

X 

0 X X )(l X
13 

Replace each column (a,b,c,d,e,f)T of A by the four columns (a+w, b+w·)(i, c+w·x10
, 

d+w·x, e+w·X', f+w·x11)Tfor w = O,1,)(i and x10
. This gives a (16,6,1,1;4) QOM. 

For the other 3 cases, we give 2 arrays A1, A2 and define an automorphism T by 

T(a,b,c,d,e,f)T = (b,c,d,e,a,f)T; the required (v-h,6,1,1;h) QDM is then obtained by 

applying the automorphism group of order 5 generated by T to the columns of A1 and 
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(v, h) = (31,5): 

A; = 0 0 0 0 0 0 0 A2 = 0 

5 9 25 18 12 4 10 0 

7 23 19 21 8 16 0 

20 8 12 16 15 9 14 0 

9 10 0 

3 17 2 16 23 25 0 

(v,~ =(56,11): 

A; = 0 0 A2 = 0 0 

32 12 0 0 0 0 0 0 0 0 0 0 0 0 9 

35 4 22 16 42 15 27 26 37 10 38 30 0 18 

43 37 9 33 14 21 36 10 12 38 30 26 20 0 27 

5 6 28 17 13 38 23 29 11 8 32 16 0 36 

15 29 44 40 16 37 17 13 34 35 38 0 

Remark 3.6: For two of the TO(6,0 - TO(6,~ 's in the previous theorem, namely for 

(v,~ = (20,4) and (30,6) we have v = 5h. TO(6,5~ - TO(6,h) 's can be used to 

construct (5,1) frames of type [4h]6. (See Theorem 5.5). Also the last design with (v,h) 

= (56,11) can be used to obtain a (5,1) GOD of type 645
. (See [19] and [22] for further 

details.) 

For some of our recursive design constructions, we make use of Wilson's fundamental 

GOD construction [21]. Below is a brief description of this construction together with 

its extension to frame constructions [20]: 

Theorem 3.7: Suppose that 0 is a master GO(K;, 1;, M, 0 with groups Gj U = 1, ... ,f/) 

and each point x in 0 is assigned a non-negative weight w(x). Then: 

(Q If for each block B = {x;, x2' ... 'Xk} in 0 there exists a (~, 1~ GOD of type (w(x;), 

w(x~,oo.,w(xJ), then there exists a (~, l;'l~ GOD with group type (:E w(x): j = 1,oo.,f/). 
x€ Gj 
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Oi) If A.1 = 1 and for each block B = {X1' x2, ... ,xJ in 0 there exists a (~, A.~ 

frame of type (w(x1), w(-\2), ... , w(xJ) , then there exists a (~, A.~ frame of type 

(:E w(x): j= 1, ... g). 
x€ Gj 

The main result of this section now follows: 14 new (v, 6, 1) BIBOs are given. Ten of 

these are obtained by the following construction sometimes known as singular indirect 

product (SIP): 

Theorem 3.8: Let v = k(w-f) + f + (k-1)a where a ~ a ~ f. Suppose that the 

following designs exist: an (f+(k-1)a, K, 1) PBO, a (w, Ku f*, 1) PBO, and a 

TO(k, w-f+a) - TO(6,a). Then a (v, K u {k} u (f+(k-1)a) *, 1) PBO exists. If further, 

f+ (k-1)ae B(Ku{k}), then Ve B(Ku{k}}. 

Proof: See [13] or [24]. 

Remark 3.9: When using Theorem 3.8, we generally do not indicate the construction 

for the required TO(6, w-f+a) - TO(6, a). A table of known TO(6, x) - TO(6, .0 's for 

x ~ 1000, Y ~ 50 can be found in [2]. For details of the construction methods see [6] 

and [9]. 

Theorem 3.10: If v e {276, 466, 706, 741, 946, 1096, 1246, 1396, 1456, 1486, 1521}, 

then Ve B(6). 

