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Abstract
Let o{{d) be the number of independent-vertex sets of a graph G.
Merrifield and Simmmons conjectured thet for any graph ¢ and any pair
of non-adjacent vertices u and » of &,

>0 if d{n, v) is odd
<0 i d(s,v) is even

(G = w)o{G — v) — (o (G ~ u — ») {

where d{u, v} denotes the distance of u and » in G. Guiman proved that
the conjecture is true for all trees. In the present paper, we prove that the
conjecture ie true for all cycles and many other kinds of graphs. Unfortu-
nately, we find families of examples showing that the conjecture is not true
in general.

1. Introduction.

Let & be a (molecular) graph. The vertex set and edge set of G are denoted by
V(G) and E(G) , respectively. Two vertices of G are said to be independent if they
are not adjacent. The k-th independence number of G is denoted by ox(G). By
definition. for k > 2, ox(G) is equal to the number of ways in which k pairwise
independent vertices can be selected in the graph G. In addition to this, my(G) =1
and 0'1{67) [V(G)]. The k-th clique number ¢;(G) of G is defined to be the number
of ways in which k pairwise adjacent vertices can be selected in the graph G (k > 2).
In addition to this, ¢o(G) = 1, ¢, (G) = |V(G}|; note that ¢,(G) = |E(G)|.
Let o{G) = 3 ;5 o1 (G), the number of independent-vertex sets of G, and ¢(G) =

ZDO ¢ (@), the nnmber of cliques of G. It is easily seen that ¢(G) = ¢(G), where

@ denotes the complement of G. The quantity o(G) was extensively studied in
connection with certain topological problems of chemistry [3]. On page 144 of [3],
Merrifield and Simmons stated without proof a property of ¢(G) (see Gutman[1]),
which for nonadjacent vertices v and v can be formulated as follows:

Ay (G) = o(G ~ u)e(G —v) — o(G)o(G — u - v)

* Partially supported by NSFC.

Australasian Journal of Combinatorics 14 (1996), pp. 15-20



{Assertion)

> 0, if du,v) is odd

< 0, if d(w,v) 19 cven,
where d(u,v) (or dg(u,v)) denotes the distance of v and v in G. Gutman proved
(1] that this Assertion is true at least for all trees. In this paper, we prove that
this Agsertion is true for cycles and many other kinds of graphs. However, we find
infinitely many examples showing that the Assertion is not true in general.

Since ¢(G) = #(G), we have
Bur(G) = (G = u)e(G — G —10)—G)e(G —u —v).

Sometimes, the right-hand side of the above equality is easier to calculate.

2. Proof for Cycles and Other Kinds of Graphs..

Let C, denote the cycle with n vertices and P, the path with n vertices. From [2]

we know that
"(,Pn):”(ipnnl} ‘{”‘f{_Pn-z} (*\3

with o{Pg) = 1 and ¢(P,) = 2, which is exactly the Fibonacci sequence. In order
to prove that Assertion for cycles, we need the following properties of o{ P, }.

Property 1: Let k be a positive inseger with 1 < k < n - 2. Then from page
203 of [3] we have o(P,) = o{Po)o( Pt} + (s L}U(P,,,_k%) Note that here
o(FPr) = Fuyr.

Property 2: From property (*), we can obtain that

(Pog 1 )0 (Fyogpos) — o{Pop ) (Prgpos)
= (Pap s )0{ Prsims) — 0{Popez)o(FPpap—c).

Hence, if n > 4% + 2, from the above recursive relation we can get that

F{(Popo1 Jo(Props) — o(Popje{ Pacots)

= o(P)o(Pacsk—r) — o(Po)o{ Pasiaz)

= 20( Py g1 ) = 30(Fpcihen)

[ 20(P) - 30(Po) = 1>, ifn=4k+2
- { 20 (Prshs) = {FPpspoz) > 0, ifno> 4k + 2

{(since o{Pp ) < 20(Pp ;) for any m > 1)

Property 3: Also, from property (%), we can get that

0H(Pyior) — 0(Pa)o(Papz) = 0 (Pags) — 0(Papsz)(Popens).
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Hence,

0 (Popy) ~ o(Py)o(Pop o) = (P~ a(Py)o(Py)=4-3=1>0.

Similarly, we have

o*(Poi) — o{(Por1)o{Pap1)

= 07 (Pasez) = o(Poi-1)0(Pois)
= 07 (Py) — o(Ps)o(Py)
=8-10=-1<0

Theorems Let 4,9 € V{(C,) and wo ¢ E{C,}. Then we have

>0 if de {(8,0) s 0odd
<0 if de {(u,9) is even.

AulCo)]

