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Abstract

Let T be a finite connected graph and let G be a subgroup of the auto-
morphism group Awtl’ of I'. Then I' is said to be G-symmetric, and G is
sald to be symmetric on I, if & is transitive on the set of ordered pairs of
adjacent vertices of I'; ' is sald to be symmetric if Autl' is symmetric. It
is shown that there are exactly six types of 5-valent G-symmetric graphs
of order at most 100 which are not bipartite and on which no subgroup
acts regularly. Their orders are 6, 12, 36, 66, 72 and 96.

1 Introduction

Let T' be a finite connected graph and G be a subgroup of the automorphism group
Autl’ of T'. Then I' is said to be G-symmetric, and G is said to be symmetric on T,
if G is transitive on the set of ordered pairs of adjacent vertices (arc) of I'; T is said
to be symmetric if it is AutI-symmetric. Note that symmetric graphs (that is those
whose automorphism groups act symmetrically) are vertex transitive and hence are
regular. The motivation for this paper came from Lorimer [1] about determining all
minimal trivalent symmetric graphs of order at most 120. Similar work for 5-valent
graphs is more complicated than that for trivalent ones. In the trivalent case the
order of a vertex stabilizer has a upper bound that is 48, while in the 5-valent case
the order of a vertex stabilizer divides 5- 32 - 217 (see [3]). In this paper we give a
complete list of 5-valent symmetric graphs which are connected and have order at
most 100. In [2] Lorimer gave the following theorem for graphs of prime valency.

*This paper was written while the author was visiting Peking University. The author thanks
Professor M.Y. Xu, his tutor, for his guidance.
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Theorem 1 (Lorimer) Let I' be a connected G-symmetric graph of valency D,
where p s prime. For each normal subgroup N of one of the following holds:

(a) T is N-symmetric and N is a non-abelian simple group;

(b) N acts regularly on vertices and T is a Cayley graph for N:

(¢) N has just two orbits on verlices and T is bipartite;

(d) NN H = 1, where H is a vertex stabilizer. N has r > p+ 1 orbits on
vertices, the natural block graph I';y on N-orbits is G/N-symmetric of valency P,
and I' 1s a topological cover of T'y.

In Theorem 1, if G is chosen to be minimal with respect to acting symmetrically,
then (d) implies G/N is a non-abelian simple group and from (a) it follows that
G = N. The purpose of this paper is to investigate cases (a) and (d) in Theorem 1.
The results for 5-valent graphs are parallel to Theorem 1 of [1], but some new
phenomena appear. In [1] only case (a) happened and no case (d) occurred.

Theorem 2 Let T be a connected 5-valent G-symmetric graph. If I is not a bipar-
tite graph and no subgroup of automorphisms acts regularly on V(T') and if T' has
no more than 100 vertices then I' is one of the following graphs:

(a) the complete graph Kg of order 6 on which PSL(2,5) or PSL(2,9) acts
symmetrically;

(b) the icosahedron on which PSL(2,5) acts symmetrically;

(c) a graph of order 96 which 1s a topological cover of the graph Kg on which
the group Z3 - As acts symmetrically and the automorphism group of the block graph
Kq is PSL(2,5);

(d) the graph Ly(9)5, of order 72 on which PSL(2,9) acts symmetrically;

(e) the graph Ly(9)5 of order 36 on which PSL(2,9) acts symmetrically;

(f) a graph of order 96 which is a topological cover of graph the Ky on which the
group Z3- Ag acts symmetrically and the automorphism group of the block graph K
is PSL(2,9);

(9) the graph Ly(11)%s of order 66 on which PSL(2,11) acts symmetrically.

In section 2, we quote some lemmas which will be used later. In section 3,
Theorem 2 is proved. For all the group-theoretic concepts not defined here we refer
the reader to [6, 7].

2 Preliminary Lemmas

As a generalization of Cayley digraphs, Sabidussi [10] gave another construction of
vertex-transitive digraphs using groups; it is known as a Sabidussi coset graph.

Definition 2.1 Let G be o finite group and H be a subgroup of G. Let I) be a
union of several double cosets of the form HgH, not containing the subgroup H.
We define the Sabidussi coset dzgmph I'= Sab(G, H, D) of G with respect to H and
D by

V() ={¢H |g€G},

E(T) ={(yH,9dH)|ge G,de D}.
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Note that we do not consider multigraphs, so if gdH = g1 H , the edges (¢ H, gdH )
and (gH, gdi H) are viewed as equal.
The following obvious facts are basic for the Sabidussi coset graph.

Lemma 2.2 Let T = Sab(G, H, D) be the Sebidusst coset digraph of G with respect
to H and D. Then

(1) T is o well-defined digraph with in-degree and oui-degree |D . HJ.

(2) AutT* contains G by left mulivplication, so

T s veries-transitive. For o vertez gH | the stabilizer in G s gHg .

