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Abstract 

We call a minimum cost restricted time combinatorial optimization 
(MCRT) problem any problem that has a finite set P, finite family S of 
subsets of P, non-negative threshold h, and two non-negative real-valued 
functions y : (say, cost) and x : p......-? R+ (say, time). One seeks 
a solution F* E S with y(F*) min{y(F): F E S, x(F):S h}, where 
x(G) L:gEGx(g), y(G) = L:gEGy(g) and G E S. We also assume that 
for the corresponding minimum cost problem there is an efficient exact 
or approximate algorithm. We describe a very simple approximate algo­
rithm for any MCRT problem. Though our algorithm is not polynomial 
in general, we provide some evidence that the algorithm may be fairly 
fast in many cases. 

1 Introduction 

It is well known that there is a large variety of different real-world optimization 
problems (d. [2, 8, 14]). Thus, along with development of very effective algorithms 
solving some important optimization problems, it seems to be a right strategy to 
design algorithms for quite general optimization problems. In this paper, we propose 
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x(F') h}, where x(G) x(g), y(G) 

that for the C01Te,;po,ndmg 
is an efficient or approximate alj1(Oflthm" 
assume that the last 
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2 

We first an informal description of our We have assumed that 
there is effective algorithm A for the minimum cost problem. 
A we can find two solution F and H such that y(F) = min{y(T): T S} and 
x( Ii) min{ x(T): T E If :s; h, then F is an optimal solution. If 
x( H) > h, then there is no solution for our problem. we may assume 
that x(H) :s; h < x(F). The main idea of the algorithm is to apply A to a "linear 
combination" of F and H in order to obtain a feasible solution which is better than 
H. Represent F and H as points with coordinates (x(F),y(F)) and (x(H),y(H)) in 
a rectangular Cartesian coordinate system. We shall use the equation of the straight 
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3 

If x( F) h, then 

If x(H) h, then 

and c x(P)y(H) - x(H)y(F). 
A find G so that w( 0) = 

.;:r.I"1T:H,n when xC G) :s; hand H is a 

for the 

hand F := G, 

of our <hLr.VL""U.J..ll 

with coordinates 
and let R be another 

:s; y(F) :s; y(R) :s; y(H) and ax(R) + 
< c} where a, band c are the algorithm. Let G I-

be the solution f01.md in 3 the algorithm F and H above and let the line 
that is parallel to the line F H and contains intersect the lines H Rand FR in the 

M and respectively Then 

x( H) :s; 
< 

P:roof: Since M and N are 
and :s; x(R) 

inequalities x(H) :s; x(M), 
x(M) :s; x(G) :s; x(N). 

x(G) 

y(G) 

(1) 
(2) 

belonging to the segments [H R] and [F R], re­
x(F), the x-coordinates of M and N satisfy the 
:s; x(F). G lies on the segment Therefore, 

(1) holds. Analogously, we can prove (2). D. 
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Theorem 3.2 After every performance of Step 5 the value of x(F) +y(H) decreases 
by positive number. 

Proof: 
Suppose that Step 3 of the algorithm is performed T + 1 times, T Let Fi , 

Hi and Gi be the current values of F, Hand G in the i-th performance of Step 3 
(i 1,2, ... , T). R i , Mi and Ni are defined recursively as follows. Rl denotes the 
point with coordinates X(Rl) X(Hl) and y(Rl) y(FI)' For i = 1,2, ... , T, Mi and 
Ni denote the points where the line that is parallel to the line FJ1i and contains Gi 

intersects the lines Ht~ and FiRi. For i = 2,3, ... , T, ~ = if X(Gi- l ) > hand 
R t Nz- 1 if x( Gi - I ) h. 

We first prove by induction on i that 

x ( Hi) ::; X ( Mi) ::; X ( G i) ::; X ( Ni ) ~ x ( Fi ) , 

y(Fi) y(Ni ) ~ y(Gi ) ::; y(Mi) ~ y(Hi) 

for every i = 1,2, ... , T. 

(3) 
(4) 

The case i = 1 follows from Lemma 3.1 and the definition of R I . Let i 2: 2. Then 
(3, and (4) follow from the definition of R i ) induction hypothesis, and Lemma 3.1. 

