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Abstract

A secret sharing scheme is a system whereby some secret data can be
protected among a set of participants in such a way that only certain pre-
specified groups of participants can reconstruct the secret. Most secret
sharing schemes are designed with the intent that once the secret has
been recovered there must be a further redistribution of information to
participants before the scheme can be used again to protect a new secret.
In this paper the secret sharing schemes under consideration can be used
more than once, at the expense of a possible reduction in security as the
schemne is repeatedly used. A bound on the amount of information held
by each participant in such schemes is known. Constructions for secret
sharing schemes that are optimal with respect to this bound are now
provided.

1  Introduction

£ secret sharmg scheme is a way of protecting a secret among a group of partici-
pants. This is done by distributing to each participant some information known as
a share. The secret sharing scheme is designed so that only certain pre-specified
groups of participants will be able to pool their shares and reconstruct the secret.
This collection of groups of participants is known as the access structure of the secret
sharing scheme. Secret sharing schemes were first proposed in [3] and [12] which both
discussed the case of (k,m)-threshold schemes, where the access structure consists of
all subsets of an m-set of at least some fixed cardinality k. For a good introduction
to the theory of secret sharing schemes see [14] and for applications of secret sharing
schernes see [13].
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We consider the situation where a secret sharing scheme is to be used several times.
We assume that throughout the lifetime of a secret sharing scheme the integrity of the
shares is preserved but the value of a reconstructed secret becomes public knowledge.
For instance, let the participants be members of a military unit and the secrets be a
set of one-time use passwords to be issued only in emergency situations. In the event
of such an emergency an authorised set of members of the unit can use their shares
to determine a password which can then be broadcast to the whole unit. During a
subsequent alert a new password will be needed. The design of the secret sharing
scheme must take into consideration the fact that the old password is now known by
all the participants. In most traditional models it is necessary to redistribute fresh
shares to each participant once a particular secret has been reconstructed. This can
be a costly process with respect to both time and resources. We would like to extend
the potential lifetime of a particular set of shares by allowing them to be used in the
recovery of more than one secret.

The secret sharing schemes that we study offer unconditional security. This means
that their security is independent of the time and resources available to any opponent
who is trying to interfere with the procedure. Threshold schemes that permitted
shares to be re-used several times were studied in [7]. The security of these schemes
was not unconditional since it relied on the difficulty of computing discrete logarithms
modulo a large prime (we say that secret sharing schemes of this type offer conditional
security). Conditionally secure secret sharing schemes with re-usable shares for the
more general class of monotone access structures (see Section 2) were studied in 18].
Unconditionally secure threshold schemes that protected more than one secret were
first discussed in [10]. These schemes were not optimal in the sense that we will
discuss later. Unconditionally secure secret sharing schemes for general monotone
access structures were studied in [4] and some lower bounds on the size of share
that each participant holds in such schemes were shown. The size of a participant’s
share in a secret sharing scheme reflects the efficiency of the scheme as larger shares
are more costly to store and process. In Section 2 we formalise the problem and in
Section 3 we present two constructions for secret sharing schemes that meet the main
lower bound given in [4].

2 Modelling schemes to share many secrets

We call a secret sharing scheme that is to be used up to n times an n-secret sharing
scheme. We begin by defining a model for an n-secret sharing scheme. Let P =
{P1,..., Pn} index a collection of participants and let & = {51,...,5,} index 2 set
of secrets (these secrets will be accessed sequentially and in any order). For each
I <2< m let (F) be the finite set of all possible shares for participant P;, and for
each 1 <1 < n let (5:) be the finite set of all possible values of the secret S;. For
each Z = {Z;,...,2,}y CPUS let (Z) = (Zy) x -+ x (Z,) (the collection of r-tuples
with component ¢ from set (7).

