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Abstract

In this paper, it is shown that any partial totally symmetric quasigroup
of order n can be embedded in a totally symmetric quasigroup of order
v, v > 4n+4, v = 0 (mod 4). This result is combined with an earlier
result obtained by Raines and Rodger to show that any partial totally
symmetric quasigroup of order n can be embedded in a totally symmetric
quasigroup of order v, for all even v > 4n-+4. This bound can be improved
to 4n + 2 in most cases.

1 Introduction

A (partial) quasigroup is an ordered pair (@, 0) where () is a set and o is a binary
operation on ) such that for every a, b € @, there exists (at most one) z, y € Q
satisfying the equations a o x = b and yoa = b. A totally symmetric quasigroup is
a quasigroup that satisfies the identities zoy = yoz and yo (z oy) = x for all z,
y € (. A partial totally symmetric quasigroup is a partial quasigroup in which: if
x oy exists then so does yor and zoy = youx; and if zoy and yo (2 oy) exist then
yol(zoy)=a.

(Partial) totally symmetric quasigroups can be represented in graph theoretical
terms. Let K be the complete graph on n vertices with exactly one loop incident
with each vertex (loops are considered to be edges here). Define an extended triple
to be a loop, a loop with an edge attached (also known as a lollipop), or a copy of K3
(also known as a triple). We denote a loop by {a,a,a}, a lollipop by {a, a,b}, a # b,
when the loop of the lollipop is incident with vertex ¢, and a triple by {a, b, ¢}, where
a,b, and c are distinct. A (partial) eztended triple system of order n is an ordered
pair (V, B), where B is a set of extended triples defined on the vertex set V' which
partitions (a subset of ) the edges of K7 We denote a partial extended triple system
and an extended triple system of order n by PETS(n) and ET5(n), respectively. It
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has been shown (see, for example, [5]) that a (partial) totally symmetric quasigroup
of order n is equivalent to a (partial) extended triple system of order n.

). M. Johnson and N. §. Mendelsohn [6] first investigated extended triple systems
and gave necessary conditions for their existence; F. E. Bennett and N. S, Mendelsohn
[2] showed the sufficiency of these conditions.

A PETS(n)(V,B) is said to be embedded in an ETS(V' B if V C V' and
B C B D. G. Hoffman and C. A. Rodger [5] showed that a complete totally
symmetric quasigroup of order n can be embedded in one of order v > n if and only
if v > 2n, vis even if nois, and (n,v) # (6k + 5,12k + 12). Subsequently, M. E.
Raines and C. A. Rodger [9] showed that any partial totally symmetric quasigroup
of order 1 can be embedded in a complete totally symmetric quasigroup of order v,
for all v > 4n + 6,v = 2 (mod 4) and showed that this bound on v can be lowered
to 4n + 2 in many cases.

The following theorem is the main focus of the paper.

Theorem 1.1 Any partial totally symmelric quasigroup of order n can be embedded
n a totally symmetric quasigroup of order v for all even v > 4n + 4.

The technique used to prove Theorem 1.1 follows closely the ideas used in [9]
but the details vary considerably. For terms and notation not defined here, we refer
the reader to [3].

3

2 Preliminary Results
We start by stating a famous result due to Turdn.

Lemma 2.1 ([12]) If a simple graph G on n vertices contains no Ky, then ¢(G) <

E3t

A near 1-factor of a graph (7 is a set of mutually nonadjacent edges in ¢ which
saturates all but one vertex of . We have the following well-known result.

Lemma 2.2 Ifn is even (odd), then the edges of K, can be partitioned into (near)
1-faciors.

Let I' be any edge-coloring of G. Let G, o € T', denote the set of edges colored «
in this edge coloring of (/. The edge-coloring is said to be equalized if ||Go|—|CGps]| < 1,

for all e, B € T

Lemma 2.3 ([8] [14]) A graph which has a proper n-edge-coloring has an equalized
proper n-edge-coloring.

A (partial) symmetric quasi-latin square of order v on the symbols 1,...,n is an
7 x 7 array of cells such that
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(i) for each 7., 1< 0, ) < v, @ j.if a symbol s in cell (4,7} then it is also in
(1),

(ii) for cach 2,4, 1 - j <o, g, cell (4,7) contains at most one symbol (the
dingonal cells can contain any number of symbols), and

(ii1) each symbol occurs (at most) exactly once in each row and (at most) exactly
once in cach cohwmn. (This is known as the latin property).

Define Np(i) o be the number of times symbol ¢ occurs in some (partial) sym-
metbric quasi-latin square L.