(9) T is connected of and only of G = (D).

(4) T is undirected if and only if D™ = D.

(5) T is G-symmetric of and only of D = Hy; [ 15 a single double coset.

Note that Cayley graphs are the special case of Sabidussi coset graphs with
H=1.

Any vertex-transitive graph (digraph) is a Sabidussi coset digraph. In fact,
given a vertex-transitive graph (digraph) I' and a vertex v € V(I), take G = Autl’,
H =G, and D = {g € G|v, € [1(v)}, then D is a union of several double cosets
of the form HgH with DN H = § and I' = Sab(G, H, D).

So, in theory, if we knew all groups and their subgroup structure, then we would
know all vertex-transitive graphs (digraphs) and symmetric graphs.

Using Lemma 2.2, we can prove following lemma of [2] for our graphs.

Lermma 2.3 The group G acts symmetrically on o 5-valent connected graph I' if
and ondy if it has a subgroup H and member a such that

(8) a* € H,

(b) HNnaHa " has index 5 in I,

(¢) G 15 generated by HaH.

Lemma 2.4 In Lemma 2.9, a must be an element of G of even order.

Proof I the order of a is an odd number, say k, then k is relatively prime to 2.
Thus there exists integers m and n such that mk 4+ 2n = 1. Tt follows that

amkaZ"n - amk+2n =q € H

which contradicts the assumption a ¢ H. O
For convenience we state some well known results which will be used later

Lemma 2.5 (Weiss [3]) The order of a vertez stabilizer divides 5-3% - 217

Lemma 2.6 (Gaschiitz) Let N be an abelian normal subgroup of G, suppose N <
B < G and that the order of N and the indez of B in G are relatively prime. If N
has a complement in B then it also has o complement in G.

Lemma 2.7 (sce [5])

For every n > 5 the alternating group A, can be generated by an involuiion a and

another suitable element b:
(1) a=(1,2)(n—-1,n),b
(2) a=(1,n)(2,n—1),b

(1,2,---,n—1) if n is even;
(1,2,--<,n—2) if n is odd.

i
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3 The Proof of Theorem 2

Proof of Theorem 2: Let I' be a graph which satisfies the hypotheses of Theorem
2: thus I be a b5-valent symmetric graph of order at most 100, which is not a
bipartite graph. Let G be a group which acts symmetrically on T’ and suppose that
G has no proper subgroup with this property and no subgroup acts on I' regularly.

Let @ be a fixed vertex of I and let H be its stabilizer in G. Let f;,i = 1,2,8,4,5
be the vertices of I' adjacent to o and let a; € G,7 = 1,2, 3,4, 5 have the properties
ai{a) = f; and af € H,1=1,2,3,4,5. Let N be a maximal normal subgroup of G.
Hence N acts semi-regularly on I' (i.e.N N H = 1) and G/N is a simple group.

‘The notation established in last two paragraphs will be maintained throughout
this section.

The proof of Theorem 2 is organized into foreteen Lemmas. First since I' is
not a bipartite graph, it follows that H and N are subject to the conditions in the
following lemma.

Lemma 3.1 (¢) HN has even indez in G;
(b) G hos no subgroup of index & which contains H.

Proof See[i]. O
In order to give a completed list of 5-valent graphs of order at most 100, we
search for simple groups G/N satisfying the following hypotheses.

Hypotheses 3.2 Let G/N be a simple group of order at most 589,824,000 such
that there ezists o subgroup H satisfying the following conditions:

(1) & is the ezact power of 5 which divides |H|;

(2) H has cven index at most 100 in G;

(3) H satisfies Lemma 2.5;

(4) H satisfies Lemma 3.1.

Lemma 3.3 If I' satisfies the conditions of Theorem 2 then G musi satisfy Hy-
potheses 9.2.

Proof By Lemma 2.5, the order of H is at most 5 - 3% - 217 = 5 898 240. As
T' has at most 100 vertices and it is defined by left cosets of H. G has order at
most 589,824,000 and so does G/N. So we have all possible 5-valent graphs which
come from left coset graphs I' = Sab(G, H, D). However these simple groups must
be subject to the relations of Lemma 2.3, since I' is a symmetric graph. As T is
G-symmetric, H acts transitively on the set I';(«) of neighbours of vertex «, and
hence the order of H is divisible by 5. (2) and (4) hold obviously. O

Lemma 3.4 The possibilities for G/N, H and |N| are as in Table 1.
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Table 1 The possibilities for G/N, H, |N|

No| G/N " INT | Wo G/N 7 | V]|
(1) 4, 4 <2 [ (9) | PSL(Z,9)| 7 1
(2) As A x3:2| 1 | (100 PSL(2,5)| 2, | <38
(3) Ag S <3 | (11)| PSL(2,5) | D | <16
(5] PSL(3,4) | A 1 [ (1) My 1, | <4
(6) PSL(Q,ll) D1() 1 (14) .iMlg M]g 12 1
(7) | PSL(2,9) A, <16 | (15)] Ua(2) Ss | <2
(6 P5L(2,9) | Dw | <2 | (16)] Ua2) A 1