An n-secret sharing scheme consists of a publicly known subset F of (PUS) and a
probability measure p defined on F. Each f € F is known as a distribution rule. We
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label the components of f € 7 such that f = (f(P),..., f(Pn), F(S1),- .., F(Sa)).
Foreach Z = {Z:,...,Z,} C PUS welet f(Z) = (f(Z1),..., f(Z,)). To implement
an n-secret sharing scheme a distribution rule f is selected (with probability p(f))
from F. For each 1 < ¢ < m the share given to F; is f(FP.) and foreach 1 < ¢ < n
the value of secret 5, is f(.5.). Note that the secret values can be explicit (the values

Zi, ..., 7n of the secrets are predetermined and an f is chosen such that f(§) =
(21,...,2.)), or be tmplicit {(f is chosen first and the secret values implicitly become
F(Se), .., f(f}.;)). An n-secret sharing scheme is designed mainly for implicit secrets,

suitable for uses such as when the secret values correspond to cryptographic keys.
As an n-secret sharing scheme does not guarantee to have a distribution rule f that
has f(S8) = (21, ..., z) for all possible choices of 2;,..., 2n, such a scheme may not
always be suitable for use with explicit secrets.

An access slructure U, defined on P, 15 a collection of subsets of P. We assume
=t T is monotone, hence it has the property that for all A C A4 C P, if A € T then

- W, assurne that T is connected (for all P € P thele exists .A C P such that
s Pbut AN{P}¢T).

' “15 mod el for n-secret sharing in [4] was defined in terms of the entropy function

(see for example [15] for an introduction to entropy). For any Z C P U S and any

z € (Z) let p(2) = Cipeprusy|s(z)=sp PF). We let [Z] = {z € (Z)|p(z) > 0}. Then
let
H(Z) =~ 3, p(z)logyp(2).
o
Stmilarly, for any V, 2 C{PUS) we let

H(Z|Y) = — 5 5 vly)p(z,y)log, p(2,y).

ve[V] z€(Z]

et I be an

egs shructure defined on P and let 8,F and p be as previously defined.

sdibﬁm :

IN1] For all A ¢ T and all §; € S we have that H(S;]A) = 0.

o o } oo
‘7ktkv‘ Bl o &y

A) = o H(S;

iii" 3;\) 1k+1)'

Thus an n-secret sharing scheme has the following properties. If a set of partici-
pants A is in the sceese structure then their collective shares can be used to uniquely
determine the value of any secret S;. If A is not in the access structure then by pool-
ing their shares the participants of A obtain no more information about any of the



secret values (other than the publicly known information obtained from knowledge
of F). Further for each 1 < k < n — 1 there is a predetermined limnit on the amount
of information that the pooled shares of A and knowledge of k previous secret values
give away about any other secret value. Where appropriate we refer to such a scheme
as an n-secret sharing scheme with respect to (1, 01,...,an-1). A 2-secret sharing
scheme is exhibited in Example 2.

Note that in [4] an n-secret sharing scheme was referred to as a multisecret sharing
scheme. We also note that in [8] the secrets were ordered and necessarily accessed in
sequence. In our model (and that of [4]) the order of reconstruction of the secrets is
not important.

For each 1 <1 < m, H(P;) is referred to as the size of P;’s share. To be precise,
H(P;) is an approzimation of the average number of bits needed to represent P’s
share and takes a value in the range 0 < H(P;) < log, [Z]]. Similarly, for each
1 <1< n, H(S;) is the size of secret §;. In [4] the following result was proved.

Result 1 In an n-secret sharing scheme for I' with respect to (1,04,...,04,.1), for
any ordering Sy, ..., 5, , of 8, and for each P; € P,

n—1

H(P;) > 3 oy H(Ss,). (1)

5=0

For reasons relating to storage cost and efficiency, it is desirable to minimise the
size of shares in any n-secret sharing scheme. Hence we would like to construct n-
secret sharing schemes that meet (1) with equality for each P, € P. We refer to such
secret sharing schemes as n-optimel. An advantage of establishing n-secret sharing
schemes with respect to (1,1,...,0,1) where a; < 1 for some 1 <3 < n -~ 1,1is
that (1) suggests that in theory it is possible to trade-off a reduction in share size
against a reduction in security {compared to n-secret sharing schemes with respect
to (1,1,...,1)).

Note that 1-optimal secret sharing schemes have the property that for each 7; € P,
the size of the share of P; is the same as the size of the secret. Such schemes have
been studied extensively in the literature and are referred to as ideal secret sharing
schemes (see for example [5]). We say that a monotone access structure is ideal if
there exists an ideal secret sharing scheme with access structure I'. We refer to an
ideal secret sharing scheme F such that p is uniform on [P U &} and [S], and such
that |[S]] = g, as a uniform ideal secret sharing scheme for I' with secret length g.