Theorem 2.4 Leln > L v be odd, and © € {0,1}. Let L be a partial symmetric
quasi-latin square of order v+ on the symbols 1, .., 2n+ 1 in which row i conlains
v =2 symbols for 1 <1 <0 r, and in which rowr+1 (wh«n = 1) contains v+ x|
symbols. Then L can be cmbedded i the top left corner of a symmetric quasi-latin
square L' of order 20+ 3 in which the diagonal cells (1,1), r+xz+1 < i <2 +3, and
the near-diagonal cells (v +20— 1, v 420) and (r+20, 7+ 20— 1), 1 <7 <n—(r—-3)/2
are emply, without adding any symbols to the cclls in L if and only if

n-+1, and

() Np(3) 2 2(r 4 a) —2n—3 for 1 < <2n+ 1,

Proof: Necessity. Fach symbol must occur 2n 43 fimes in L', and no symbol
can be placed on the main diagonal of L' outside L. Therefore, we have that symbols
are placed in pairs in L' outside L, so each symbol must ocenr an odd number
of times in L1 thus (1) is necessary. Let A and B be as indicated in Figure 1,
and let Nu(1) and Np(r) be the number of times symbol ¢ occurs in A and B,
respectively, Then Na(r) = 2n+ 3~ (r-+z) and Np(i) < 2n+3 —(r+z); Therefore,
Np(i) = Np(i) = Na(i) ~ Np(i) 2 2n+ 3 = 2(2n -+ 3 — (r+2)) =200+ ) — 2n — 3,
so (i) is necessary.

Sufficiency. Suppose r = 0, let » < 5 < n 4 2 with s odd, and proceed by
induction on 5. Assume ‘Lhat s rows and columns have been cony )le t*d 50 t} at each
D241, Np«()

2o — I — 3, and that the appropriate dmgonal (mei ne <u~dia,g0na,l

row rmli:a,ms s — 2 symbols, thus forming L*. Assame that for 1 <
is odd, Np.(#)
cells of L7 are empty. Two steps are necessary.

Step 1: Add row (column) s 41 to L* to form a symmetric quasi-latin square,
[&ph £, with bipartition (X = {1,...,2n+ 1}, ¥V =
{p1,.0 ., P } oo t.lw vertex set as follows: forn the edge {i, 7} in By if and only if
symbol 2, for 1 <0 ¢ < 2n 4+ L does not occur inrow j of L7, 1 < 7 < s We
have Umt for cach vertex p; € YV, dp,(p;) = 2n +1 — (s —2) = 2n — s 3, and
dp, (1) = s Ny (1) < s~ (2.s~2n~3‘ ***** 2n - s-+3, with equality if Nps(i) = 2s—2n--3.
Therefore, By has maximum degree A{F;) = 2n — s + 3, so By can be properly
(21 — 5 + 3)-edge colored by Konig's theorem [7]. Choose one of these colors, say «.
For every edge {i, p;} in By with color @, place symbol i in cells (s+1, 7) and (7, s+1).
We have that row (column) s + 1 is latin since color « occurs at most once at each

Ly, as follows. Form a bipartite g
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vertex in X, and each of the cells (s L k) and (k,s+1), 1 < k < s, contains exactly
one symbol since color @ occurs exactly once at each vertex in Y. Sim?f L7 is latin.
Ly is latin because of the way in which we defined By; a symbol oeeurs in (j,5-+1) or
(s-+1.4) only if it does not occur previously in row (column) jof L*, 1 < j < «. Since
there is no vertex p,pq in By, cell (s-+1, 5+ 1) remains empty, so row 7 of Ly contains
s— 1 svmbols if 1 <7 <0 s and s symbols if ¢ = s+ 1. In addition, JVL (2) is odd since
by assumption Np-(7) is odd and since each symbol is added 0 or 2 times in forming
Ly from L=, Fivally, Ny (1) > 25 -2n—1.1 <1 < I+, since if Npe() < 2s—2n-—1,
then Np«(1) = 2s=2n—3 (N (1) is odd and Np-(1) = 2 A(By):
therefore, o is incident with an edge colored o in By and this means that symbol 7

occurs i row and column < + 1.

Step 2: Add row (column) s + 2 to form a symmetric quasi-latin square L, as
follows.  Form a bipartite graph B, with bipartition (X = {I... .2n + 1}, V =
{p1. o paga }) of the vertex set as follows: form the edge {1, 7} in By if and ouly if
svm')ol Jfor t<d <o 40, doew not occur in row j of Ly, 1 << ;) < s+ 1. We have

that for eruh vertex p, € YV, 1 <y < s dp,(p;) = 2n 4+ 1 — (& =2 — 54 2
However, row s + 1 contains s é«ymbolg, s0 dp,(psy1) = 2n — s + 1. For each vertex
1€ X, dg, () =4 L= Ny () Ss+ 1= (25 —2n— 1) = 2n — s+ 2, with equality
if Np, (i) = 25 — 2n — 1. Therefore, A(By) = 9n — s + 2, so B, can be properly
(2n — 5 + /l)» edge colored. Let a be the color not found at vertex pgry. For every
edge {1, p;} in By with the color a, place symbol 7 in cells (s+2, j) and (7, «+2). We
have that row (column) s+ 2 is latin since color o occurs at most once at each vertesx