Proof: For v = 276, construct a (276, {6} u 31 *, 1) PBO as in Lemma 3.2; then delete 

the big block and form a (31,6,1) BIBO on the points in it. For all the other values of V, 

use Theorem 3.8 with K= {6}, k = 6 and the values of W, 1, a shown in Table 3.1. For 

the required (w, {6} u f*, 1) PBOs see Lemma 3.2; also, from [2], we know that all the 

required TO(6, w-f+a) - TO(6, a) 's exist. For v = 466, the required TO(6, 77) -

TO(6, 12) is also obtainable from Theorem 3.3. 
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Table 3.1 

v w f a f+(k-1)a v w f a f+(k-1) a 

466 81 16 12 76 1246 221 26 10 76 

706 131 26 10 76 1396 246 31 15 106 

741 131 26 17 111 1456 251 26 16 106 

946 166 21 11 76 1486 251 26 22 136 

1096 206 41 13 106 1521 266 41 26 171 

Theorem 3.11: {1611, 1671, 2031} c B(6). 

Proof: These constructions are obtained using Theorem 3.7. For v = 1611 and 1671, 

take a TD(18, 17), give weight 20 to 4 or 8 points in the last group and weight 5 to all 

other points. Since there exist (6,1) GODs of types 518 and 517201 (by deleting one 

point from a (91,6,1) BIBD or adding 20 infinite points to separate resolution classes in 

an (85,5,1) RBIBD), Theorem 3.7 can be used to obtain (6,1) GODs of types 85171451 

and 85172051
• Now add 21 infinite pOints; form a (106,6,1) BIBD on one group of size 

85 plus the infinite pOints and form a (v, {6} u 21 *, 1) PBO for v = 106, 166 or 226 on 

each other group plus the infinite pOints. In each case let the block of size 21 contain 

the infinite points and delete it. These (v, {6} u 21 *, 1) PBOs come from Lemma 3.2(Q 

or (iiQ. For v = 2031, the construction is similar, but here we start with a (6,1) GOD of 

type 513 and inflate it using TD(6,31) to obtain a (6,1) GOD of type 15513
; we then add 

16 infinite points and form a (171,6,1) BIBD on one group plus the infinite points and a 

(171) {6} u 16*, 1) PBD on each other group plus the infinite points. Again each block 

of size 16 should contain the infinite points and should be deleted. 

4. Some New (v, Q, 1) peDs for Q = {6} u {Prime powers == 1 mod 5} 

The existence of these PBDs was investigated in [14]. A few improvements were 

stated, but not proved, in [4]. In this section, we prove these improvements and obtain 

a few more. 
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Theorem 4.1 [14]: Let Q = {6} u {Prime powers == 1 mod 5}. If v == 1 mod 5, then v E 

B( Q) except possibly for v E E1 U E2 where E1 = {21, 26, 36, 46, 51, 56, 86, 116, 146, , 

166, 196, 221, 226, 236, 286, 291, 316, 321, 326, 351, 386, 411, 416, 441, 446, 471, 

476, 501, 536, 566, 596, 626, 651, 686, 716, 746, 771, 776, 801, 806, 866, 896, 926, 

986, 1046} and E2 = {141, 161, 171, 201, 206, 231, 261, 266, 276, 296, 336, 356, 376, 

561, 591, 621, 706, 711, 741, 766, 831, 946, 956, 1016, 1076, 1106, 1121, 1156, 1196}. 

We now prove: 

Theorem 4.2: If v if E1 and v == 1 mod 5, then v E B( Q). 

Proof: Because of Theorem 4.1, we only need to consider the values of v in E2• 

{171, 336, 621, 706, 711, 741, 831, 946, 1156} c B(6) c B( Q) (see Theorem 3.10 for 

v = 276,706,741,946 and [3] for the rest). 8y Lemma 3.2{iiQ, {141, 201,231, 261} c 

B({6, 16}) c 8(Q) and {266, 296} c B({6, 41} c B(Q). Lemma 3.2(Q gives 206 E 

B( {6, 41}), 356 E 8({6, 71}) and 956 E 8({6, 191}); hence {206, 356, 956} c 8( Q). 

