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Abstract

A unifying approach to the problem of constructing vertex-transitive
graphs that are not Cayley is presented. The general construction, based
on representing vertex-transitive graphs as coset graphs of groups, is flex-
ible enough to allow us to obtain new results as well as to reprove sev-
eral older results concerning the non-Cayley numbers (orders of vertex-
transitive graphs that are not Cayley).

1 Introduction

Although studied for more than a century now, vertex-transitive graphs have quite
recently caused a great deal of activity. Their rich groups of antomorphisms make
them interesting from both the point of view of permutation groups as well as of
combinatorics. Among the most recent achievements, we can mention the search for
vertex-transitive graphs that are edge- but not arc-transitive in [1], or the discovery
of vertex-, edge- but not arc-transitive graphs with primitive automorphism groups
in [14].

Our paper focuses on a slightly different problem. Aside from the notoriously
known Cayley graphs, not many families of vertex-transitive graphs were known
and studied before 1990 (as pointed out, for instance, by Watkins in [15], who also

Australasian Journal of Combinatorics 14 (1996), pp.l121-132



invented the acronym VTNCG for vertex-transitive graphs that are not Cayley).
The situation, however, has dramatically changed in the last four years. Initiated
originally by the problem posed by Marusié¢ in [9], of determining the so-called non-
Cayley numbers, the orders of VINCG’s, the search for VINCG’s has brought a
wide range of different constructions ( {6], [7], [9], [10], [11], [12], [13], {14], and [15]).

In [7] we described a general method for finding new families of VINCG’s based
on a simple combinatorial criterion for Cayley graphs and a representation of vertex-
transitive graphs as coset graphs of finite groups. This paper is an extension of
the results from [7]: we improve both the combinatorial criterion and the main
construction, and find several previously unknown families of VINCG’s. Also, we
present constructions of VITNCG’s of order close to a product of two or more primes,
and, in this way, obtain several results on non-Cayley numbers.

2 Preliminaries

Most of the general results obtained in our paper hold for both finite and infinite
graphs. The parts considering finite graphs are mostly related to the problem of non-
Cayley numbers (as the nature of the problem is inherently finite), clearly marked
and easily recognizable by the reader. We always assume, though, that the graphs
considered are locally finite (i.e., every vertex has finite valency), loopless, and with-
out multiple edges.

Let (7 be a (finite or infinite) group and X be a unit-free symmetric subset of G,
that is, 1 ¢ X and 27" € X whenever z € X. The Cayley graph T' = C((7, X) has ¢/
as its vertex set, and two vertices a,b € G are adjacent if and only if a1 € X. Note
that we do not require the set X to be a generating set for G and therefore we allow
also disconnected Cayley graphs. The graph T is locally finite if and only if the set X
is finite. In all cases, the group G acts regularly (as a subgroup of automorphisms)
on the vertex set of I' = C(G, X) by left multiplication, which shows that every
Cayley graph is vertex-transitive.

The key concept of our paper, powerful enough to give us all the Cayley and
non-Cayley vertex-transitive graphs, is the one of a coset graph. Let G be a group,
H a subgroup of (¢ and X a symmetric subset of elements of G such that HNX = {.
The vertex set of the coset graph Cos(G, H, X) is the set of all left cosets of H in
G two vertices (cosets) aH and bH are adjacent in Cos(G, H, X) if and only if

a”'b € HXH = {hak'; ¢ € X and h,h’ € H}. An alternate way to define the
incidence relation on Cos(G, H, X) is by referring to the associated Cayley graph
C(G, X): Two cosets aH, bH are adjacent in Cos(G, H, X) provided that there exist
h,h' € H such that ah and bh' are adjacent vertices in the associated Cayley graph
C(C’ X). The coset graph Cos(G, H, X) can therefore be viewed as a graph obtained
by “factoring” the associated Cayley graph C(G, X) by the subgroup H. The coset
graph Cos(G, H, X) is connected if and only if the set HX H is a generating set for
the group G. Observe that in the special case when H = {1}, the coset graph reduces
to a Cayley graph.

As in the case of Cayley graphs, the group G acts transitively as a group of
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automorphisms of Cos(G, H, X) by left multiplication, and therefore every coset
graph is vertex-transitive. In fact, coset graphs are equivalent to vertex-transitive
graphs in the sense that a graph I' is vertex-transitive if and only if it is isomorphic
to some coset graph. For more information on coset graphs we refer the reader to [8]
or [7].

