An approximate algorithm for combinatorial
optimization problems with two parameters

David Blokh,

Dept. of Industrial Engineering and Management,
Ben-Gurion University of the Negev,
Beer-Sheva 84105, Israel.

Gregory Gutin*
Dept. of Mathematics and Statistics,
Brunel University, Uxbridge, Middlesex UB8 3PH, U.K.
and Dept. of Mathematics and Computer Science,
Odense University, DK-5230, Odense, Denmark.

Abstract

We call a minimum cost restricted time combinatorial optimization
(MCRT) problem any problem that has a finite set P, finite family S of
subsets of P, non-negative threshold h, and two non-negative real-valued
functions y : P—R., (say, cost) and z : P—R, (say, time). One seeks
a solution F* € S with y(F*) = min{y(F): F € §, =(F) < h}, where
2(G) = Tgec #(9), ¥(G) = Leecy(g) and G € S. We also assume that
for the corresponding minimum cost problem there is an efficient exact
or approximate algorithm. We describe a very simple approximate algo-
rithm for any MCRT problem. Though our algorithm is not polynomial
in general, we provide some evidence that the algorithm may be fairly
fast in many cases.

1 Introduction

It is well known that there is a large variety of different real-world optimization
problems (cf. (2, 8, 14]). Thus, along with development of very effective algorithms
solving some important optimization problems, it seems to be a right strategy to
design algorithms for quite general optimization problems. In this paper, we propose

*Corresponding author.

Australasian Journal of Combinatorics 14 (1996), op.157-164



a very simple algorithm for a wide family of different combinatorial optimization
problems with two parameters. Problems from this family are often appear in both
theory and practice of combinatorial optimization (cf. (1,3, 4,5,6,9, 11, 12, 13,
15], etc.) Though our algorithm is not polynomial in general (which seems to be
impossible to expect in such general setting), we provide some evidence that the
algorithm may be fairly fast in many cases.

We call a minimum cost restricted time combinatorial optimization (MCRT)
problem any problem that has a finite set P, finite family S of subsets of P, non-
negative threshold h, and two non-negative real-valued functions y : P—R, (say,
cost) and z : P—Ry (say, time). One seeks a solution F* € S with y(F*) =
min{y(F) . F € 8, z(F) < h}, where 2(Q) = Ygea(9), ¥(G) = Scaylg) and
G € S. We also assume that for the corresponding minimum cost problem there
is an efficient exact or approximate algorithm. For simplicity, in what follows, we
assume that the last algorithm is exact.

A well known example of a MCRT problem is the restricted shortest path (RSP)
problem. This problem is NP-hard [2]. Some authors constructed practical non-
polynomial exact algorithms for the RSP problem (cf. [1, 4, 6, 7, 8]). Others devel-
oped fully polynomial approximation schemes (cf. [5, 12, 15]). Another example of
a MCRT problem is the two parameters minimum spanning tree problem. In (3, 11],
polynomial approximate algorithms for this problem were constructed. The two pa-
rameters knapsack and traveling salesman problem were considered in [13] and [9],
respectively. Note that the polynomial approximate algorithms from (3, 5,11, 12, 15]
utilize special properties of the corresponding one parameter problems.

In this paper, we describe an approximate algorithm for any MCRT problem.
One of the advantages of our algorithm is its simplicity. This turns out to be an
important property for practical algorithms since more sophisticated algorithms may
not be faster in practice (cf. [10]).

We obtain a bound for the performance ratio of a found solution that depends
on both instance of a MCRT problem and solution. It is difficult to expect a prac-
tical approximate algorithm with satisfactory guaranteed performance ratio for any
MCRT problem. Moreover, an a posteriori performance ratio may better evaluate
the real performance ratio of the found solution than a “uniform” guaranteed one.

2 Description of the algorithm

We first provide an informal description of our algorithm. We have assumed that
there is an effective algorithm A for the corresponding minimum cost problem. Using
A we can find two solution ¥ and H such that y(F) = min{y(T) : T ¢ S} and
e(H) = min{e(T) : T € S}. If o(F) < h, then F is an optimal solution. If
z(H) > h, then there is no solution for our problem. Therefore, we may assume
that z(H) < h < z(F). The main idea of the algorithm is to apply A to a “linear
combination” of F' and H in order to obtain a feasible solution which is better than
H. Represent F' and H as points with coordinates (z(F),y(F)) and (z(H),y(H)) in
a rectangular Cartesian coordinate system. We shall use the equation of the straight

158



Ce= z(F)y(H) - :r(H)y(F) Assomafce the new weight w(p) = aa:(p) + by(p) to each
element p € P and, using A, find G € S, a solution to the problem min{w(T) :
T ¢ 8}, If G lies on the line F'H, then the approximate solution is either @ if G is
feasible, i.e. z(G) < h, or H if 2(G) > h. If G does not belong to FH, then, it is
easy to see, that y(G) < y(H). If G is feasible, we replace H by G, otherwise - F' by
(&, and repeat our iteration with the new pair H, F.