Proof According to the Atlas [6, p240], the number of simple group of order at
most 589,824,000 is 86. If we arrange them according to their order , the last one 1s
PSI(3,13). First we exclude 27 simple groups of order at most 589,824,000 which
have no divisor of 5 by Hypotheses 3.2 (1). The second 18 simple groups which
are excluded are those whose order has 5 as a divisor but the smallest index of a
proper subgroup is at least 101, including 4 members of the family of PSL(2,q).
The remainer we list in table 2 except the family of PSL(2, ¢). In table 2, M means
the maximal subgroup whose index is at most 100, and we exclude directly those
not satisfying the Hypotheses 3.2.

So the simple groups of order at most 589,824,000 satisying Hypotheses 3.2, are
PSL(2,5), PSL(2,9), PSL(2,11), A;, PSL(2,16), PSL(3,4), My, M, Ud2),
and Ag. Applying the following inequality

IN|-|G/N| < 100-|H], (1)
elementary calculations lead to table 1. O
Table 2 Excluding groups which do not satisfy Hypotheses 3.2
No G order M index | exclude | not hold
1 Moy 21033 5.7.11.23 Moz 24 yes H3.2 (3)
2(3.) A12 29355711 A11 12 yes H3.2 (3)
2(b) Alg 29.3%.5.7.11 S1o 66 yes H3.2 (3)
3 Aig 29.32.5%3.7.11 My, 100 yes H3.2(3)
4 PSL(3,9)| 27.3°5.7.13 GL(2,9) 91 yes H3.2 (2)
5(a) An 27.3452.7.11 Ao 11 yes | H3.2(3)
5(b) Apy 27352711 S 55 | yes | H3.2(3)
6 Mgg 2732571123 Mgz 23 yes H3.2 (3)
7 | PSL(5,2) | 2'0.3%25.7.31 |2*: PSL(4,2)| 31 yes | H3.2 (3)
8 PSL(4,3) 27.3%.5.13 33 . PSL(3,3) | 40 yes H3.2 (3)
9(a) A 3734527 Aq 10 | yes | H32(3)
9(b) Ao 2734527 Se 45 yes H3.2 (3)
10(a) | 56(2) 293157 U2) 2 28 | yes | H3.2(3)
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Table 2 Excluding groups which do not satisfy Hypotheses 3.2 (continuation)

10(b) Ss(2) 2983457 Ss 36 | yes | H3.2 (3)

10(c) | Se(2) | P357 5 3 63 | yes | H3.2 (2)
11 | S5i4) [ 2°3%5%17 | 2 (3x A;) | 5 | ves | H32(2)
B 7 2 P57 Ua(3) 100 | yes | H32 (3)

3(a) | M, | 2735711 PSL(3,4) | 29 | yes | H3.2 (3)

13(b) Moy 27.3%.5.7.11 2% Ag 77 | yes | H3.2 (3)
14 [ PSL(3.5) | 2°3.3°31 | 5 GL,(5) | 31 | yes | B35 (3)

5@ | As 5 3757 i 9 | yes | 32 (2)

15(b) | A, 3157 s 36 | yes | 3.2 (3)

15(c) Ay 2°.31.5.7 (Asx3):2 | 84 |yes| H3.2(3)
16 | T, | 273257 e 50 | yes | A3 (3)

17(a) | My, | 2539511 7 12 [ ves | £33 (3)

17(b) Mo 2633511 Mig: 2 66 | no
18 Us(4) 26.3.5%.13 24415 65 | yes | H3.2(3)
19 52(8) 265.7.13 2557 65 | yes | H3.2 (3)

0(a) | Us(2) %375 5 AL 27 | yes | H3.2 (2)

20(b) Us(2) 26315 Se 36 | no

20(c) | Ual2) ¥ 375 37704, | 40 | yes | H3.2 (1)

50(d) | Us(2) 5% 375 75, 40 | yes | H32 (1)

30(e) | Ux(2) P35 | (A x A)2 | 45 | yes | H32 (1)

21(a) | PSL(3,4) | 2°3%5.7 240 A, 21 | yes | H3.2 (3)

21(b) | PSL(3,4) | 2°.325.7 Ag 56 | no

22(a) Ag 283257 Ay 8 | no

3(b) | As 23751 | 2 : PSL(3,2) | 15 | yes | H32 (1)

22(c) Ay 2°.32.5.7 Se 28 | no

95(d) | A 2350 | 2 (55 x 5,) | 35 | yes | B33 (1)

25(e) | A, %3257 | (A;x3) 2 | 56 | no

53(a) | M 3511 42 11 | no

23(b) | My, 2737511 | PSL(%,11) | 12 |yes | H32 (3)

23(c) | My 2737511 [ ED

33(d) | My | 28501 | W 5, | 11 |yes | H32(3)

24(a) A 2432 5.7 Ag 5 | no

4(b) | A 357 | PSL(2.7) | 15 |yes | B33 (1)

24(c) Ay 27.3%.5.7 (Asx3):2 | 35 |yes| H32 (1)

24(d) Asg 20.32.5.7 Sy 21 | no

Lemma 3.5 Assume G/N = PSL(2,5).