For t = 1016, take TO(7,7) as the master GOD in Theorem 3.7; then give weight 20 to 

all paints in the first 6 groups and weight 25 to all points in the last group. Since (6,1) 

GODs of types 206 and 206251 exist ([1], [15]), this gives a (6,1) GOD of type 14061751
• 

Then form a (141, {6, 16}, 1) PBO or (176, {i1, 16}, 1) PBO on each group plus an 

infinite point. The first of these comes from Lemma 3.2(iiQ and the second exists since 

176 = 11 ·16. Finally, for v = 161, 376, 561, 591, 766, 1076, 1106, 1121, 1196, we can 

use the SIP construction in Theorem 3.8 with K = Q, k = 6, and (w,f,a) = (31,6,1), 

(66,6,2), (96,16,13), (106,21,12), (141,16,0), (181,31,29), (186,31,29), (201,16,5), 

(206,41,33) respectively. The required (w, {6} u f*,1) P80s all come from Lemma 3.2. 

Remark 4.3: If K is a PBO-closed set and S is a subset of K such that B( S) = K, then 

S is called a generating set for K If x E K and x if B(K\ {x}), then x is said to be 

essential in K In [11], it was noted that for K = {v: v == 1 mod 5}, a generating set is 

S = {6, 11, 16, 21, 26, 36, 41, 46, 51, 56, 61, 71, 86, 101, 116, 131, 146, 166, 191, 196, 

221, 226, 231, 236, 251, 261, 266, 286, 291, 296, 311, 316, 321, 326, 351, 356}. In [11], 

it was also noted that values s 41 in S are essential in K, and that it was not known 
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whether the values ~ 46 in S are essential in K However, Lemma 3.2(0 with f = 26, 71 

shows that 131, 356 are inessential, and Lemma 3.2(iiO shows that 166, 196, 221, 226, 

231, 251, 261, 266 and 296 are inessential. Adding an infinite point to the groups of the 

(6,1) GOD of type (20~ (251
) in [15] gives 146 E B( {6, 21, 26}) , so 146 is also 

inessential. By Lemma 3.2(iO, 66 E B( {6, 11}); hence by Theorem 3.8, 351 = 6(66-11) 

+ 21 E B( {6, 11, 21}), so 351 is inessential. Finally, by Lemma 3.1 there exists a 

(66, 6, 1) BIBO and hence also (6,1) GODs of types 513
; inflating this GOD by 5 using 

Theorem 3.7 gives a (6,1) GOD of type 2513
• Adding an infinite point to the groups 

gives 326 c B{{6, 26}). Hence 326 is inessential. 

5. Recursive Constructions for (\',5,1) RBIBDs 

There are several known recursive constructions for (v,5,1) RBIBOs. The first one in 

Lemma 5.1 is Harrison's Theorem and is proved in [17]. 

Lemma 5.1: If {km, kn} c RB(1q and a TO(k+ 1, rlj exists, then kmn E RB(Iq. 

Corollary 5.2: {825, 1425,2145,3465, 7125} c RB(5). 

Proof: Use Lemma 5.1 (825 = 5·5·33, 1425 = 5·5·57, 2145 = 5·13·33, 3465 = 

5·21 '33, 7125 = 5·25·57). The required (v,5,1) RBIBOs for v = 105, 165 and 285 

come from Theorems 2.1 - 2.3. 

In some cases one of the designs in Lemma 5.1 need not be resolvable, provided its 

blocks can be partitioned into a sufficiently small number of partial resolution classes. 

The following theorem is a special case of construction 4.4 in [18]; an outline of the 

proof can also be found in [10]. 

Theorem 5.3: Suppose the following designs exist: a resolvable (k,1) GOD of type gU 

and a (k,1) GOD of type 9 t whose blocks can be partitioned into s partial resolution 

classes. Further, suppose that whenever any point P appears in anyone of these 

partial resolution classes, then so does every point in the same group as P. Let 
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fu = g(u-1)/(k-1) and f t = g(t-1)/(k-1). Then if fu ~ S - f/l there exists a resolvable 

(k,1) GOO of type gtu. 