We now give a more formal description of our algorithm

Step 1. Using A find F so that y(F) = min{y(T): T € S}. If z(F) < h, then
F'is an optimal solution. Stop.

Step 2. Using A find H so that 2(H) = min{z(T"): T € S}. I ¢(H) > h, then
there is no solution. Stop.

Step 3. Set a :=y(H)—y(F),b:=a(F)—=z(H)and c := o(F)y(H) ~ z(H)y(F).
Compute w(p) == ax(p) + by(p) for every p € P. Using A find G so that w(G) =
min{w(T): T e S}

Step 4. If ¢ = ax(G) + by(G), then G is a solution when z(G) < h and H is a
solution, otherwise (i.e. z(G) > h). Stop.

Step 5. I ¢ > az(@) + by(G), then set H := G when z(G) < h and F := G,
otherwise. Go to Step 3.

3 Performance of the algorithm

In this section, we obtain upper bounds for the time complexity of our algorithm
and its performance ratio.

Let F| H be arbitrary solutions from & represented as points with coordinates
(z(F),y(F))and (x(H),y(H)) in a Cartesian coordinate system and let R be another
point on the plane.

Lemma 3.1 Suppose that z(H) < z(R) < «(F), y(F) < y(R) < y(H) end az(R)+
by(R) < ¢, where a,b and c are defined as in Step 3 of the algorithm. Let G, G +# R,
be the solution found in Step & of the algorithm given F' and H above and let the line
that is parallel to the line FH and contains G intersect the lines HR and FR in the
points M and N, respectively (see Fig. 1). Then

(F), (1)

o(H) < 2(M) < 2(G) < 2(N) <
) <y(H). (2)

y(F") <y(N) <y(G) <y(M
Proof: Since M and N are points belonging to the segments [HR] and [FR], re-
spectively, and z(H) < z(R) < z(F), the z-coordinates of M and N satisfy the

inequalities z(H) < «(M), z(N) < @(F). G lies on the segment [M N]. Therefore,
(M) < 2(G) < z(N). Thus, (1) holds. Analogously, we can prove (2). o,

159



Fig. 1

Theorem 3.2 After every performance of Step 5 the value of o(F)+y(H) decreases
by positive number.

Proof:

Suppose that Step 3 of the algorithm is performed 7 + 1 times, 7 > 2. Let F,
H; and G; be the current values of F, H and G in the i-th performance of Step 3
(¢ = 1,2,..,7). Ri, M; and N; are defined recursively as follows. R; denotes the
point with coordinates z(R;) = x(Hy) and y(Ry) = y(Fy). Fors =1,2,...,7, M; and
N; denote the points where the line that is parallel to the line F,H; and contains G;
intersects the lines H,R; and FiR;. For ¢+ =2,3,...,7, Ry = M;_, if z(Gi-1) > h and
R, = N1 i 2(G;—q) < h.

We first prove by induction on 4 that

z(H;) < z(M;) < 2(G;) < =(N;) < z(F), (3)
y(F) < y(V:) < y(Gi) < y(Mi) < y(H;) (4)

for every ¢t = 1,2, ..., 7.
The case ¢ = 1 follows from Lemma 3.1 and the definition of R;. Let s > 2. Then

(3) and (4) follow from the definition of R;, induction hypothesis, and Lemma 3.1.
To prove the theorem, it is sufficient to show that for every s = 1,2,....7

if 2(G,) < h, then y(G:) < y(G;), where j = max{k: —1 <k <i,2(Gs) < h}, (5)

and

160



if z(G;) > h, then z(G;) < z(G,), where m = max{k: 0 < k < 1,z(Gy) > h}, (6)
where G_; = H; and Gy = F}.

Clearly, H; = G; and F; = G,,, where j and m are defined in (5) and (6).
Assume that z(G;) > h, but 2(G;) > 2(G,,.) = z(F). By (4), y(G:) > y(F;). Thus,
az(G;) + by(Gy) > ax(F;) + by(F;). However, this is impossible since 1 < 7. So, (6)
has been proved. The claim (5) can be shown analogously. 0.