(a) If H= Z; and |[N| < 8, then N = 1 and T is the graph of the vertices and

edges of the icosahedron, which has order 12:

(b) if H % Dy and |N| < 15, then N = 1 and T is the complete graph K¢ of

order 6.
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(¢) if H = Dy and |[N| = 16, then N = Z3, the block graph 'y = K¢, T' is a
topological cover of Ty and the order of I' is 96; G 45 an extension of Z3 by As.

Proof First we give preliminary facts about As which will be used later. We
know Ay can be generated by an element of order § with an involution. In fact,
without loss of generality, take b = (12345) and take any involution a from (15)(23),
(12)(34), (23)(45), (12)(45) and (34)(15). Then it is easy to check that a and h
generate As according to the relations

@ =1 = (ah)® = 1.

On other hand, the element h of order 5 is contained in just one subgroup isomorphic
to Dio: if h=(12345) this group is {1, (12345),(13524), (14253), (15432), (15)(24),
(29)(14), (45)(13), (12)(35), (34)(25)}.

G = As and H = (h) = Zs, then G = (a, H) is discussed as above. By Lemma
9.3, T is the icosahedron, which is defined on {gHlg € G}. If G = A5 and H = Dy,
as above, then G = (a, H) and T is the complete graph I, which is defined on
{gH|g € G} as in Definition 2.1.

Suppose, now, that G is as in Lemma 3.4 (10) or (11), that is G/N = A;,
H = Zs, |N| < 8or HE Dy, |[N| < 16. Let C' be the centralizer of N in G. Since
N is a normal subgroup of G, sois C'. As /N is simple, either C < N or ON = G.
By Lemma 3.4, |[N| < 16 if H & Dy, so we shall treat two subcases |[N| < 15 and
|N| < 16 separately.

Subcase 1. |N| < 15.

In this case we shall prove N = 1. We prove it in six steps.

(4) First we prove CN = G. If not, then ' < N, and G//C' is an automorphism
group of N. It is impossible for G/C to have As as a factor group since [N| < 15.
Thus CN = G.

(i3) We claim that C' = G, and hence N is the center of G. If not, € # G. By
Theorem 1 and the assumption, no normal sugroup acts regularly on I', H N C =
and HC # G. Since G is generated by HoH, a ¢ HC. As G/C = NC/C =
N/N nC, G/C has order at most 15. '

Suppose that G is as in Lemma 3.4 (10). Since H = Z; and [N| < 8, |G/C| < 8.
As HNC =1, HC/C is a proper subgroup of G'/C of order 5, and this contradicts
|G/C| < 8.

Suppose that G is as in Lemma 3.4 (11). Since H = Dy and [N| < 15, so
|G/C| < 15. As HN C = 1, the proper subgroup HC/C of G /C has order 10, and
this contradicts |G/C| < 15. These considerations were based on the assumption
C # G. Therefore, G = C and N is the center of G, establishing the claim. In
particular, N is abelian.

(i33) Now we prove G = (a,h), where h is an element of of order 5 of H. Let
M = (a,h). Since G = (a,H), if H = Zs then M = G. Suppose that H = Dy,. As
G/N = Ag and G = (a,H), G/N = (aN, HN) according to the relations

(aN)? = (hN)® = (ahN)* = N.

G/N is not generated by H. Thus a ¢ N. As a> € H and H NaHa™" has index 5
in H, ais either an involution or it has order 4. As As has no element of order 4 it
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must be that ¢ = 1. Let h be an element of order 5in H. Thus by H NN = 1, we
get a? = h* =1,(ah)®* =2 € N.

As a® = 1, a normalizes H NaHa ' = {1,b} and hence ab = ba. If H = D,
hb = bh~'. Thus b normalizes M. As G is generated by H and a, G = M UbM.
Since [M N H| =5 and |H| =10, then |M : MNH| = |G : H|. Since M = (a, h) =
{a, M N H), by Lemma 2.3 we conclude that T’ is M-symmetric which contradicts
the minimal property of &. Hence, G is generated « by and h which satisfy the
relations a® = h® = 1,(ah)* = z € N, establishing the claim.

(#v) Let P be a Sylow p-subgroup of N for some p # 2,3. We claim that P = 1.