X, and each of the cells (s 4+ 2, k) and (k,s +2) for I < k < s contains exactly
one symbol since color o oceurs exactly once at each vertex in ¥ except for pyyy.
Furthermore, cells (s+1.542), (s+2, 5+ 1), and (s +2, s+2) remain empty since B,
contains no vertex p,y, and since vertex p,y1 is incident with no edge colored «; thus
each row of L, contains s symbols. Since Ly is latin, L, is latin because of the way i
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which we defined Hy; a symbol occurs in (J, s42) or (s+2, 7) only if it does not occur
previousty in row (column) j of Ly, for 1 <5 < s+ L WP vave that Ny, (4) is odd
since Np, (1) is odd and since each symbol is added 0 or 2 tinies in forming L, from
Ly dneddition, Np, (1) > 2 1, for 1 <4< 2n+41, since Ny (1) < 25— 2n+ 1,
then Ny (i) = 2s=2n—1 (N () is odd and ’VLl(') > 2s—2n—1), s0 dp, (1) = A(Bs);
hence, symbol 7 is added to row and column s -+ 2. This (/Oﬁlplfﬁti?s the induction step
and the proof if x = 0.

o =1 first apply Step 2 and then apply the proof when = = 0. This completes
the proof. i

A partial Steiner triple system of order n (PSTS(n)) is an ordered pair (5,7")
where T is a set of edge-disjoint copies of K, or triples, that form a subgraph G/(.5)
of I¥, with vertex set S. We define the leave of (9,7 to be the complement of G/(\9)
m A,

Let p(n) denote the maximum possible number of triples in a partial Steiner
triple system of order n, PST5(n).

Lermnma 2.5 ([11])

in) = L‘; [ —1)]] forn #£5 (mod 6)
Linlin~1)]] —1 forn=5 (mod 6)

 For a PSTS(n) on the vertex set {1,...,n}, let 7(2) denote the number of triples
whicli contain symbol o, I {r(é) — r(j ), < L for 1 <4 < 3 < n, the PSTS(n) is said
to be equitable. The existence of equitable PSTS(n)s has been settled [1], but here
we need the additional property stated in the following lemma.

Lemma 2.6 ([10]) There emists an equitable partial STS(n) (S, T) with t(n) triples
such that the leave contains a I-facler if n is even and a near I-factor if n is odd if
Fi(n) <2 Tn), where

i

and only

(n) =n{n —2)/6 ifn=0 (mod 6)

(n) — |n/3] ={n—1)n=2)/6 ifn=1 (modb)

T(n) = wn) =n(n-—2)/6 if n=2 (mod 6)
T (n) —n/3 =n(n—3)/6 if n=13 (mod 6)
(n)—1 =(n—-4{n+2)/6 ifn=4 (mod6)
(n)=(n—5)/3 =m-=1)(n-2)/6 ifn=5 (mod6)

A graph & is a star multigraph if there is some vertex of (7 which is incident with
every inultiple edge of G,

Lemma 2.7 ([4]) If G is ¢ star multigraph, then X'(G) < A(G) + 1.



3 Embedding a PETS(n) in an ETS(4n + 4)

Given any PETS(n) (V, B), define the deficiency graph, G(B), to be the graph on the
vertex set V' whose edge set consists of the edges of K% not found in any extended
triple in 5. Let w((/(8)) denote the number of vertices of even degree in (), and
let
w((G(B)) if e(G(B)) 4»?1/((‘ B)) = 0 (mod 3),

W(G(R)Y) = ¢ w(G(B))+ i (G(B)) +w(G(B)) =1 (mod 3),
w((G(B)) + 4 if (0 (B)\J w(((B)) = 2 (mod 3).

if (7

We say that (V, B) is maximal
no loops).

'(B) contains no extended triples (so ({B) contains

Lemma 3.1 Let (V. B) be a mozimal PETS(u),u > 2. Then (V, B) can be cmbed-
ded in a PETS (2u -+ 1)(V™, B*) satisfying:

U

(i) A(G(BY))

IA

(ii) W(G(B*) < u+t1,
(i) (G(B*))+ WI(G(B*) < 3T (u +2), and
(iv) G{B") contains at least bwo vertices of degree at most u — 1.

Prooft: Let V ={I,.. Ju}and V" ={1,..., 2u+1}.

Case 1: u is odd (s0o w(G(B)) £ 0).