Proofs From [2], we have
#{Cy) = o(Proy) + ol Prs).
Thus,
Bue(Cn) = 0 (Pat) = [o(Pacr) + o(Pacs)]o{ Py )o(P),
where v + ] =n -~ 2 with r > 0 and [/ > 0.
1t is clear that d(u,v) = min{r,I} + 1. Without less of generality, we assume
that r < ! and therefore d{u,v) = » + L.
Hr=1,
Byuel(Cr)
=0*(Prer) = [0(Pacr) + 0(Prs)lo(P1)o(Pros)
=07 (Pat) = 20(Po_1)0(Py_s) — 207 (P, _s)
=[g(Py1) — o(Pas)’ — 307 (Pas)
20’3(an2) ~30%(Pp.s)
= 207 (Pps) + 20(Py_s)o(Pa_s) + o2 (P,..4)
320"(133»3){0’(an4} — o(Py3)] + 62(P3~4)
= — 20{(Ppws)(Prs) + o {Pn_4)
& — 0{Pp.s)o( P, —a) Wz(Pn-lg)
( since o(Pp.s) < 20(Py_5})
<0
( since o(P,_4) < o(Pa-s))
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Hence, the theorem is true for r = 1.
Now, we distinguish the following two cases.
Case l: r =2k (k2> 1), (n=r+1+2> 4k +2).
Then
Bue(Cn)
=0 (Py_y) = [0(Prct) + 0(Pacs)|o(Paor )o(Prsi—z)
=07 (Poey) = 0(Pac1 Yo (Pop)o(Pacgib2) — 0(Pos)o(Pag o (Pr_op_2)
=0 (P, )[o(Poy) — 0(Pop )o(Prai—3)] — 0(Pr_s)o (P _2i_2)o(Fay)
=[o(Po )0 (Prosp~z) + 6{Popo1 )0 (Prziws)]o(Pop 1 )o{ Props)
— [0(Pr—ai—2)o(Pop3) + 0(Pr2b—5)0( Pops)|o( P _2 o )or(Pa )
( using Property 1 for o(P,..,) and o(P, _s) )
=07 (Pyy1 )0 (Prosk-3s) + 0(Pop)o(Pai1 )0(Pr_zpo2)0( Proi—s)
~ 0(Pos-3)0(Pai )o{ Pr—2k =30 Prsi 2} = 0(Popo2) o Poi )0 (P oj—2)
=07 (Pog—1 )07 (Prcais) + o{Pag)o{Pag_2)o( Py_oi—2)0( Prois)
= 0(Pay—2)0{ Py )0” (Pr_2p3)
( since o(Pagr) — o(Pap—s) = o(Par_2))
=0 (Pop1)0” (Prcoi—3) = 0(Pag )0 (Pag) (P2 )0 ( Pt s
( since o{Pp_gp-s)— (Pr_gp—2) = —0(Pu_zhes))
=0 (Page1)0? (Prcsis) = 0(Pat2)0{Poi )0 Pz s )0 ( Prmnip 3 )
= 0(Pa )0 (Pap2)0® (P 2ps)
( since o(Pr2p-2) = 0(Powsi-s) + o(Pn-2p-4))
=[o{Pope1)0(Prwzis) + 0(Pag—2)0(Prczp - )|[o{Pat o o Prts)
~ o{Pop o (P m2i—a )] + [JE(PQI:——I)
= 0(Poy o (Pop 2 )]0 Pa2e—4)o(Prost-s)
>0,
( from Properties 2 and 3)
e, Ayy(Cr) > 0, for d{u,v) =7 + 1 = 2k + 1 (odd). Thus, the theorem is true for
r = 2k.
CaseZ: r=2k+1 (k> 1) (n=r+1+2> 4k +4).
Then
Ben(Cr)
=07 (Poo1) = [0(Pact) + o(Paes)lo( Porg1 )0 (Przis)
=0(Pooy Yo (Prat) — 0(Popg1 )0 (Prok—s)] — (Pas)o(Pooobs)o{ Paryr)
=[o(Pap )0 (Prmobws) + 0( Popp1 (P g - s Yo ( Pop Yo (P 2 ma}
~[0(Pre2ims)(Pag 1) + 0(Pr 2k -4 )0 (Pop 2} 0( Pt Jo{ P30 -3
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=07 (Pap )0 (Pp-ot-s)
+ [o{Por)o(Poigr ) — 0(Pot—2)(Paiy 1 o (Pro 2k -3)0(Prosk-4)
= 0(Pog1 )7 Pos-1 )07 (Pr—2k—3)
=07 (Pag )0 (Po—nb—4) + 0(Pai41)0(Poke1 )0 (P25 )0 (P 2k -4)
= 0(Pay1)0(Pop1)0” (Prai-s)
=07 (Pag Yo (Prosi-g) = 0(Poig1 )0 (Pok -1 )0(Frgies )0 Prm2p 5 )
=0°(Pa Yo (Pp—zb—s) ~ 0{Pak41)0(Pap 1 )0( Pa2k—s5 )0 ( P2k 4}
— 0(Papg1 o Pop1)07 (Pr2i o)
=[0(Pag )o(Prsh—s) + 0 Popg1 Jo(Prozi-3)]%
[o0(Par )o{ Przins) — C"(P2.e-1)0'(Pn-2k-aﬂ
~ [o(Pargr)o(Poror) — 02(P2k}l”(f7n—2/¢~4)¢7(Pn-2k-5)
<0,
{( from Properties 2 and 3),

e, Aup(Crn) < 0, for d{u.o) =r + 1 = 2k + 2 {even). Thus, the theorem is also
true for r = 2k + 1.

The proof is now complete. O

From the equality that A, (G) = oG — 6)e(G —v) — e(Gye(G = u— v}, we can
show that the Assertion is true for G = K, — ¢, Kpny Nopn — € Byl ng e nyy
K, - E(C)), K = B(M;), Kinn — E(Cy) and Ky, — E{M,) etc., where ¢ is an
edge, C, is the cycle with r vertices and M, is an r-matching.

3. Counter Examples.

Let n = 2k + 1 and H be the graph shown in Figure 1.

{Figure 1)
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For G = H, we have dg(u,v) = 2. It is not difficult to see that
Auw(G)=k>=2k>0, if k> 2.

These examples show that the Assertion is not always true for d(u,v) even. Ob-
viously, examples can also be constructed from this idea for n even.

Let m be a positive integer and G be the graph shown in Figure 2.

(Figure 2)

Then, we have dg(u,v) = 3. It is not difficult to see that
A (G) = —-m?> +2m +1 <0, if m > 3.

These examples show that the Assertion is also not true for d{u,v) = 3 (odd).

4. Concluding Remark.

Since the Assertion for #(G) has many applications in chemistry, it is useful to
single out those graphs for which the Assertion is true . We conjecture that it is
true for unicyclic graphs.
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