For the rest of the paper we assume that each secret 5; has the same size.

Example 2 The following set of distribution rules F form a 2-optimal secret shar-
ing scheme with respect to (1,1) for I' = {{Py, P}, {P1, P3},{ Py, P», P5}}. In our
examples we use an array representation for a set of tuples, where the entry in the
row indezed by i and the column indewved by j is the component indezed by ;7 in the
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tuple labelled by 1.

hf
f2
fs
fa
fs
fs
Iz
fs
Jo
fio
fu
fiz
fia
fia
fis
fre
In the above o distribution rule is chosen uniformly. If fe is chosen then each partic-
ipant receives the share 1. If P and Py pool their shares then it is clear that fe 1s the
chosen distribution rule and hence they can deduce that the secret value of Sy is 1 and
Sy is 0. If Py acts alone then they can only deduce that the distribution rule is one
of fs. fe, f1, fs. Hence the secret values of Sy and S, are equally likely to be 0 or 1.
Even if the value of Sy 1s already known (in this case to be 1) then Py can only deduce
that the distribution rule is fo or fr, and again the value of Sy is equally likely to be 0
or 1. This is also true if only the value of S, is known and P; tries to determine the
value of Sy. Finally, H(P1) = H(P2) = log,4 =2 and H(Sy) = H(Sz) = log,2 = 1
and hence F satisfies (1).

=

I CIE T T Iy ety Sy SR
oD N = O WO W ON
o O W W N D W N DT

o e O o OO O DO

P OO D D e D

Note that in Example 2 there are only two possible values for each secret. In practical
examples the number of possible secret values will normally be very large.

3 Constructing n-optimal secret sharing schemes

In this section we present two constructions for n-optimal secret sharing schemes. The
first construction is for an n-optimal secret sharing scheme for any ideal I' with respect
to any non-negative non-increasing rational sequence (1,4, -, an-1). The second
construction has an important advantage, but only works for a more restricted range
of sequences (1,¢,...,0n1). Both constructions use the same general technique,
which we now describe.

Firstly we define an n-secret distribution. An n-secret distribution is essentially
an n-secret sharing scheme without any shares. In other words it is a collection of dis-
tribution rules that consist of secret values only. More formally, let & = {51,..., 5.}
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index a set of secrets and for each 1 <17 < n let 5, take a secret value from the finite
set (S;). We will assume that (S;) = -+ = (S.). Let (1,aq,...,2,_1) be a non-
negative non-increasing sequence. Using the notation from the last section, let G be
a subset of (S) and let p be a probability measure such that p is uniform on [§]. Then

G is an n-secret distribution with respect to (1,aq,...,0n_1) if for all 0 <k <n -1,
and for all {S;,,...,5:,,5,,,1 €S,
H(Sik+1 1Si1, R Sik) = ajH(Siku)'

We say that A = |[S]| is the length of the n-secret distribution. Our general construc-
tion technique is as follows:

Secret Distribution Technique

We start with the following objects:
e F a uniform ideal secret sharing scheme for I' with secret length A.
e G an n-secret distribution with respect to (1, ,..., 1) of length A

Now form an n-optimal secret sharing scheme H for I' with respect to
(1,1, ..., 04-1) by defining a bijection between the secret values of F and the
distribution rules of G and replacing each secret value of F with its corresponding
distribution rule of G.

Thus the above technique results in each secret value of F being replaced by an
n-tuple of secret values of G. The proof that H is n-optimal is straightforward.

Example 3 We show how to use the Secret Distribution Technique to construct the
2-optimal secret sharing scheme ezhibited in Ezample 2. Let T' be the ideal access
structure in Ezample 2. Let F' be the uniform ideal secret sharing scheme for T
obtained from F in Ezample 2 by treating the components indezed by 51,5, as a
binary ordered parr, indezed by S. Hence, for ezample, the distribution rule fy in F
becomes the distribution rule f; in F' given by

P PP S
f0 3 3 (1,1)

Let G = {(0,0),(0,1),(1,0),(1,1)} be a 2-secret distribution with respect to (1,1).
Then by applying the Secret Distribution Technique to F' and G, using the identity
mapping between secret values of F' and distribution rules of G, we reconstruct F.