Since w((G(B)) # 0, there is at least one vertex of even degree in G(B). Without
loss of generality, assume vertex u has even degree. Furthermore, if w(G(B)) = u,
then we can assume degy(u) < u — 3, for if two or more vertices had degree u — 1
then (V. B) would no longer be maximal. Define B* as follows.

i

(1) BC B~

(2a) If e(G(B)) + w(
(mod 3) and w(
I <e<u+1.

0 (mod 3) or if e(G(B)) + w(G(B)) + ¥+ =

then B* contains the lollipops {u +7,u % i u},

i/\+

(2b) H e(G(B)) + w(G(B)) + “ = 1 (mod 3) and w(G(B)) = u, then B* contains
the lollipops {u + &, u + 1, u} 2 <1< u~—1, the lollipop {u+ 1,u-+ 1,2u + 1},
and the loops at vertices 2u and 2u + 1.

(2¢) If €(G(B)) + w(G(B)) + = 2 (mod 3), then B* contains the lollipops
{u+i,uti,ul, 1 <i<u, <m( the loop at vertex 2u + 1.

(3) Using Lemma 2.2, partition the edges of K,y defined on the vertex set {u +
-,2u+ 1} into the 1-factors Fy,..., F,. Assume without loss of generality
that £, contains the edges {u+1,2u+1}, {u+2,2u},..., {u+ w3} {u+22

For each edge {a,b} € F,, 1 <v <u—1, let B* contam the triple {v, a, b}.
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Sinee (V, ) is maximal, ¢«(G(B)) < H;—J by Lemma 2.1. From (3) we have
that F(G(B*)) contains F,. Therefore: if (2a) “xpph(*& then we have E(G(B*)) =
F((;(B) FF, 50 (G(B) = e(G(B))+4 < [% s +2+L4f (2b) applies then we have

that E(G(B*) = E(G(B))+ F A\ {{u+1, Zu+l}}u{{u u+1} {u, 2u}, {u, 2u-+1 }}
so ((G(BY) = «(G(B))+ (¥ - 1)+3 < [ J+ 23 (2¢) applies then E(G(B*)) =
E(G(B) U F, U {{u,2u+ 1}}, so e(G(B*)) = ¢ (J(B)) 424 < e AJ + %= In
addition, A(G(B)) < v — 1. However, in cases (2a) and (20), deyepey (1) < do)(0) +
1< (u=1)+1 =1, for 1 <i<u and dgp(i) <2, for u+1 <0 < 2u+ 1,
so A(G(B)) < u; in case (2b), dgp(uv) < damy(u) +3 < u (since w(G(B)) = u,
we can assume degy(u) < v —3), dar+y(1) = dam)(i) < u, for 1 <4 <u—1, and
deyy(J) < 2, foru+ 1 <5 < 2u+ 1, proving (1).

Also, in the above construction, w(G(B)) = w(G(B7)). In (2a). the vertices
w+1,....2u+ 1 have odd degree in (7(B*) and all vertices 1,..., ,u which have even
(odd) degree in G(B) have even (odd) degree in G(87); in (Zb) the same argument
applies for vertices 1,... u =1, but depe(u) = do () (u) + 3 (so v has odd de gru)
deysey(2u) = 2, &nd (i((l,w (7} = 1forevery 7 € {uw-+1,...,2u — 1,2u + 1}, s
w(G(B*) = w(G(B)); in (2¢), a similar argument to the one used in (2a) ,,Lpphes
except for the fact that vertex u has odd degree and vertex 2u + 1 has even degree
in G(B*). In any event, w(G(B*)) < u. Clearly, (G(B)) + w(G(B)) + 4 =
e(G(B*))+w(G(B*)) in (2&)} e(G(B)+w(G(B)+4 = «(G(B)+w(((B))~2in
(2b); and, «(G(B))+w(G B)H—’“H = e(G(B"))+w(G(B*))—1in (2c). Therefore, we
have in (Zd) W(G(B™)) = w(G(B")) if e(G(B*))+w(G(BY) = e(GIB) +w(G(B)+
wl = (mod 3), and if «(G(B*)) + w G(B')) = 1 (mod 3) then W(G(B*)) ==
w(({(B*) +2 < u, as w(G(B*)) < u—-12in (Zb), (G(B)) +w(G(B)) + 4 =
((G{B*)) -+ w(G(B*)) —2=1 (mod 3), so ¢(G(B*)) + w(G(B")) = 0 (mod 3) thrh
means that w(G(B*)) = W(G(B*) = u; in (2), (G(B)) + w(G(B)) + 4 =
(G(BY)) + w(G(B*)) — 1 = 2 (mod 3), so (G(B*)) + w(G(B*)) = 0 (mod 3) whu h
means that w(G(B*)) = W(G(B*)) < u, proving (ii). ’