As N is the center of G, P is a normal subgroup of G and @ = P x (h) is a
subgroup of G. Since (|G : Q|,p) = 1 and P has a complement in Q, it follows
from Lemma 2.5 that P has a complement Py in G. As P lies in the center of G,
G =P x P If p#5, P contains Sylow 2-subgroups and Sylow 5-subgroups of G
and hence contains @ and h which generate . Thus G = P; and P = 1.

Suppose p = 5 and P # 1. Then P; contains all the Sylow 2-subgroup of G and
hence contains a. Since G = {(a, h) = (Py, h), so

G = P}UhP}Uh2P1U}13P1Uh4P1.

I H = (h) & Z; then P, is a normal complement of H in ¢ and so acts regularly on
I', contrary to the hypothesis. Hence H = Dy and b lies in P;. Since P is a normal
subgroup of &, hP, = Pih. Tt follows that 6hb™1P, = bhP; = bP/h = Pih = hPy.
That is bhb~' € hP;. However, bhb™! = h™' € h*P,, a contradiction. Thus the
Sylow 5-subgroup of NV is trivial as are the Sylow p-subgroups for p # 2, 3.

(v) Next, let P be a Sylow 3-subgroup of N. We shall prove P = 1.

Let () be a Sylow 3-subgroup of G which contains P. Then QN/N is a Sylow
3-subgroup of G/N. Hence QN/N is cyclic of order 3 and there is an involution of
G /N which maps each element of @QN/N onto its inverse. Let x be s member of
@ — P. Then @ contains a member y such that yzy™ = 27n for some n € N. As
z* € N, s0o 2* = yz®y~!. Thus 2° = y2®y™' = (y2y™ ') = 270" and 1 = 2~ %n®.
Let u = a~'. We have (u’n)® = 1. The subgroup generated by u*n is a complement
of P in (). Thus P has a complement P in G by Lemma 2.5. As P lies in the
center of G, G is the direct product of P and P;. As the order of P is a power of
3, every element of order 2 or 5 lies in P;. In particular, a,h € P; and, as G is
generated by ¢ and h, G = Py and P = 1.

(v1) Since no other prime is a divisor of the order of N, N must be a 2-group.
Now we prove N = 1. ;

Let ) be asubgroup of N which has index 2 in N. Then the members a(} and h()
of G/Q satisfy the relations (aQ)* = (hQ)® = (ahQ)® = Q. Put kQ = (¢hQ)®. Thus
(kQ)* = Q and (ak@)? = (RQ)® = (akhQ)® = Q. That is, (akQ, hQ) = P,/Q = A;.
As N/Q is the centre of G/Q, G/Q = Pi/Q x N/Q. Since N/ has order 2, P,/Q
is a subgroup of index 2 and P; is a subgroup of G of index 2. Hence, by lemma
3.1(b), H is not a subgroup P;. This forces H & Dy; and G = P, UbP,. In these
circumstances Py N H has the same number of cosets in P} as H has in G, i.e. P
acts transitively on the vertices of I'. As h € P, it also acts symmetrically which
is not possible because of the minimal property of G. Hence N has no subgroup
@ of index 2 and as N is 2-group it follows that N = 1, G = A;, and T is one of



the two 5-valent graphs as conclusions (a) and (b) of this Lemma on which As acts
symrmetrically. .

Subcase 2. H isomorphic to Dy and |[N| = 16.

In this case, if K = Cy(N) = G, we have the conclusion, as discussed above. So
we assume that K < N. Since N is a subgroup of order 2, by [5,Th 5.3] the order
of Aut{N) divides

POt = 1 = p) - (0 - P, (2)
where d is the rank of the p-group and p = 2. As the order of (/N divides that of
G/K and G/K < Aut(N), the order of Ay divides (2). It follows from p = 2 that
d=4. Thus ®(N) = 1. Hence N = Z} and N = K.

As G/N = Ay, G/N is generated by aN and AN, subject to the relations
(aN)? = (RN)® = (ahN)Y* = N. As HONN =1 and a’,h € H, thus a® = h* = 1,
(ah)® = n € N. Because N is an elementary abelian 2-group, we get a? = h’ =
(ah)® = n? = 1. As the order of N is 16, the length of the orbits of N on I' is 16.
By the assumption that the order I' is at most 100, it follows from Theorem 1.(d)
that the number of orbits of N is 6. So the block graph I'yy = Kg. Since HNN = 1,
T is a topological cover of I'y and the order of T' is 96. (We recall that I' is said
to be a topological cover of its block graph I'y if, whenever two vertex zHN and
yHN are adjacent in I'y, each vertex in o H N is adjacent in I' to exactly one vertex
in yH N). This completes the proof. O

Lemma 3.6 (/N is not isomorphic to Aq, i.e. case (1) of Lemma 3.4 does not
occur.