3.1 The Tranversal Product Construction

We now provide our first construction. We will construct an n-secret distribution and
then use the Secret Distribution Technique to convert it to an n-optimal secret sharing
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scheme. We butid our n-secret distribution using the following structures. Let ¢,n be
positive integers and let 7 be an integer such that 1 < j <n. Let X = {X;,..., Xa}
be a set of indices and let Q) be a finite set of size g. We say that a set 7 of n-tuples
(indexed by X), with elements from 0, is a (4,n, q)-transversal system if for every
subset {X;,,... X} of X and every j-tuple (zi,...,2,;) € @ thereis a unique h € T
such that h(X;,) = 21,..., A(Xy;) = 2. Note that 7 is a (5,7, g)-transversal system
if and only if the tuples in 7 form the rows of a combinatorial structure known as an
orthogonal array [2].

Example 4 Let @ = {0,1}. Then the tuples Ty = {(0,0),(1,1)} form a (1,2,2)-
transversal system. The tuples T, = {(0,0),(1,1),(0,1),(1,0)} ferm a (2,2,2)-

transversal system.

Let T' be a monotone access structure and let (1,aq,. .., oeyo1) be a sequence of
non-negative non-increasing rationals, where for each 0 <1 < n—1, a; = u;/ue (for
some positive Integers ug, U, . . ., Up-1). Foreach 1 <1<mn let d; = wi_ g —u; (un = 0)

. T >l
and let § = 30, ud;.

Transversal Product Construction
To construct an m-optimal secret sharing scheme H for I' with respect to
(1,a1,..., 0, 1) proceed as follows.
o Let & = {54,..., 5.} index a set of secrets.

e Let g > n— 1 be a prime power such that there exists a uniform ideal secret
sharing scheme F for I’ with secret length 9.

¢ For each 1 < j < n and each 1 < k < dj, let Tji be a (5, n, q)-transversal
systemn, indexed by &.

o Define an n-secret distribution § with respect to (1, au,...,an-1) as fol-
lows. For each set {hj € Tupll < 7 < n1 < k < d;}, define
a digtribution rule ¢ € @ such that for each 1 < I < n, g(5) =
(ki (S, o gy (Se)y oo e Pt (St)s oy na, (S1))-

e Apply the Secret Distribution Technique to F and G.

Note that the existence of a uniform ideal secret sharing scheme for I' with secret
length g is sufficient to guarantee the existence of one with secret length ¢° (see [6]).
Note also that for any 1 < j < n and prime power ¢ > n — 1 there exists a (,n, q)-
transversal system (see for example [2]). The Transversal Product Construction is so
named because we effectively ‘multiply’ together a sequence of transversal systems,
where this sequence consists of d; coples of a (4,n, q)-transversal system for each

4

1 < j < m. It is straightforward to verify that G is an n-secret distribution with
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respect to (1, ay,...,an_1) of length ¢ and hence that we can apply the Secret
Distribution Technique. Finally we note that for every access structure currently
known to be ideal, it is possible to find a prime power g for which there exists an
ideal secret sharing scheme for that access structure with secret length g (see [5] for
an example of such constructions).

Example 5 Letn =2 and o = 1/3. Letuo = 3, uy = 1, (us = 0) and thus d; = 2,
dy = 1. Choosing q = 2 we need two copies of a (1,2, 2)-transversal system and one
copy of a (2,2,2)-transversal system. Thus let Ty = Ty = T, {(of Bzample {) and
let Tpy = Ty (of Ezample 4). The distribution rules of G, o S-secrei distribution with
respect to (1,1/3), are thus given as follows, where [S)] = [Sa] = Z2 (the set of binary
3-tuples):

S Sy S 55
o (0,0,0) (0,0,0) 9o (1,0,0) (1,0,0)
g (0,0,1) (0,0,1) g0 (1,0,1) (1,0,1)
g5 (0,0,0) (0,0,1) g (1,0,0) (1,0,1)
91 (0,0,1) (0,0,0) gz (1,0,1) (1,0,0)
gs (071:0) (0>1:0) 013 (1)110) (17150)
% (0,1,1) (0,1,1) g (1L,1,1) (1,1,1)
g7 (0,1,0) (0,1,1) a5 (1,1,0) (1,1,1)
g (0,1,1) (0,1,0) a6 (1,1,1) (1,1,0)