We now investigate e(G(B*)) + W (U(B*)) In (2a), «(G(B*)) < | %] + “* and
W(G(B*)) < u, so e(G(B*)) + W(G(B*)) < [%;J + 3y < 3T (u 4 2), when
u # 35 in (2b), «(G(B*)) + W(G(B")) [—;-J + 45 4y <33T (u 2) when u > 7
(it is also easily shown that e(G(B~ + W(G(B~ )) < 3T(u + 2) when v = 5, for
we have that if w(G(B)) = u and if (V B) is maximal then «(G(B)) < 5); in (2¢),
(G(B))+W(G(B7) < [ %]+ +u < 3T(u+2) when u # 3. It is easily verified
that if u = 3, the constructions provide a P ETS(7)(V*, B7) such that A(G(B*)) < 3,
W(G(B7)) < 4, and ¢(G(B*)) + W(G(B™)) < 6 = 3T(5), thus proving (iii) for all
odd v > 3. It is also very easily verified from the above constructions that (/(B*))
contains at least two vertices of degree at most u — 1, so (iv) is satisfied.

Case 2: u is even.

If w(G(B)) # 0, there are at least two vertices of even degree in G(3). Without
loss of generality, we can assume that vertices u — 1 and u are two such vertices.
Furthermore, if w(G(B)) = u, we cen assume that dep)(v) < u— 2, for if u is even
and all vertices have even degree in G(B), then A(G(B)) < u— 2. Define B* as
follows.
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(1) BC B~

(2a) He(G(B))+w(G(B))+14% =0 (mod 3) or if’(((}’('b")) w( '“’(H“} +l+t =1
(mod 3) and w < u -2 or if (G(B)) +w (?(P}} + 14 %= (mmi ?) and
w < u—4 then B* contains the lollipops {u+41,u-+4,i}, f( T <74 << w and the
loop at vertex 2u + 1.

S
2
T

(2b) He(G(B)) +w(G(B))+ 14 % =1 (mod 3) and w((/(B)) = u, then B* contains
the lollipops {u +1,u+1 z}, for 1 <4 <u~2, and the loops at vertices 2u — 1,
Qu, and 2u -+ 1.

(2¢) M (G(B)) +w(GB) + 1+ % =2 (mod 3) and w((/(B)) € {u—2,u}, then
" contains the lollipops {u + ¢, 1+ 2,2}, for [ <7 < w1, and the loops at
the vertices 2u and 2u + 1

(3) Using Lemma 2.2, partition the edges of K.y defined on the vertex set {u +
L,...,2u + 1} into the near T-factors Fy, ..., F,.y, with the property that /),
does not saturate vertex u -+ v. For each edge {a, b} € fy for 1 <« e, et B

contain the triple {v, ¢, b} (notice that the edges in FUH are not Y{'ﬁ included
in any extended triple in H*},

Again, since (V. B) is maximal, «(G(B)) < [% j by Lemma 2.1. We have from ()
that £(((B7)) contains qu Therefore, in ( a), B(G( B“‘)) = B(G(B)) U Fua,
so ((G(BY) = «(G(B)) + & [—l + 55 in (2b), B(G(B7) = E(G(B)) U Fu U
{20 — lLbu—1}, {2u,u}}, s0 <(( (B =e(G(B))+5+2< %J 4 w4 m\d in (Ye),
E(G(BY)) = B(G(B)UF U{{y, 2ut}, so (G(B*)) = «(G(B))+5+1 < [% e k2,
In addition, A(G(B)) < u— 1, so in any case dg (B*)(u, 1) < dgpey(u) < de B)(u) +
I < w Clearly, depa(i) < u—1, for I < ¢ < w— 2, and (!(,(H*}(j} < 2, for
u+ 1< j<2u+1, (so (iv) is satisfied for u > 4), so A(G(B*)) < u, thus proving
(i).

We now investigate W(G(B*)). Clearly, in the above construction, w(G(B*)) =
w(G(B)) + 1 (vertex 2u + 1 has degree zero in G(B*), and this accounts for the
(*“(tld, vertex of even degree in B*). In (2a), we have that «(G(B)) + w(G(B)) +
L4 3 = e(G(BY) + uv(('(B*), clearly in all cases, W(G(B*)) < w+ 1. In (Zb),

((,(H) +w(G(B))+ 1+ % = e(G(B*)) + W((‘(B* ) — 2 =1 (mod 3); therefore,

(G(B*) + w(G(B*) =0 (mud 3), so w(G(B*) = W(G(B") < u+ 1. In (),
(GB))+w(G(B)+1+% = f,(G(B*)) +w(G(B*))~1 = 2 (mod 3), so «(G(B*)) +
w((/(B*)) = 0 (mmod 3); therefore, w(G(B*)) = W(G(B*)) < u + L, proving (ii).