Proof By Lemma 3.4 (1), H & As and |N| < 2. To prove this lemma, it suffices
to prove that there is no a € G such that quotient group G/N = (aN,HN) =
Ay subject to the relations of Lemma 2.3. For convenience we use Ara, H in
instead of G/N,aN, HN respectively in the rest of our discussion, and it may be
supposed, without loss of generality, that we take the members of H = As as
the even permutations on the set {1,2,3,4,5}. Similarly we take the members of
A; and A4 as the even permutations on the sets {1,2,3,4,5,6,7} and {1,2,3,4}
respectively. _

If not, choose @ € Ay such that HNH" has index 5in H and (@, H) = A;. Hence
HNH = A, fais involution, then @ fixes HNH" and thus fixes the unique Sylow
2-subgroup @ of HN T°. As HNH" has no Sylow 5-subgroup, @ must interchanges
5and 6 or 5 and 7. Thus @ = (3,7)(5,6) or (i,7)(5,7), where 1,j € {1,2,3,4}.
However A; # (@, H), since the group (@, H) is a permutation group of a six letter
set. So @ is an element of order 4. As @’ e H,afixes HNaHa . So @ induces an
automorphism on H N H® and thus fixes the Sylow 2-subgroup Q of H N H" . Thus
@ =(1,2,3,4)(5,6) or a = (1,2,3,4)(5, 7). Therefore (a, H) is a permutation group
of a six letter set, contrary to our assumption Ay = (@, i). This proves the lemma.
O

Lemma 3.7 G is not isomorphic to As i.e. case (2) of Lemma §.4 does not occur.

Proof By Lemma 3.4 (2), H = A;x3: 2. To prove this lemma it suffices to prove
that there is no element a such that G = (a, H) subject to the relations of Lemma
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2.3. I not, choose @ € G such that H N H* has index 5 in H and G = (a, H).
Hence H N H* = Ayx3 : 2. As «® € H, it follows that a fixes H 0 H*. Thus
(e, HNWH") = Ay x 3 : 4. However Ay has no subgroup isomorphic to A4 x 3 : 4,
this is a contradiction. This proves the lemma. O

Lemma 3.8 Assume G/N = PSL(2,9). Then

(o) if H = Zy then T = L;(9)%, is the graph of order 78;

(b)if H= Dy and [N| <2, then N =1 and T' = Ly(9)5 is the graph of order
36,

(c)if H= Ay and [N| <15, then N = 1 and T is the complete graph Kq of
order 6;

(d) of H= As and |N| = 16, then N = Z%, the block graph Ty = K¢, T is a
topological cover of I'y and the order of T 1s 96; G is the extension of Z3 by Asg.

Proof It is convenient to use the isomorphism PSL(2,9) & Ag and take its mem-
bers as the even permutations on the set {1,2,3,4,5,6,}. A contains two conjugacy
classes of subgroups H = Zs, one generated by (12345), and the other by (12346).
As these subgroups are conjugates within the automorphism group of Ag it may be
supposed, without loss of generality, that H is the first. If h = (12345), it follows
from Lemma 2.4 that there is an element a = (12)(56) with h generating Ag.

(a). Now consider the possibility described in case (9) of Lemma 3.4, that is,
G = Ag and H & Z;. Choose a and h as above and set H = (h)(= Z;). Then
HNH®*=1and G = (a,h) = (a,H). As Ay has order 360, the subgroup H with
the relevant element a defines a graph of order 72 on which Ag acts symmetrically
by Lemma 2.3, which we denote by L,(9)3,.

(b). Now we prove case (b), that is, G/N & Ag, N < 2 and H = Dy,.

First consider the case N = 1, that is, G = Ag. Choose a = (1243)(56), h =
(12345), then (a, h}) = Ag according to the relations

at =1 = (ah)® = (azfz)z =1,

If (a,h) # Ag, then (a,h) < M a maximal subgroup of A¢. However Ag has no
maximal subgroup M which contains both elements of order 5 and elements of
order 4. This contradiction shows G = (a, h} as claimed. As Ag has order 360, the
subgroup H = Dy, with the relevant element a define graphs of order 36, which we
denote by Ly(9)5s, on which Ag acts symmetrically. .

Now consider the possibility in Lemma 3.4 (8). In this case G/N = Ag, |N| < 2
and H = Dy. We claim N = 1. If not, |N| = 2,G = (a, H) subject to the relations
of Lemma 2.3. As H NaHea ' has index 5 in H, it is easy to prove a is not an
involution. Thus a? must be an involution of H. Hence there exists h € H such
that (aN,hN) = G/N according to the relations

(aN)* = (hN)® = (ahN)® = (a*hN)? = N.