For ezample, rule g, was constructed using tuple (0,0) of 73y, tuple (0,0) of 71a
and tuple (1,1) of Toy. It is easily checked that H(83) = H(S3) = log, 8 = 3 and
H(S1]S2) = H(S2|S1) = log,2 = 1. In order to construct a 2-optimal secret sharing
scheme for any ideal access structure T' with respect to (1,1/3) we take a uniform
ideal secret sharing scheme F for I' with secret length 16 and then replace the secret
values of F with the 16 elements of G.

The Transversal Product Construction is extremely useful since it applies to any
sequence of non-negative non-increasing rationals (1, ey, ... ,0po1). We note that
generally the resulting n-optimal secret sharing schemes will have very large secret
lengths. This is highly desirable in most practical applications, however for many
sequences the resulting secret length may be even larger than that required for the
security of the application. We now describe an alternative construction for an n-
secret mapping which only works for certain sequences (1,e4,. .., Cp_1), but which
can result in smaller secret lengths.

3.2 The Intersection Mapping Construction

The Tranversal Product Construction creates a secret distribution from smaller ob-
jects (tranversal systems). In contrast, the Intersection Mapping Construction pro-
duces a secret distribution mapping by dividing a large object into smaller objects.
This construction starts with a set of tuples that form [S] and then associates cer-
tain sets of components with each secret S; in such a way that the result is a secret
distribution mapping.
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Let I', n, S and (1,04,...,0.1) be as in Section 3.1 (hence a, = wu;/uo where
u;, U are positive integers). An intersection mapping with respect to (1, aq, ..., cu 1)
is a pair (w, ¢), where w is a positive integer, W is the collection of ug-subsets of the
set {1,...,w}, and ¢: 5 — W is such that for every 1 <k < m - 1 and every subset
{Sur. S S} C S,

t¢(‘g!k+§ ) \ (qﬂ(Sn) Uy (JS(S%))l = Uj. (2)

Example 6 Let P = [P, P}, T ={P}, n=3 and § = {51, 5,,53}. Let oy = 2/4
and o = 1/4. Letw =7 and let ¢: & — W be given by

#(S:) = {1,4,5,7}, &(5,) = {2,4,6,7}, é(S3) = {3,5,6,7}.

It is easily verified thet (w, ) is an intersection mapping with respect to (1,2/4,1/4).

Intersection Mapping Construction

To construct an n-optimal secret sharing scheme H for I' with respect to
(L,c1,. .., 0n1) proceed as follows:

e Let & = {5;,..., 5.} index a set of secrets.
s Let (w, ) be an intersection mapping with respect to (1, ay,.. ., pet).

¢ Let ¢ >> 2 be an integer such that there exists a uniform ideal secret sharing
scheme F for I' with secret length ¢“.

e Define an n-secret distribution § with respect to (1,04, ..., a,-1 ) as follows.
For every w-tuple (x4, ..., z,) with elements from {0,1,...,¢— 1}, define a
distribution rule ¢ € G such that for each 1 <1 < n, if ¢(5;) = {21,...,%,}
then g(51) = (24, ..., @i, )-

¢ Apply the Secret Distribution Technique to F and G.

Tt is straightforward to verify that the mapping G defined in the Intersection Mapping
Construction is a secret distribution with respect to (1,04,..., an1).

Example 7 Let T = {{P, B}, {P, P}, {P, P, P}t We show how to use the
Intersection Mapping Construction to construct a 3-optimal secret sharing scheme
with respect to {1,2/4,1/4). The following distribution rules F form a uniform ideal
secret sharing scheme for I' with secret length 2:

P, PP S
fi 00 0 0
f2 0 1 1 1
fs+ 1 0 0 1
fi 1 1 1 0
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We convert F to a uniform ideal secret sharing scheme F7 for I' with secret length
27 by ‘multiplying’ F by itself seven times (see [6] for details). Each distribution
rule of F7 is formed by concatenating component-wise a T-tuple of rules from F. For

ezample the rule f in F7 formed from the 7-tuple (fa, fs, fa, f2, fa, f1, f3) is

Py P, Py S
7 (0,1,0,0,1,0,1) (1,0,1,1,1,0,0) (1,0,1,1,1,0,0) (3,1,1,1,0,0,1).