Now we investigate (iii). In (2a), e(G(B*)) + WI(G(B*)) < <% J + 5 4ut !
3T (u+2), for v > 45 in (2b), (G(B)) + W(G(BY)) < |% e Eii"- +u+4l=
1]+ e < ‘3’[’(u +2), for u > 6; and in (2¢), e(G(B*)) + W((;(B*)) < [“ i +
gy + [ = [“ ]+ 3 < 37w+ 2), for u > 4. It now remains to check the

values of (G(B*)) + W(G(E*)) when u = 4. If u = 4, we need only consider the
case (2b). If u = 4, we fall into case (2b) when e(G(B)) = 0. In this case, we have
€(((B)) = 0 and 'w((}(B)) = 4. However, ¢(G(B*)) = 4 and w(G(B*)) = 5, so

7
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(G(B N +wl HB7Y) =9 < 37(6). In addition, W(((B)) = b, and A((r'(B*))
so (i)-(1i1) are satisfied for u = 4. ‘k sarly, there are at least two vertices of degree (JA
most 3. so for all even w > 4, (1)-(iv) are satisfied. 0

Proposition 8.2 Let u > 3. Any PETS(2u + 1) (V7, B*) satisfying
(i) SGB*Y) <,
(i) W(G(B)) <u+1,
(iii) (G(B7)) + W(G(B")) < 3T(u+2), and
(iv) G(B*) contains at least two vertices of degree at most v — 1
can be embedded in an ETS(4u + 4) (V, B).

Proof:  We can clearly take (V*, B") to be maximal. We use five types of
extended triples to embed (V' = {1, 2u+ 1}, B*)in (V = {1,...,4u+ 4}, B):

(a) lollipops {a,a,b}, a > 2u + 2, b < 2u+ 1

(b lollipops and loops on vertices in {2u + 2, .., du +4};
(¢} triples {a,b,c}, a, b < 2u+ 1, ¢ > 2u+2

(d) triples {a,b, ¢}, 2u 4+ 2 < a,b,¢ < du + 4; and

(e} triples {a,b, ¢}, a < 2u+1,b,¢2> 2u+2.

We let 17* C 1 and consider each type of extended Lriple.

Type a: Since 4u + 4 1s even, each vertex of V must occur in B with an odd
number of other vertices from V| so each vertex needs to occur in an odd number
of Tollipops. We use Type a lollipops to adjust the w = w((/(B*)) vertices of G(B*)
which oceur in an even number of lollipops (these are precisely the vertices of even
degree in ((B*)). Let {1, .,z,} be this set of vertices, and let {{x;, (2u + 1) +
i (ut D+l <i<w} C B

We need to have that the number of edges remaining to be placed in extended
triples after the Type b lollipops are defined is divisible by 3; therefore, we man
need to add up to four more 1ollipops as follows. Let ¢ € Zy where ¢ = ¢(G(B*)) +
w((i(b‘*)) (mod 3. Let 2y, for 1 <@ < @ be vertices in {1, .., 2ut+1J\ {2, ..., 20}

{we have w +~</ < Zu 1 by (i) K¢ <1, let {{E,M.“Z'U,—i- 20 4+ w,2u + 2 +
w},{J,wﬂ,h 20 bw A+ 1, 2 24w 1}5] <1< ¢} C B. By (iv) we can specify
that depm(tws) < v — 1. Therefore, w + 2¢ = W(G(B*)) lollipops have been
defined.

Type b Lot H‘/‘u + 27+ 204wt 2,20+ 25 + 2¢ + w+ 2, 2u + 2 + 2 +
wo+3HO < f < oy - “’al} C B and kt B contain the loops on the vertices
{20 4+ 27 + Zg/) + wH+30 < <u— - 35’—--1 . If we consider just the extended

triples in B defined thus far, we have that every vertex in V occurs in B with an odd
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nurmber of other vertices; in addition, each of the 4u + 4 loops is in some extended
triple in B. Finally, for 2u + 2 < i < 4u + 4, vertex 1 is in a Type b lollipop if and
only if it is not in a Type a lollipop.

Type c: Form a simple graph H consisting of the edges of G(3*) together
with the edges (not the loops) {xq Ju L4} with 7 € {1,...,w+ ¢} and ¢ &
{l,...,w+2¢}, that are in fypé a lollipops. Give H a proper equalized (v + 2)-edge
coloring with the colors 2u -2, ... Ju 4+ 3 in W}n« h the lollipop edges {;,2u + 1 ¢}
are colored with 2u + 1 + 7, for I <7 < w+2¢, in the following manner. Form a
graph H' from H by amalgamating vertices 2u+2, ... 2u+2¢ + w + | into & single
vertex v. We have that dy:(1) < A(G(B*))+ 1 <w, for T < < 2u+ 1, by (i) and
(iv), and dy(v) < w(G(B7)) + 2¢ = W(C(B*) < u+ 1 by ("zi) Thervf(m L 40,
then H' is a star muitlomph thus, by Lemma 2.3 and Lemma 2.7, H can be given a
proper equalized {u+2)-edge-coloring with the colors 2u+2,... ! iu -3, such that in
the corresponding edge-coloring of H, {z;,2u+1+ £} is colored 2u 4+ 1+ 2. Clearly,
by Vizing’s theorem, the same result can be obtained if ¢ = 0.