In order to be able to distinguish between the Cayley and non-Cayley graphs ob-
tained by the coset graph construction, we shall use the following criteria formulated
in two lemmas. The first lemma is a generalization of a result originally proved in
[5]. It focuses on oriented closed walks of length p" based at a fixed vertex (say,
ag), that is, on ordered sequences (ag, a1, . ..,dpn = ao) of (not necessarily distinct)
vertices such that a;_y and ¢; are adjacent for each v, 1 < ¢ < p™.

Lemma 1 Let I' = C(G, X) be a locally finite Cayley graph and p be a prime. Then
the number of closed oriented walks of length p*, n > 1, based at any fized vertez of
I, is congruent (mod p) to the number of elements in X for which " =1

Proof. let a be an arbitrary vertex of a Cayley graph I' = C(@, X) and p* be
a positive power of a prime. Let W denote the set of all closed oriented walks of
length p”* based at a. Fach of these walks can be uniquely associated to an ordered
pi-tuple (21,...,x,) of elements of X representing the succession of colors of arcs
in the walk. Since the walks considered are closed, the associated p™-tuples satisfy
the equation

Ty... Tpe = L (1)

Conversely, each p*-tuple of elements of X satisfying the e quatlon (1) represents a
closed oriented walk based at a, namely the walk vg = a, vy = a- 21, ..., Vpn =
@-Ty...T;m =a. Let

I={(z, . apmhzi€X, 1<i<p", o xpn = 1},
It follows that [W]| = |I]. Now, consider the action of the cyclic shift @,
O((21, ..y zpn)) = (T2y- - s Tpn,y T1),s

on the set 7. The equation (1) readily implies the equation ;... xzpm2y = 1, thus
@ preserves I. Since ® is of order p”, the lengths of its orbits on [ are necessarily
non-negative powers of p. That further yields the fact that [/] is congruent (mod
p) to the number of orbits of ® on I of length 1. Each such an orbit consists of a

mtuple (z,...,2), € X and a#" = 1. That proves that |/| is congruent (mod p)
to the number of elements z € X with the property " = 1. Since |W| = ||, this
completes the proof of our lemma. O

Indeed, there are several possible generalizations of this lemnma. Denote, for
instance, by I the set of all pF-tuples (z1,...,z), z; € X, 1 <i < pF for which
:c1 &y = 1. Then, for any k > 2, the number of closed oriented walks of length

based at any ﬁxed vertex of ', is congruent (mod p*) to the size of the set [x_;.

We shall not, however, use any of these stronger versions of Lemma 1 in our paper.
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Instead, let us consider the simplest case of a composite length, namely, the
number of closed oriented walks of length n = pg, the product of two distinct primes.
This situation is described in the following lemma.

Lemma 2 Let I' = C(G, X) be a locally finite Cayley graph, and p and q be two
distinct primes. Let n = pq and let j, be the number of elements © € X for which
a™ = 1. Then the number of closed oriented walks of length n, based at any fized
vertez of I', 1s congruent (mod p) to jn + kq, where k is a nonnegative integer.

Proof. The proof employs ideas similar to those used before in Lemma 1. Apain,
[W{, the size of the set of closed oriented walks of length n based at some vertex a,
is equal to |I], the size of the set {(z,...,2,);2: € X, [I%, z; = 1}. The action of
P, P(z1,...,20) = (Z95...,2n,21), on I has possible orbits of size 1, p,g or pg; let
k be the number of orbits of length ¢. It follows that |/] is congruent (mod p) to kq
plus the number of orbits of length 1. Now it is sufficient to realize that the length
1 orbits are constituted by elements z € X with the property z* = 1. D

Let us notice that the orbits of & of length q consist of n-tuples of elements from
X of the form (z1,...,25,21,...,24,...,21,...,2,), such that (z;-...-z,)” = 1. The
case when |G| is finite and p does not divide |(] is particularly interesting. In this
case, (¢ cannot contain elements of order p, and 277 = 1 simplifies to 2? = 1. On the
other hand, (z;...z,)? = I can only be satisfied by g-tuples (z1,...,z,) that already
satisfy the equation @;-... -z, = 1. The ¢-tuples (z1,...,2,), T1-...-2, = 1 together
with the generators « satisfying 27 = 1 represent precisely the closed oriented walks
of length ¢, based at a fixed vertex of I'. We can conclude that, in the special case of
p relatively prime to |G|, the number of closed oriented walks of length pg, based at
a fixed vertex, is congruent (mod p) to the nuinber of closed oriented walks of length
q, based at the same vertex,

3 Main theorem

Let us start this section by quoting the key result from [7].