Now define a 3-secret distribution G with respect to (1,2/4,1/4) using the intersection
mapping (7, ¢) of Ezample 6. Hence, for example, the distribution rule g € G arising
from the binary 7-tuple (1,1,1,1,0,0,1) s

Sl Sz Sg
g (1,1,0,1) (1,1,0,1) (1,0,0,1).

Finally, in applying the Secret Distribution Technigue to F and G, the mosi natvral
bijection between the binary 7T-tuple secret values of F and the distribution rules of
G 1s the one that maps the secret value (z1,...,27) onte the distribution rule of G
arising from (z1,...,27). Hence under this mapping the distribuiion rule [ results in
o distribution rule h of a 3-optimal secret sharing scheme with respect to (1,2/4,1]4)
given by

Py P, Py 51 52 53
(0,1,0,0,1,0,1) (1,0,1,1,1,0,0) (1,0,1,1,1,0,0) (1,1,0,1) (1,1,0,1) (1,0,0,1).

Although the Intersection Mapping Construction is both intuitive and simple,
the main difficulty with using it is that an intersection mapping must first be found.
We now present a sufficient condition for the existence of an intersection mapping.
Once again let (1, a1, ..., an1) be a non-increasing sequence of non-negative rationals
(where o; = u;/ug). We say that (1,04,...,04-1) is sustable if for sach 1 <1 <n we
have 8; > 0, where

I o) e P o )

n — _7‘ —

We need @; > 0 in order to apply our construction of an intersection mapping {Theo-
rem 9). Firstly we give a useful expression for the integers u; in terms of the integers

B

Lemma 8 With §; (1 < 1 < n) as defined in (3), for each 0 < k < n — 1 we have
that

w = B () ®

=1
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Proof. Let k be such that 0 < k < n—1. To prove that (4) is the correct expression

for uy in terms of the wmablpg B (1 <1 < n), we let v be the result of substituting
(3) into the right-hand side of (4) and then show that v = uk. Thus

n—k n- b s .
Y (wl}j'"“ " . k 1)( ’ ,1 )u,
= i-1 J\n—j—1

n:‘i n—»lc ‘ frits —k-1 s
— 2“ ; Q‘Hl)g * ( i ) (n’ w_j - ]) uj

gk tmne g \ 74 b
niik k-1 \[n—j-1+1

““‘“?“-’4»1‘5( " ’ . 5
j&"{,fj}‘” An—g =140\ n—7-1 s (5)

by substituting | =1 —n + 5. Then by substitutingea =n—k—landb=n-j;-1
and using a well-known combinatorial identity (see for example [1]) we see that for
3 > k the coefficient of u; 1n (5) is given by

s () =GR ) -

Thus the only non-zerc coefficient in (5) corresponds to j = k and thus we see that

o= U, as required. m}

Theorem @ Let n > 1 and let (1, ey, .., 0u) be o suitable sequence of mon-
increasing non-negative rationals. Then there exists a secret allocation mapping with
respect to (1,04, ... Qnot ).

Proof. Let N = {i,...,n} and for 1 < i < n let f; be calculated using (3) (where
oy = ugfug). Let T be a collection of Subsets of N consisting of [ copies of all the
distinet k-subsets of N, for each 1 < k < n. We construct the intersection mapping
(w, ¢) 25 follows:

¢ Letw = [D] = £, A(7).
e Let the subsets in D be ordered Dy,..., D,.
e For 1 <l<nlet¢(5)={ille D}

It follows that for each 1 < { < n, [#(5)| = £, ('::;),81 = ug (by (4)). Let k be
such that 1 < k < n and let {84, 5,84, 1 © & Let I = {i,...,u}. Notice
that

¢(Sipn) \ Ujerd(S;) = U (Miesd(S)) \ (Uigsg(51)- (6)

{JCN\T iy €7}

For each 1 < 5 < n — k there are ("’J,k 1) j-subsets J of N \ I such that igy; € J.