Since a’h € H, so a® = h® = (a’h)? = 1. Suppose that (ah)’ = z € N, 22 = 1.
Since N =2 and G/N is a simple group of order 360, N is the center of G. Then

(az)* = h® = (azh)® = ((az)*h)? = 1.
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So {az, h) = As. As N is the center of G it must be that G = M x N, a direct
product. As |N| = 2, then |G : M| = 2. As h and o® both lie in M, it shows H < M
and contradicts Lemma 3.1 (b). It follows that NV = 1 as claimed and hence case
(b) is proved.

In case(c), that is G/N = Ag, H = Ay and [N] < 15. By the same method as
Lemma 3.5 (), (11) we can prove that N is the center of . Now we prove N =1
by following four steps.

(7). Let P be a Sylow p-subgroup of N for some p # 2.3,5. As N is the center
of G, P is a normal subgroup of G. By the Schur-Zassenhaus theorem, P has a
complement ¢} in 7. Since ) contains Sylow Z-subgroups and Sylow 5-subgroups
of G and hence contains a and A which generate &, thus G = ) and P = 1.

(¢1). Let P be a Sylow 5-subgroup of N. As N is the center of G, P is a normal
subgroup of ¢ and Py = P x (h) is a Sylow B-subgroup of &, where h € H is as
above. Since (|G : P1|,5) = 1 and P has a complement in Py it follows from Lemrna
2.5 that P has a complement () in G. As P lies in the center of G, G = P x (). Since
() contains Sylow Z-subgroups and Sylow 3-subgroups of &, and since H = Ay can
also be generated by an element of order 2 with an element of order 3, it follows
that @ > (a,H) = G, Thus G = Q and P = 1.

(731). Let P be a Sylow 3-subgroug of N. Choose t € H and s € G such that
(tN,sN) is a Sylow 3-subgroup of G/N = A;. Thus we have (sN)* = (tN)* = N
and hence st € N. Since H NN = 1, we deduce t* = 1. Oun the other hand,
¢ has an element y of even order such that ysy™ = ¢7'n for some n € N. Since
SeN, & =ysfy = (ysy ) = (t7)?n® = n". So (sn”1)* = 1and (sn”lt) x P
is a Sylow 3-subgroup of G. Using Lemma 2.5, P has a normal complement Q.
Thus every element of order 2 or 5 lies in () and hence @ > (a, H) = G. It follows
that P = 1.

(v). As no other prime is a divisor of the order of N, N must be a 2-group.
Let () be a subgroup of N which has index 2 in N. Since G/N = A, there
exist a,h € G such that («N)* = (AN)® = (ahN)® = (a*hN)* = N as in (b).
So a*, h%, (a®R)?, (ah)® € N. Since a* h,a" € H and H NN = 1, it follows that
a' = k% = (a’h)? = 1 and (¢h)'® € Q. Therefore

(aQ)* = (hQ)* = (ahQ))'® = (a’hQ)? = Q.
Set 2@ = (ahQ)®. Then (2Q)* = Q and
(a0 = (hQ)° = (=hQ)° = ((a)*hQ)" = Q.

Thus M/Q = (azQ,hQ) = As. Hence G/Q = M/Q x N/Q. Since |[N/Q| = 2,
|G : M| = 2. Hence, by Lemma 3.1 (b) H is not a subgroup of M. It shows that
H contains an involution b such that G = M UMM and |M : M N H| = |G : H|.
That is, M acts transitively on the vertices of I'. As h € M, I' 1s M-symmetric.
This contradicts the minimal property of G. Hence N has no subgroup (} of index
2 and as N is a 2-group it follows that V = 1.

Now choose a = (12)(56) and H = As. As in Lemma 3.6, we have G = (a, H)
and H N H® has index 5 in H. It follows that I" defined by {¢H|g € G} is the
complete graph K4 of order 6 on which Ag acts symmetrically.
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(d) if H = As and |N| = 16, then N = Z# by the method of Subcase 2 of
Lemma 3.5 and it follows that I is a topological cover of I'y & K and the order of
I'is 96 and G is the extension of Z3 by 4,. O

Lemma 3.9 If G is isomorphic to PSL(2,11) then T = Lo(11)3 which is defined
in [9].

Proof By Lemma 3.4 (6), G = PSL(2,11), H = Dyo. In this case I' is the unique
vertex-primitive graph of order 66 which is determined in Lemma 4.4 of [9] and so
we omit the direct check. We denote it by Ly(11)5. O

Lemma 3.10 G 1s not isomorphic to PSL(2,16) 1.c. case (4) of Lemma 3.4 does
not occur.

Proof By Lemma 3.4 (4), H 2 A;. To prove this lemma it suffices to prove that
there is no element a such that G = (a, H) subject to the relations of Lemma 2.3.
If not, choose a € G such that HNH*® has index 5 in H and hence HNH* = A,. As
PSL(2,16) has no element of order 4, a must be an involution. As a fixes H N H*,
(a, HNH®*) = S4. This contradicts the fact PSL(2, 16) has no subgroup isomorphic
to S4. The proof is complete. O

Lemma 3.11 If H = Ag or H = S, then I' 1s not a 5-valent graph.

