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Abstract. A t-(v,k, A) design D is a system (multiset ) of k-element sub-
sets (called blocks) of a v-element set V' such that every {-element subset
of V occurs exactly X times in the blocks of D. A #(v,k, A) design D is
called indecomposable (or elementary) if and only if there is no subsys-
tem which is a t-(v, k, A') design with 0 < X" < A Tt is known that the
number of indecomposable designs for given parameters ¢, v, k is finite. A
block design is a t-(v, k. A) design with ¢ = 2. The exact number of non-
isomorphic, indecomposable block designs is only known for k& = 3 and
v < 7. We computed the number of indecomposable designs for v < 13
and A < 6. The algorithms used will be described.

1  Introduction

A t-(v,k, ) design D is a system (multiset) of k-element subsets (called blocks) of
a v-element set V' osuch that every f-element subset of V occurs exactly A times in
the blocks of D. A t-(v.k, A) design D is called indecomposable (or elementary) if
and only if there is no subsystem which is a t-(v, k, X') design with 0 < A" < A A
survey about existence results was given by Archdeacon and Dinitz [1]. Two designs
D and D' based on the same set V are called isomorphic if and only if there is a
permutation of the elements of V' which has the property that every block of D is
bijectively mapped into a block of D'; we write D' = 7(D) with = € Sy .

A block design is a t-(v,k, X) design with ¢ = 2. The numnber of indecomposable
t-(v, k, A) designs for given parameters ¢, v, k is finite, see Street [17] or Engel [5]. One
way to construct block designs with larger A is to take the union of designs sharing
a common set V. Let parameters t,v,k be fixed. The set of all non-isomorphic,
indecomposable t-(v, k, A) designs D*[t,v, k] = {D7, D5, . .., f)rf?*{t,u,k]l
generating system. Ivery t-(v,k, A) design D can be built as follows:
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where o; denotes how often the indecomposable design D € D*[t,v,k] is to be
used. The W sign means the union of multisets, i.e. if a block B occurs r times in
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Dy and s times in Dy, B occurs s + ¢ times in Dy W D,. The exact number of non-
isomorphic, indecomposable block designs is only known for & = 3 and v < 7. In 1979
Burosch [2] showed that there exists exactly one indecomposable 2-(6,3, \) design.
This is the only existing 2-(6,3,2) design. Landgev [11] proved that the number of
indecomposable 2-(7,3, A} designs is 2. One of them is the projective plane of order
2 (Fano plane). The second is obtained from all triples on 7 points by removing two
disjoint Fano planes. A design is simple if it contains no repeated blocks. For a few
small parameters the number of simple, indecomposable block designs is known. In
Table 2 we show some results on simple designs and references.

Deciding whether a 2-(v, k,2) design is decomposable can be done in polynomial
time, see M. Colbourn [4]. C. Colbourn and M. Colbourn [3] proved that deciding
whether a 2-(v,3, A) design (with A = 3,4) is decomposable is NP-complete.

2 Results

In 1993 Pietsch [16] developed a computer program called DESY which enumerates
group divisible designs as the most general structures. We used DESY to construct
block designs. The C++ program INDES is able to decide whether a design con-
structed in this way is decomposable or not. The computational results are presented
in Table 1 (together with the best running time of INDES on a HP 735/125 work-
station) and Table 2 (with reference INDES).

We introduce the following notations:

ND(t,v, kN
NE(t,v,k, )

is the number of non-isomorphic t-(v, &, A) designs
is the number of non-isomorphic, indecomposable
i-(v, k, A) designs

is the number of non-isomorphic, decomposable
t-(v, k, \) designs

is the number of simple, non-isomorphic

t-(v, k, A) designs

is the number of simple, non-isomorphic,
indecomposable t-(v, k, A) designs

NDC(t, v,k A)
NSD(t, v,k \)

NSE(t v, k,\)

f t—(v,k,A) | ND(t, v, k,\) | NE(t,v,k,X) | NDC(t,v,k, ) Time
2-(8,4,6) 2310 178450 5267 3 min 26 s
2-(9,3,3) 22521 133035D 92187 8 min 25 s
2-(9,4,6) > 300953 > 953%P > 3000007 32 h
2-(10,4.4) > 10733 > 28497 78847 2 h 39 min
2-(11,5,4) 4393 4298D 957 1 h 45 min
2-(13,3.2) > 311074 > 610747 > 2500007 48 h
2-(13,4,2) 2461 2277P 1847 2s

Table 1: Numbers of indecomposable and decomposable designs
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In Tables 1 and 2 only nontrivial results are noted; e.g. it is trivial that
ND(i, vk, X)) = NE(t,v, k, A} if Xis the smallest number satisfying the well known
necessary conditions. The numbers of designs listed in column N D(t,v, k, A) were
taken from Pietsch [16]. It should be pointed out that the numbers of designs 2-
(13,4,2) and 2-(8,4,6) in the listing of Mathon and Rosa [14] are incorrect. The
corrected listing of design numbers will appear shortly in the CRC Handbook of
Combinatorial Designs [13].

The capital letters after numbers in Table 1 denote the algorithms used. Here ‘5
stands for ‘Subset’-algorithm, ‘D’ for ‘Decompose’-algorithm and ‘J stands for “Join’-
algorithm. The bold capital letter denotes the algorithm whose running time is given.