A point (z',y’) is an S-point if there is C' € & such that @’ = z(S), ¥’ = y(S).
An S-point is minimal if there is no 8-point (z”,y") such that z” < 2’,y” < ¢ and
" +y" < 2’ +y'. Let m(8) denote the number of minimal S-points. Obviously, for
every solution (7 obtained in Step 3, (z(G),y(G)) is a minimal S-point. It follows
from Theorem 3.2 that after Step 5 we obtain distinct elements G of §.

Corollary 3.3 1) Step 8 of the algorithm is performed at most m(S) + 1 times.
2) The algorithm requires O(m(S)(|P| + t(A))) time, where t(A) is the time
complezity of A.

If the functions = and y are integer valued, then we can obtain a simple dynamic
upper bound for the number of iterations of Step 3 to be still performed (this up-
per bound might be of interest for interactive implementations of the algorithm).
By Theorem 3.2, the value of z(F) + y(H) decreases by at least one after every
performance of Step 5. Since every (7 is a minimal &-point, each of the functions
y(H) — y(F) and z(F) — (H) decreases by at least one.

Corollary 3.4 Let Fy and Hy be the current values of points F' and H in an iter-
atron of Step & of the algorithm. Then the number of iterations of Step 3 to be still
performed is at most min{y(Ho) — y(Fo), z(Fo) — =(Ho)}.

Let G* be an optimal solution of a MCRT problem and @G be a solution found
by the algorithm. Then the performance ratio of the algorithm w.r.t G is r(@) =

y(G)/y(&7).

Propesition 3.5 Let the algorithm A find ezact solutions. If our algorithm has
terminated after a performance of Step 4 and G is the found solution, then r(G) <

7(@), where

_ (2(G) = h)(y(G) — y(F))

7) =y(G G .

7(0) = w(6) (ste) + D= DD
Proof: Let the line GF intersect the line z = h in the point B and let 4 have
coordinates (h,y(@F)). Then the triangle GBA contains all optimal solutions. Indeed,
no feasible solution can be to the right of the line AB, no optimal solution can be
above the line AG, and no solution can belong to a line parallel to GF and “below”
GF (any such solution G' would have az(G') + by(G') < ¢).

Hence, for an optimal solution G*, y(B) < y(G*). Now it is easy to check that
r(G) = y(G)/y(B) = 7(G). a.

l61




4 Computational results

We have tested the behavior of our algorithm for the minimum cost restricted time
assignment problem: given two n x n-matrices ' = [¢;] and T = [¢,;] with non-
negative entries and a non-negative real h, find a permutation = € S, so that
v Cimsy = min{¥l ciory 1 0 € Sn, T tio) < h}, where S, is the set of
all permutation on {1,2,...,n}. We randomly generated 60 instances of the mini-
mum cost constrained time assignment problem with n = 6,8 and 10. The entries
of matrices varied from 0 to 99. The value of A was calculated by the formula
h = max{30n,nyu/2}, where p is a random integer from the interval [0,99]. For only
five of the instances, Step 3 was not performed at all: two instances with n = 6 did
not have any solution, an instance with n = 8 and two instances with n = 10 only
needed Step 1 to find an optimal solution. Some results obtained for the rest 55
problems are reflected in Table 1: we show the number of instances with specified
real performance ratio of the found solution (i.e. 7(@)) and specified quality of the
bound #(G) (i.e. (@) = #(@)/r(G)). Note that (for the 55 instances) the number

of iterations, i, of Step 3 varied from 2 to 5 (moreover, ¢ = 5 only for two instances).

Table 1: Number of instances with specified r and gq.

nl|lr=1 1<r<1l r>11|¢<11l 11<g<12 ¢g>12
14 3 1 11 7 0

8 8 8 3 9 7 3

10 7 7 4 16 2 0

We have also tested the behavior of our algorithm and Gvozdev’s algorithm [3]
for the two parameters minimum spanning tree (in complete graph) problem: given
two symmetric n X n-matrices C = [¢;;] and T = [t;;] with non-negative entries and
a non-negative real A, find a spanning tree F' = (V, E) in the complete graph K,, on
vertices {1,2,...,n} such that ¥, jep cij = min{ Ty epmcij : B' € B, Yyiemty; < A},
where E is the family of all edge sets of spanning trees in K.