Proof If I' is a 5-valent graph then |H : H N H*| = 5 where a with H generates
G. Thus if H & Ag, then |[H N H?| = 72. However Ag has no subgroup of order 72,
so H = Ag is impossible. Similarly Sg has no subgroup of order 144, so it is also
impossible that H = Ss. The proof is complete. O

Lemma 3.12 (o) G is not isomorphic to My (in this case H = Ag) 1.e. case (13)
of Lemma 8.4 does not occur.

(b) G/N 1is not isomorphic to Ag (in this case H = Sg) i.e. case (3) of Lemma
3.4 does not occur.

(¢) G/N is not isomorphic to Uy(2) (in this case H = S or H = Ag) 1.e. case
(15) or case (16) of Lemma 3.4 daes not occur.

(d) G is not isomorphic to My, (in this case H = Ag : 2%) i.e. case (12) of
Lemma 8.4 does not occur.

Proof By Lemma 3.4 case (13), G = My, H & 4g; case (3), G/N = Ag, H = Sg;
case (15) or (16), G/N = Uy(2), H = Ss or H = Ag. (a), (b), (¢) are consequences
of Lemma 3.11.

By Lemma 3.4 case (12), H = My, : 2= Ag : 2% As [H| = |4 : 22| = 25.3%5
and H N H* has index 5 in H, |H N H®| = 2°.3% = 288. Since As has no subgroup
of order 72, it follows that Ag : 2° has no subgroup of order 72.2% = 288. This
contradicts | H N H?| = 288, and the proof is complete. O

Lemma 3.13 Let G and H be as in Theorem £ with G primitive, and suppose that
H = 5. Let K be subgroup of H satisfying K = Sy. Let k be the number of points
n I' fized by K. Then G has k — 1 suborbits of length 5.

A O



Proof Since K is maximal in H, we have, for § € Fix p(K) — {a}, |87 = |H :
K| =5 and by Lemma 2.3 of [9], BY NFix p(K) = {B}. So H has k — 1 orbits of
length 5in T, O

Lemma 3.14 G is not isomorphic to My, and H = Ss i.e. case (12) of Lemmad. 4
does not occur.

Proof By Lemma 3.4 (13), G = My, H = S5. To prove this lemma it suffices
to prove that there is no element a such that G = (a, H) subject to the relation
|H : Hn H? = 5. The last relation implies H N He =5, It is equivalent to show
that the action of H on a left coset {gH | g € G} has no suborbit of length 5.
Tt suffices by Lemma 3.13 to show that for K < H and K = 54, K has only one
fixed point in {gH}. We see the sporadic group My is the automorphism group
of a 4-(11,5.1) design and the stabilizer of a block is H = Ss. Since there is only
one conjugacy class of H in G, the action of G on {gH?} is equivalent to that on
the block system B = {Bi} of the 4-(11,5,1) design. Let D be such a design,
X = {1,2, 11} be the point set, and B be its set of blocks. Now suppose that
the stabilizer of block By = {1,3,4,5,9} is H and K < H, K = 54 Thus K
fixes By. Thus K induces an action on Bg. Let t be an element of order 3 in K.
Then t = (t1,ta,t3)(ta, 5,16 (b7, ts, t9) and it induces an action on Bg, namely it
fixes a sub-block of By of length 3 and fixes every other point By, without loss of
generality, say 5,9. Then ¢ = (1,3, 4)(t4, ts, te)(tr, ts, te). Let x be the permutation
character of degree 66 of My;. Now x = X1 + X2 + X5 + Xs, (6, P18] and elementary
calculations lead to x(¢) = 3. This implies that there are just three blocks which
are fixed by the action of t in B. As {t4ts,t6},{tr,ts,to } are each in two blocks
of B, t determines the three fixed blocks of B. So the other two blocks fixed by ¢
must be 31 = {t,;, ts, tg, 5, 9}, B2 = {t7,t8, tg, 5, 9}

Let u be an element of order 4 in K. Then u fixes By and thus induces an
action on Bo. That is, u fixes a sub-block of length 4 as the action of a 4-cycle
and fixes the remaining one point. If K fixes another block of B, then this block
must one of B; and B, without loss of generality, say B;. Hence u fixes By and
induces an action on By: u fixes a sub-block of length 4 and fixes a point. Since
B, must have points 5,9 as above discussed, thus either 5 or 9 must be in the sub-
block of length 4, without loss of generality, say 5. It is obvious that the sub-block
{5“i = 1,2,3,4} of u in By is equal to that of u in Bg. Since their length is 4,
B, = B, by the definition of a 4-(11,5,1) design and this contradicts that K has
another fixed block. This shows that the action of K has only one fixed block and
the proof is now complete. O
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