Corollary 5.4: If v€ {945, 1485,2385,2745, 4725}, then v€ RB(5). 

Proof: Use Theorem 5.3 with k = 9 = 5 and t = 9. The required v values equal 

5·9·u for u = 21,33,53,61, 105; also, the required (5,1) GOO of type 59 is given in 

Theorem 2.4. Therefore, Theorem 5.3 gives a resolvable (5,1) GOO of type 5vt5 • Note 

that f t = 10, S = 18, and in all cases fu = 5(u-1)/4 ~ S - f t = 8. Filling in each group 

then gives a (v,5,1) RBIBO. 

The next two lemmas provide a method of constructing frames and a method of 

obtaining RBIBOs from such frames. 

Lemma 5.5 [19]: If a TO(k+1,1rn? - TO(k+1,1tl? exists, then a (k,1) frame of type 

( (k -1) v0 (k+ 1) also exists. 

Lemma 5.6 [10]: Suppose a (k,1) frame of type (g1' g2, ... ,gt) exists, h € {1, k}, and 

t 

gi + h € RB(k) for all i € {1, 2, ... ,t}. Then v = (~ gi) + h € RB(k). 
i=1 

Theorem 5.7: {145, 1145, 1165} c RB(5). 

Proof: For v = 145, a (5,1) frame of type 246 exists by Lemma 5.5 (see Theorem 3.5 

for the required TO(6,30) - TO(6,6)). Now use Lemma 5.6 with h = 1. For v = 1145, 

1165 respectively, start with master (6,1) GOOs of types 519 and 206251
• By Lemma 5.5, 

there exist (5,1) frames of types 126 and 86
, since TO(6,15) - TO(6,3) and TO(6,1 0) -

TO(6,2) both exist (see [8] and [5]). Using these frames as ingredients in Theorem 3.7 

we obtain (5,1) frames of types 6019 and 16062001. Since {65, 165, 205}c RB(5), the 

results now follow from Theorem 5.6 with h = 5. 
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The remaining recursive constructions in this section make use of the fact that RRN(5) 

is PBD-closed. By Theorem 4.2 we have 376 E B({6, 16}); in addition, {146, 326} c 

B({6, 21, 26}) by Remark 4.3 and {141, 166, 196,201,221,226,231,261,266,296, 

346} c B({6, 16,21,26,41, 51}) by Lemma 3.2. Further, 476 E B({6, 26}): start with a 

(6,1) GDD of type 519
, inflate by 5 using Theorem 3.7 to obtain a (6,1) GDD of type 2519 

and add an infinite point to the groups. Hence, by PBD-closure of RRN(5) we have: 

Theorem 5.8: {141, 146, 166, 196, 201, 221, 226, 231, 261, 266,296, 326, 346, 376, 

476} c RRN (5), i. e. {565, 585, 665, 785, 805, 885, 905, 925, 1 045, 1 065, 1185, 1305, 

1385, 1505, 1905} c RB(5). 

We now prove: 

Theorem 5.9: If v E {705, 1545, 2265, 2505,2865, 2985, 3105, 3225, 3345, 3585, 3705, 

3945, 4065, 4425, 4665, 4785}, then v E RB(5). 

Proof: These follow from the SIP construction in Theorem 3.8. For the given values of 

v, r = (v - 1)/4 can be written as 6(w - 6) + (26 = 6 + 5-4) where WE {31, 66, 96, 

106, 121, 126, 131, 136, 141, 151, 156, 166, 171, 186, 196, 201}; thus SIP together 

with PBD-closure of RRN(5) gives r E RRN(5) and hence, v E RB(5). The required 

(w, RRN(5) u 6*, 1) PBDs are obtainable by Lemma 3.2(ij for W = 131,206, by Lemma 

3.2(iiij for W = 141, 166, 196, 201 and by Lemma 3.1 for the rest. 