The matrices C and T were generated analogously to the corresponding matrices
in the assignment problem above. They have orders n=20,30,40,50 and 60. The
value of h was calculated by the formula b = max{25n,0.4nu}, where p is a random
integer from the interval [0,99].

Table 2 reflects, in a sense, the quality of solutions found by our algorithm. Not
knowing optimal solutions in most of cases, we measure the quality by the bound 7
(see Proposition 3.5). One can see that the quality of the solutions steadily increases
while the order n grows.

162



Table 2: Number of instances with specified 7.

n|1<7F<1.02 1.02<7<1.06 105<7<1.1 7>11
20 10 ) 3 2
30 6 9 5 0
40 8 9 3 0
50 9 10 1 0
60 14 6 0 0
70 156 5 0 0

Table 3 shows some data which can be used to compare our algorithm with
Gvozdev’s algorithm [3]. In Table 3, m; is the number of instances when the costs
of solutions found by our algorithm and Gvozdev’s algorithm coincide, m, (ma,
respectively) is the number of instances when solutions obtained by our algorithm
(Gvozdev’s algorithm, respectively) are cheaper. As one can see, our algorithm
produces, in many cases, cheaper solutions, especially for large values of n.

In Table 3, 41 (23, respectively) denotes the average number of calls of a procedure
to construct a minimum spanning tree in an ordinary weighted complete graph per
instance required by our algorithm (Gvozdev’s algorithm, respectively). The param-
eter 1, is the maximum number of calls of the procedure above by our algorithm.
These data show that the time required by our algorithm is usually about half of
time required by Gvozdev’s algorithm. In reality, Gvozdev’s algorithm requires con-
siderably more time than our algorithm as the computation of the parameters A and
AX [3] in Gvozdev’s algorithm (before starting iterations of the procedure) is quite
time consuming.

Table 3: Comparison of our algorithm and Gvozdev’s algorithm.

n|lm my mal|l u g 13

20017 1 2 172 9 134
30110 6 8.7 10 16.2
4016 7T 7T |96 11 185
50| 6 6 8 |103 11 21.2
60 3 12 5 |10.9 12 220
701 3 14 3 |11.0 12 223

163



References

(1]

[2]

3]

[4]

[10]

[11]

(12]

(13]

[14]
[15]

Y.P. Aneja, V. Aggarwal and K.P.K. Nair, “Shortest chain subject to side con-
straints”, Networks 13, 295-302 (1983).

M.R. Garey and D.S. Johnson, Computers and Intractability: o Guide to the
Theory of NP-Completeness, Freeman, San Francisco, 1979.

5.E. Gvozdev, “On two discrete optimization problems”, In Upravkaemye sys-
temy, Novosibirsk, 19 22-30 (1979) (in Russian).

G. Handler and 1. Zang, “A dual algorithm for the constrained shortest path
problem”, Networks 10, 293-310 (1980).

R. Hassin, “Approximation schemes for the restricted shortest path problem”,
Math. Oper. Res. 17, 36-42 (1992).

M. Henig, “The shortest path problem with two objective functions”, European
J. Oper. Res. 25, 281-291 (1985).

H.C. Joksch, The shortest route problem with constraints, J. Math. Anal. Appl.
14, 191-197 (1966).

E.L. Lawler, Combinatorial Optimization: Networks and Mathroids, Hold, Rine-
hart and Winston, New York, 1976.

LL Melamed, S.I. Sergeev, and I.Kh. Sigal, “The Traveling Salesman Prob-
lem: Part 1, Theoretical Issues”, Automation and Remote Control 50 1147-1173
(1989).

B.M.E. Moret and H.D. Shapiro, “How to find a minimum spanning tree in
practice”, Lecture Notes in CS 555, 192-203 (1991).

5.A. Morozov, “On the minimum spanning tree problem with restrictions” In
Upravhaemye systemy, Novosibirsk, 15, 40-47 (1976) (in Russian).

C.A. Phillips, “The network inhibition problem”, in Proc. 25th Ann. ACM
Symp. Theory Computing, 776-785 (1993).

M.J. Rosenblatt, Z. Sinuani-Stern, “Generating the discrete efficient frontier to
the capital budgeting problem”, Oper. Res., 37, 384-394 (1987).

H.A. Taha, Operation Research: An Introduction, New York, 1992.

A. Warburton, “Approximation of Pareto optima in multi-objective, shortest
path problems”, Oper. Res. 35, 70-79 (1987).

(Received 23/11/95; revised 16/5/96)

164