To prove the theorem, it is sufficient to show that for every i = 1,2, "0' T 

if x(Gi )::::; h, then y(Gi ) < y(Gj ), where j = max{k: -1:::; k < i,x(Gk )::; h}, (5) 

and 
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if h, where m o k i,x(Ch) h}, (6) 

j and m are defined in (5) and (6). 
(4), y(Gi ) 

, S-point if there C 
An is minimal if there is no S-point (x", y") such that x" 
x"+- y" x' + y'. Let m(S) denote the number of minimal S-points. 
every solution obtained in 3, y( G)) a minimal 
from Theorem that after 5 we obtain distinct elements G of 

1) Step 3 of the algorithm is performed at most m( S) + 1 times. 
2) The algorithm + time} where is the time 

f:mmVI.f?T.:1.r1] of 

If the functions x and y then we can obtain a 
bound the number of iterations of 3 to be still performed 

terminated 
fitVhere 
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every 
) each of the functions 

be the current values of points P and H in an iter-
Then the number of iterations of 3 to be still 

- y(Fo), 

VfJ"HJ.1UJ solution of and G be a solution found 
algorithm w.r.t G the performance ratio 

fl.l.lIlJr".I.lI.""II. A find solutions. If our algorithm has 
a Vf?1rtorTrUl/rl.f:f' Step 4 and G is the found solution} then r( 0) S 

r( G) y( G) / (y (G) + ---~---c------:-""-:----. 
Proof: Let the line G F intersect the line x h in the point B and let A have 
coordinates (h, y( G)). Then the triangle G BA contains all optimal solutions. Indeed, 
no feasible solution can be to the right of the line AB, no optimal solution can be 
above the line AG, and no solution can belong to a line parallel to GF and "below" 
GF such solution G' would have ax(G') + by(G') < c). 

Hence, for an optimal solution G*, y(B) ~ y(G*). Now it is easy to check that 
r( G) y( G)/y(B) = r( G). D. 
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4 Computational 

We have tested the behavior of our algorithm for the minimum restricted time 
as~ngnrrlerlt problem: given two n X n-matrices C and T with non-
negative entries and a non-negative real h, find a permutation 7r E Sn so that 

Ci1r(t) min{Lf=l Cicr(i) . a E Sn, h}, where Sn is the set of 
all permutation on {I, 2, ... , n}. We generated 60 instances of the mini-
mum cost constrained time assignment problem with n 6,8 and 10. The entries 
of matrices varied from 0 to 99. The value of h was calculated by the formula 
h = max{30n, nJ-Lj2}, where J-L is random integer from the interval [0,99]. For only 
five of the instances, Step 3 was not performed at all: two instances with n 6 did 
not have any solution, an instance with n = 8 and two instances with n 10 only 
needed 1 to find an optimal solution. Some results obtained for the rest 55 

are reflected in Table 1: we show the number of instances with specified 
real ratio of the found solution (i.e. r( G)) and specified quality of the 
bound r(G) (i.e. q(G) = r(G)jr(G)). Note that (for the 55 instances) the number 
of i, of Step 3 varied from 2 to 5 i = 5 only for two instances). 

Table 1: Number of instances with specified rand q. 

n 1 1 < r ~ 1.1 T 1.1 q 1.1 1.1 < q 1.2 q > 1.2 

6 14 3 1 11 7 0 

8 8 8 3 9 7 3 

10 7 7 4 16 2 0 

We have also tested the behavior of our algorithm and Gvozdev's algorithm [3J 
for the two parameters minimum spanning tree (in complete graph) problem: given 
two symmetric n x n-matrices C [Cij] and T = [tij] with non-negative entries and 
a non-negative real h, find a spanning tree F = (V, E) in the complete graph Kn on 
vertices {1,2, ... ,n} such that Cij = min{LijEE1Cij: E' E E,LijEE,tij ~ h}, 
where E is the family of all edge sets of spanning trees in Kn. 

The matrices C and T were generated analogously to the corresponding matrices 
in the assignment problem above. They have orders n=20,30,40,50 and 60. The 
value of h was calculated by the formula h = max{25n, O.4nfL}, where J-L is a random 
integer from the interval [0,99]. 

Table 2 reflects, in a sense, the quality of solutions found by our algorithm. Not 
knowing optimal solutions in most of cases, we measure the quality by the bound if 

(see Proposition 3.5). One can see that the quality of the solutions steadily increases 
while the order n grows. 
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Table Number of instances with 

Table 3 shows some data which can be compare our algorithm with 
In Table 3, ml is the number of instances when the costs 

of solutions found by our algorithm and Gvozdev's coincide, m2 (m3, 
is the number when solutions obtained by our v"LF,~.LLULCLLL 

time Gvozdev's ULF,V.LLUU.H.L. 

siderably more time than our COL!',VL."H.UH 

~), in Gvozdev's algorithm (before 
time COJD.S11IDLln;g. 

Table 3: Comparison of our 

about half of 
requires con­

C01TI]::mtatllon of the parameters .:\ and 
iterations the procedure) is quite 

and Gvozdev's algorithm. 

~3 
!-----------------+~~-------

20 17 1 2 7.2 9 13.4 

30 10 6 4 8.7 10 16.2 

40 6 7 7 9.6 11 18.5 

50 6 6 8 10.3 11 21.2 

60 3 12 5 10.9 12 22.0 

70 3 14 3 11.0 12 22.3 
~--~------------ ------------~ 
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