For each edge {7, 7} in G(B*) colored k, we let {:,Jk} e b.

Type d: Consider the previously described edge-coloring of 1 and let §, denote
the number of edges of I/ colored x. Let {{2u +2, .. . : Ju 434,71} be an equitable
partial Steiner triple system of order u + 2 with (f((;(f?*)) + WI(G(B*))) /3 triples
(by the definition of W ((/(B~)), this number is an m?egar) cuch that &, = » (z), the
number of triples in T which contain symbol @, 2u +2 < z < 31 + 3, and such that
no triple in 7" has an edge in common with a Type b lollipop. Such a PSTS(u + 2)
exists by Lemma 2.6, since by assumption (iii), e(G(B*)) + W(G(B*)/3 < T(u+2).
Let 7' C B.

Type e: It now remains to place the remaining edges in triples, using Theorem
2.4. First we form a partial symmetric quasi-latin square L of order u -+ 2 on the
symbols 1,...,2u + 1 as follows:

(1) place symbol j < 2u + 1 in cell (4,4) if an edge colored 2u + | + 7 is incident
with vertex j in A, and

(2) for 1 <4 < j <2u+ 1, if {i42u+1,7+2u+ 1} is not an edge of a triple
in T" (see Type d) and is not a lollipop edge of Type b then fill cells (i, j) and
(j,1) with a symbol in {1,...,2u + 1} preserving the latin property, of course;
this can be done greedily since at most v + 1 symbols occur in each row and
column.

We now show that every symbol occurs an odd number of times on the main
diagonal of L, and, since [ is symmetric, altogether an odd number of times in L.

We consider two cases.

Case 1: d(‘;(B*)(.’L') = 2m.

Vertex ¢ has even degree in G(B*), so there is a lollipop edge of Type a incident
with # colored with some color ¢ in the graph H. Furthermore, since dasn(z) = 2m,
z is contained in 2m triples of the form {2, y, o}, where ey is the color of the edge
{z,y} in H. Consequently, symbol z occurs once in cell (¢,¢) and in 2m distinct
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cells of the form (o, ), so symbol @ occurs in 2m + 1 main diagonal cells of L.
Therefore, we have @ occurring an odd number of times in L.

Case 2: dgp-y(z) = 2m + L

Vertex & has odd degree in (J(B*), so there are either 0 or 2 lollipop edges of
Type a incident with z in the graph H; if there are two such edges, they are given
two distinct colors, say ¢; and ;. Furthermore, z is contained in 2m — 1 triples of
the form {x,y, ax}, where oy is the color of the edge {z,y} in H. Therefore, symbol
r is placed once in cells (¢f, ¢1) and (2, ¢5) and once o 2m — 1 distinct cells of the
form (v, au ), s0 symbol z occurs in 2m + 1 diagonal cells of L. If there are no such
lollipop edges, then vertex z is contained in 2m + 1 triples of the form {z,y, o},
where ay. is the color of the edge {z,y} in H. Therefore, symbol z is placed in 2m +1
disti uct cells of the form (au, or), so symbol x occurs in 2m -+ 1 diagonal cells of L.
Thus, we have = occurring an odd number of times in L.

We also have that for | <07 < w+ 2, row 1 of L contains u symbols, except that
if u -+ % is even, then row u -+ 2 contains u + 1 symbols. Suppose first that v + 2 is
odd. Since r(2u + ¢+ 1) is the number of triples in 7" containing symbol 2u +35 + 1,
from (1) the namber of symbols in cell (¢,1) is 2r(2u +14+1) — L or 20(2u + 12 + 1)
if symbol 2u i+ 1 is in a Type a or Type b lollipop, respectively (we know that
exactly one of these possibilities occurs); from (2) the number of u + | off-diagonal
cells that remain empty is 2r(2u-+141) or 2r(2u+1+1)+1 if vertex 2u-+i+41 is in a
Type a or Type b lollipop, r(’fspe(‘tiwly sou41—2r(2u+i+1) or u—2r(2u+:i+ 1)
are filled. Nevertheless, for | <3 < wu + 1, row 1 of L contains u symbols.