[t—(v,k,\) [ NSD(t,v,k,A) | NSE(L,v,k N [ Reference |

2-(3,4.6) 164 128 [
2(8,4.9) 164 1 e
2(8,4,12) 4 0 (6]
2-(9,3.2) 13 I [15],[12]
2-(9,3.3) 332 172 INDES,[10]"
2-(9,3.4) 332 0 [10],INDES
2-(9.3,5) 3 0 9
2-(9,3.6) I 0 9

9 (11,5,4) 3737 3679 INDES
2(13.4,2) 1576 1453 INDES

Table 2: Numbers of simple, indecomposable designs

! Harnau’s paper missed three designs; one of them is indecomposable.

3  The Algorithms used

The program DESY constructs one design from each isomorphism class. This repre-
sentative is called the canonical design of that isomorphism class.

We used three different algorithms which can decide the question whether a design
is indecomposable or decomposable.

The definition of indecomposability gives us the idea for the ‘Subset’-algorithm: For
a given t-(v, k, A) design D we have to find a permutation 7 € Sy and in the finite
set of in@ecomp(}sableﬁ canonical t-(v,k, A"} designs (A < [3]) a design D, such
that: 7(D*) C D. If we can not find such & design and such a permutation then D is

indecomposable.

The ‘Decompose’-algorithm:
Let D be a t-(v,k,A) design . We call the graph (7 with vertex set the blocks of
D and edge set

EZ{(BiBj)ZBi,B]‘ €D ,|B,‘ﬂBj[ Ztandi;éj}

the block-intersection graph of D.
Looking at the block-intersection graph we can say:
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Theorem 1

A t-(v, k, ) design D based on a set V is decomposable if and only if there is a
NeN@a<N< L%J) and a colouring (red,blue) of vertices (i.e. blocks) of the
block-intersection graph such that for every pair {i,j} C V there exist ezactly X' red
coloured blocks which contain the pair {7,7}.

In the case A = 2 such a colouring exists if and only if the block-intersection graph
is bipartite. Then the ‘Decompose’-algorithm can colour the graph in polynomial
time. For A > 3 we use a backtrack-algorithm to find a colouring. We orientated
the description of the backtrack-algorithm to the notation which was used by Clol-
bourn [4, p.75]. We have to decompose a t-(v, k, A) design D which is given with any
numbering of the blocks of D. Let 1 < A" < [2]. In the r-th step the algorithm
has constructed a vector & = (x1,...,2,.) (with integer z; < |D| and z; # z; for
i # j). This vector denotes that the block zj was coloured red in the k-th step. For
testing of permissibility of the vector = we colour blue all yet uncoloured blocks of
D which contain a pair {7, 7}, which is contained in exactly A" red coloured blocks.
The vector z is permissible if there is no pair {7, j} which is contained in more than
N red coloured blocks or in more than A — ) blue coloured blocks. If the vector
is not permissible we uncolour the block 2, and all blue coloured blocks. The set
X, contains all blocks which can occur in the r-th position of the vector x. If X, is
not empty we choose the first block for z, and delete it from X,. We make again
the test of permissibility. If the set X, is empty then it is necessary to backirack
to the previous component of the vector z and replace block z,_;. If X is empty
the algorithm stops because there does not exist a permissible colouring with X'. If
the vector « is permissible then we search for a pair {s,7} which is not contained
in A" red coloured blocks. If such a pair does not exist we have found a permissible
colouring of the block-intersection graph. If such a pair {i,7} exists then we form
a new set X, ., which has as elements all uncoloured blocks containing {s,7}. After
choosing a block from X, for component x,.; and removing it from the set X, .,
we start again.

The ‘Join’-algorithm:
Our aim is to build all canonical, decomposable ¢-(v, k, A} designs . A given canonical

t-(v, k, \) design D is indecomposable if and only if we can not find it in the set thus
built.

Theorem 2

Every decomposable, canonical t-(v,k,A) design D* is isomorphic to a design D,
which can be built as the union of a canonical t-(v,k, 1) design D} with an indecom-
posable t-(v,k,\y) design Dy with the property that [-2’\-_] > Xy and D, is isomorphic
to an indecomposable, canonical t-(v,k, \y) design Dj.

D* =D =D Wn(Dj), with A=) + X and w € Sy

If we try all possible combinations of the union of a canonical design with a per-
muted, canonical, indecomposable design, we build every decomposable, canonical
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t-(v,k, A) design D*, up to isomorphism. For all these designs we construct the
canonical design to make sure that we save only non-isomorphic designs.

A permutation m € Sy s called an automorphism of a design D if D = (D). The
set of all automorphisms of a design forms a group. This group is called the automor-
phism group of a design. We use automorphism groups for decreasing the running
time of the ‘Join’-algorithm.

Theorem 3
Let Dy be a t-(v,k, ;) design with automorphism group Aut(D:) and let D, be a
t-(v,k, Xy) design with automorphism group Aut(Ds). Then we have for all m € Sy :

Dy Wa(Dy) =Dy Wr,omom(Dy) Vm € Aut(Dr),Vmy € Aut(Ds)

During the ‘Join-algorithm we have a lot of permutations which generate the same
design. For characterisation of these permutations we define an equivalence relation
for elements m,my € Sy :

Ty oy = my=m,omom, . € Aut(Dy),m € Aut(Ds).

So we only have to work with one representative from each equivalence class.
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