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4) and showc'd that this bound on 
to 

the main focus of the papPL 
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if n 0 (mod 6) 
Z{ n 1 (mod 6) 
if n (mod 6) 
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4, and 

and 

wlwll 

B*)) 
n"P,··"'''·''T (iii) for ,til 

:3. It is also very 
contains at least two vertices uf 

verified from the above constructions that )) 
at most '11, 1, s() (iv) is satisfied. 

Case 71, IS even. 
=/: 0, there are at least two vertices of even 

we can assume that vertices 71, 1 and 71, 

and all vertices have even 
follows. 

71" we can assume that dO(B) (u) 
1ll then ,6.(G(B)) 
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It 2 4. It now 
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therefore. W(' man 
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column. 

1 in cell (i,i) if colored 2u + 1 

We now show that number of 
diagonal of L, and, since HI 

We consider two cases. 
Case 1: dC;(B*)(X) = 
Vertex ;r has even in of a 

with x colored with some color c in the since dG(B*) (:r) 
,r; is contained in 2rn triples of the form y, where fl:k is the color of the 
{:r, y} in H. Consequently, symbol :r occurs once in cel1 (c, c) and in 2m distinct 
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cdb of L 

contained in 2m 
y} in H. Tlwrcfore. 

1 distinct cells of tlw 

except that 
first that 11,+ 

+ + 1. 

even, 

ill were th(~refore used iLl 
in some extended triple in B* since B* 

this form is ill one extended 



Theorem 

Proof: 
hedd<"d in an 
('xist(~nce of such 
tlWll [.1] obtain 
B {{ 1, L l} ~ } and let 

theorenL 

which can be emh(-~dded in the desired 

1u 

be emlJfddcd in an 

:3 and let v 4(u+k)+4: 
III + k) (\Il, b\). 
a k:)+l) (V2' 
Plllbedded in an ETS( 4( u + 

Wp- also have the following theorem. 

Theorem 3,4 ([9]) Any PETS(u) can bf embedded in an 
v == 2 (mod 4). 

III 

o 

all v 

[J 

Jar all v 

This bound on v can be lowered 
:3.:3 and Theorem :3.4 gives a much 

4u + 2 in most cases [9]. Combining Theorem 
result. 

Theorem 3.5 Any PETS(u) can be embedded in an all even v 4u + 4. 

(;learly Theorem 1.1 is corollary of Theorem 3.,5. 
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