Further, i(ﬁggjqﬁ SO\ (Urgr#(51))] is the number of subsets in D that equal J, which
is ;. Thus using (6) and (4) we see that

(i) \ Userd(55) = §<n7_l )ﬂ;— U

=1
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Thus (w, 4) is an intersection mapping with respect to (1,4, .., e41). 0

Example 10 Let n = 3, oy = 2/4 and oy = 1/4. From (8) we see that By = fz =
B3 = 1 and hence that (1,2/4,1/4) is suitable. Thus we form the structure D which
consists of the sets Dy = {1}, Dy = {2}, Dy = {3}, Dy = {1,2}, Ds = {1,3},
Ds = {2,3}, Dy = {1,2,8}. Thusw =7 and ¢(51) = {1,4,5,7}, ¢(5:) = {2,4,6,7},
#(Sa) = {3,5,6,T}. The secret allocation mapping (w, ¢) with respect to (1,2/4,1/4)
s the one ezhibited in Ezample 6.

3.3 Comparison of constructions

We now compare the two constructions described in Sections 3.1 and 3.2. First note
that with é and d; as defined in Section 3.1 and w as defined in the proof of Theorem 9
we have that

n —1 n-1n-k
§ = Zldt""‘}:’:u’k EZ( 1 }ﬂa (by (3))
k=0

2=l Je=0 1=l
non—i n
- ~
- S e (e
4=l k=0 i1 =1 N/

The penultimate equality comes from repeated application of the fact that {';‘) =

(’;‘_:f) + <’";1) (see for example [1]). Thus if (1,04,..., 1) is suitable and a prime
power g is chosen such that ¢ > n — 1 then the secret length of the n-optimal secret
sharing scheme constructed using either construction is the same. The significant
advantage of the Intersection Mapping Construction is that it can be used to construct
a scheme for any integer ¢ > 2 as long as (1, o, ..., @1 ) is suitable and there exists
a uniform ideal secret sharing scheme for T' of length 4%

For instance let n = 6 and (o, @, o5, ca, ) = (13/22,8/22,5/22,3/92,1/22).
Setting ug = 22 we get § = 52. The smallest known ¢ for which there exists

a (2,6, q)-transversal system is ¢ = & (see [2]) and thus for this particular ex-
ample we would need to base any construction on a uniform ideal secret sharing
scheme for I' with secret length at least A = 5% ~ 2.22 x 10°. However, we

have ({1, Bz, B3, Bs, Bs, Be) = (1,2,0,1,0,1) and hence (1, au, cug, vy, e, @5 ) is suitable.
Thus for any ideal access structure for which there exists a uniform ideal secret shar-
ing scheme with secret length 2°%| there exists a 6-optimal secret sharing scheme for T
with respect to (1,13/22,8/22,5/22,3/22,1/22) with secret length 2%% o~ 4.50 x 10*°

An alternative method of reducing the secret length is simply to choose the e,
carefully so that extra large secret lengths are avoided. Hence in the above example,
if we choose instead to approximate the stated values of o, by (ay, 03, o3, 04, 05) =
(1/2,1/3,1/4,1/6,1/12) then using the Transversal Product Construction results in
a secret length of A = 5% ~ 3.72 x 10'° and, since (1,1/2,1/3,1/4,1/6,1/12) is
suitable, using the Intersection Mapping Construction results in a secret length of
A= 2%~ 268 x 10°
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4 Conclusions

‘We have described a construction method for n-optimal secret sharing schemes with
respect to any non-negative rational non-increasing sequence (1, ¢, ..., a,1) for any
ideal access structure I'. An interesting open question is to determine whether every
n-optimal secret sharing scheme necessarily has an ideal access structure. We also
described a process that constructs n-optimal secret sharing schemes for certain spe-
cial sequences (1, v, ..., a,_1) and can result in schemes with smaller secret lengths.
Both constructions use an ideal secret sharing scheme for I' to generate the n-optimal
secret sharing scheme. The same construction methods can be used for non-ideal ac-
cess structures by replacing the ideal secret sharing scheme with any perfect secret
sharing scheme for I'. The resulting set of distribution rules form an n-secret sharing
scheme for I' with respect to (1, a4,...,@,_1), but the scheme is not n-optimal.
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