Table 5.1 gives some other new elements of RRN(5) obtained by SIP (with K = RRN(5), 

k = 6) together with the appropriate values of w,f,a used. It also gives the values of 

v = 4r + 1 which consequently lie in RB(5). As before, the required (w, RRN(5) u f*,1) 

PBDs come from Lemma 3.2 and for the required TD(6, w-f+a) - TO(6,a) 's, see [2]. 
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Table 5.1 

v r w f a f+5a 

1665 416 81 16 2 26 

2205 551 106 21 4 41 

2325 581 106 21 10 71 

2445 611 106 21 16 101 

2685 671 131 26 3 41 

3165 791 156 31 2 41 

3785 946 166 21 11 76 

4185 1046 181 31 23 146 

4485 1121 196 21 16 101 

4545 1136 206 41 21 146 

4845 1211 221 26 3 41 

We now set about constructing the larger unknown (v, 5, 1) RBIBDs, (Le. v z 4905). 

Theorem 5.10 below can be used for all of these (except v = 7125, which was obtained 

in Corollary 5.2). This theorem uses Wilson's Fundamental GDD Construction 

(Theorem 3.7) and was proved in [23]. It makes use of ({6, 16}, 1) GDDs of types 515
, 

516
, 515151 and 516151

. For the first two, delete one point from a (76, 6, 1) BIBD or one 

point not in the large block of an (81, {6} u 16*, 1) PBD. Then use the deleted point to 

define groups. For the last two, (96, {6, 16}, 1) and (91, {6, 16}, 1) PBDs can be 

obtained by filling in the groups of a TD(6, 16) or by filling in the groups of a TD(6, 15) 

with an infinite point; delete a non-infinite point and use it to define groups. 

Theorem 5.10: Suppose r = 75t + 5u + 15w + IX, where 0 sUs t, 0 s W s t, IX E 

{1,6}, and TD(17, t) exists. Then: 

(~ If IX 1 and {5t + 1, 5u + 1, 15w + 1} c RRN(5), then rE RRN(5). 

(i~ If IX = 6, {5t + 6, 15w + 6} c B(RRN(5) u 6*), and 5u + 6 E RRN(5), then 

r E RRN(5). 
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Table 5.2 gives several applications of Theorem 5.10. In all cases, we have 5u + a E 

{26, 41, 71}; thus 5u + a E RRN(5) by Theorems 2.1 - 2.3. Existence of the required 

(q, RRN(5) u «*, 1) PBOs for q E {5f + a, 15w + a} follows from Lemmas 3.1, 3.2 and 

Theorem 4.2. 

Table 5.2 

f = 16, U = 5, a = 1 

t = 16, U = 1 4, a = 1 

t = 17, U = 13, a = 6 

t = 19, U = 1 4, a = 1 

t = 23, U = 4, a = 6 

t = 23, U = 7, a = 6 

t = 23, U = 1 3, a = 6 

v 

4905, 4965, 5025 

5085,5145, 5385, 5445 

5685, 5745, 5865, 5925, 

5985,6045,6165 

6225, 6285, 6345, 6585, 

6645, 6705, 6945 

7005, 7245 

7065, 7365 

7185,7425,7485,7845 

r 

1226,1241,1256 

1271, 1286, 1 346, 1361 

1421, 1436, 1466, 1481, 

1496, 1 511, 1 541 

1556, 1 571, 1 586, 1 646, 

1661, 1 676, 1736 

1751, 1811 

1766, 1841 

1796, 1 856, 1 871, 1961 

We can now summarise the results of Sections 2 and 5. Here, constructions have 

been provided for 103 of the 109 previously unknown (v,5,1) RBIBOs mentioned in 

Table 1.1. As a result we have the following theorem: 

Theorem 5.11: A resolvable (v, 5, 1) BIBO exists for all v:: 5 mod 20, except possibly 

for the 6 values of v in Table 5.3. 

Table 5.3 

45 185 225 345 465 645 

Additional note: 

Recently the first author found a new TO(7,54) - TO(7,9). By Theorem 5.5, this implies 

existence of a (6,1) GOD of type 457
; adding an infinite pOint to the groups of this 

design gives 316 E B( {6, 46}). Thus, 316 is also an inessential element in the set K in 

Remark 4.3. 

lqq 
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