Suppose iow that w2 15 me,n; the argument varies slightly. We cousider vertex
3u -+ 3. This vertex must occur in a Type b lollipop, so from (1), the number of
symbols in cell (u+ 2 u+ 2) of L is 2r(3u + 3). Row u + 2, being the last row
(columnn) of L. contains one less empty off-diagonal cell. Therefore, 2r(3u+3) of the
w1 off- dmg,mml cells are filled. Thus, row © of L contains uw symbolsfor 1 <7 < u+1,
and row v + 2 of L contains v + 1 symbols.

We have that Np(¢) is odd and Np(i) > 2(u 4+ 2) — 2u — 3 = 1. Furthermore,
if v+ 2 s odd, then each row of L contains u symbols, and if w -+ 2 is even, then
row ¢ of L contains v symbols for 1 <14 < u, and row u + 2 contains u + 1 symbols.
Therefore by Theorem 2.4, L can be embedded in the top left corner of a symmetric
quasi-latin square L' of order 2u-+3 on the symbols 1,...,2u+1 such that cells (7,7),
w3 ifu+2, and cells (u—x+2i+1, u—2+2e4+2) and (u—z+20+2, u—x+214+1),
for 1 <ok L= (w2 4+ 1)/2 are empty, where z = 0 or 1 if u+2 is odd or even,
respec Uve! Use [ to form triples with the remaining edges as follows: if symbol ¢
occurs in cells (y, z) and (z,y), y # 2, of L' then let {y, 2,1} € B

This completes the d(‘ﬁm‘mon of B Now we show that (V, ) is an ETS(4u + 4)
by proving that every edge occurs in exactly one extended triple in 5.

Consider edges of the form {z,y}, z,y < 2u + 1. These edges were already in
extended triples in B* or they were colored in G(B*) and were therefore used in
Type ¢ triples. All loops {x, z, 2} are already in some extended triple in B* since B*
is assumed to be maximal. Hence, each edge of this form is in exactly one extended
triple in 5.

&
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Now consider edges of the form {z,y}, for # < 2u+ 1 and vy > 2u + 2. Each
symbol 1,...,2u + 1 occurs exactly once in each row of L/, so {x,y} occurs in an
extended triple of Type a or Type ¢ if « is in a diagonal (el] of L', and of Type e
otherwise. In any event, {z,y} occurs in exactly one extended triple in £.

Finally, cousider edges of the form {«,y} where x,y > 2u + 2. Each cell (z,y) in
L', & % y, contains 0 or 1 symbols. Suppose (z,y) contains 0 symbols; then {xz, y}
is in either a Type b or a Type d extended triple. Now suppose (z,y) contains 1
symbol; then {z, y} is in a Type e triple. Suppose z = y. If (2, ) is filled with an
odd number of symbols, then exactly one symbol, say 4, is joined to x by the Type a
lollipop {.r,7} (there is only one symbol of this type in cell (z,x) because at most
one Type a lollipop is incident with vertex x, for 2u + 2 < 2 < 4u + 4); otherwise,
{ayo, e 4+1Y or {w,z,2} € B.

Hence, every edgo of the form {x, y}, for 1 < w.y < du+4, is contained in exactly
one extended triple in B, and the proof is (()m]ﬂet(,. 0

We now prove the following theorem.

Theorem 3.3 Any PETS(u) (V,B) can be embedded in an ETS(v), for all v >
4u +4, where v =0 (mod 4).

Proof: First assume u € {1,2}. (Jlearly, any PETS(1) can be trivially em-
bedded in an £T'S(v) for all v > 8, v = 0 (mod 4). (This corresponds to the
existence of such ETS(v)s.) Now if v = 2, then f(("(b’) =0or L. If (G(B)) =0,
then by [5] we can obtain the desired result. If ¢(G(B)) = 1, then we assume that
B ={{1,1,1},{2,2.2}} and let B* = BU{{1,2,3},{3,3,3}}. This forms an £7.5(3)
which can be embedded in the desired ETS(v)s by [5].

Now suppose u > 3 and let v = 4(u + k) + 4, where & > 0. Embed (V, B)
in a maximal PETS(w + k) (V}, By). By Lemma 3.1, (Vi, By) can be embedded in
a PETS(2(u + k) + 1) (Va, By) satisfying (i)-(iv), which by Proposition 3.2 can be
embedded in an ETS(4(u + k) + 4). a

We also have the following theorem.

Theorem 3.4 ([9]) Any PETS(u) can be embedded in an ETS(v), for all v > 4u-+6,
v=2 (mod {).

This bound on v can be lowered to 4u + 2 in most cases [9]. Combining Theorem
3.3 and Theorem 3.4 gives a much greater result.

Theorem 3.5 Any PETS(u) can be embedded in an ETS(v) for all even v > du-+4.

(learly Theorem 1.1 is a corollary of Theorem 3.5.
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