Theorem 1 Let G be a group, let H be a finite subgroup of G, and let X be a finite
symmetric subset of G such that XHX N H = {1}. Further, suppose that there
ceist at least |X| + 1 distinet ordered pairs (z,h) € X x H such that (zh)? = 1
Jor some fized prime p > |X||H[*. Then the coset graph T = Cos(Q, H, XY} is a
vertez-transitive non-Cayley graph.

A close examination of the proof provided in [7] reveals an immediate improvement
ot the original lower bound on p. Let [, denote the number of distinct pairs (z,h) in
X » H such that (zh)? = 1. For obvious reasons, {, < |X||H|, and, in general, [, is
often smaller than |X||H|. Without any alteration of the proof, the original bound
p > |X||H|* can be replaced by p > [,|H|, giving an improvement on the size of p
used in applications. Consider, for instance, the case of the triangle group (2,r,p)
(Example 1 of [7]). The original lower bound p > r? can be improved by using the
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fact that (z,1) obviously does not satisfy the identity (z - 1) = 1. Thus [, is not
bigger than » —1 and therefore it is enough to require p > r(r —1). This lower bound
matches the one in [6] obtained by more subtle methods.

For further improvements of the original theorem we will employ the more pow-
erful Lemma 1 together with a simple counting principle. Here is the main theorem
of this paper.

Theorem 2 Let G be a group, let H be a finite subgroup of G, and let X be a finite
symmetric unit-free subset of G such that XHX N H = {1}. Let P pk be
powers of distinet primes, and let [, ,1 < i <r, denote the number of distinct pairs
(z,h) in X x H such that (.Ih)p’k = 1. Suppose that 7_, 1, > |X|, and, for all 1,
pi > Uy |H|. Then the coset graph T’ = Cos(G, H, X) is a vertez-transitive non-Cayley
graph.

Proof. The fact that X is a finite unit-free symmetric subset of ¢ for which XHX N
H = {1} makes large parts of the original proof in [7] still valid for our case. In
particular, for any two adjacent vertices aH,bH of I' = Cos(G, H,X) there still
exists a unique # € X such that b € aHz H. Also, the valency of I' is equal to |H|| X]|
as in [7].

In order to prove the theorem in its full strength, we start by proving it in the
special case r = 1 and pf = pF, with p > [,|H| . Consider the set W of closed
oriented walks of length p* in T, based at a fixed vertex agH. As stated in [7], each
of these walks can be uniquely associated to a (p* -+ 1)-tuple

(bo; (21, h1), (T2, ha)y ooy (@, Byr))s (2)

P
where z; € X, h; € H, by € apH, [[ z:hi = 1.
i=1
The (p* 4 1)-tuple (2) canonically represents the walk in terms of its colors (for more
details we refer the reader to the original proof in {7]). Furthermore, there exists
a one-to-one correspondence between the set W and the set of all (p* + 1)-tuples
satisfying (2). Denote the set of all such (p* + 1)-tuples by I, i. .

k

P
I = {(bo; (ml,hﬂ?...,(xpk,hpk)); by € agH, z; € X, h; € H, Hxihi = 1}.

1=1
Then |W/| = |I|. Now, consider the action of the cyclic shift
d q)((b(), (2’!1, hl), ey (&Upk,hpk))) = ((bg, (.’1)2, hz), ey (.%pk, hpk), (581,/7,1)))

on I. Since p is a prime, each orbit of ® on [ has length 1 or a positive power of
p. In addition, if a (p* + 1)-tuple (bo; (1, k1), ..., (Tk, hyr)) constitutes a length 1
orbit of @, then 2y = ... =z = 2,hy = ... = hy = h and (zh)™" = 1. If we denote
the number of length 1 orbits of ® on I by n, then |I| = n (mod p), and therefore
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[W| = n (mod p). On the other hand, n = I,|H|, the number of pairs (z,h) such
that (;tlz)pk =1 times the size of H. By the assumption, [, > |X|, and therefore

\X||H| < n=1,|H]| 3)

Suppose now that I' is a Cayley graph C(G', X') for a group G and generating set
X'. Applying Lemma 1, we see that n has to be congruent (mod p) to the number
of elements in X' of order divisible by p. This number cannot exceed the valency of
I' which we have determined to be . Thus, n > |X||H]| has to be congruent
(mod p > [,|H| = n) to a number smaller than | X ||H|. That is obviously impossible,
and we conclude that I' is not Cayley.

Let us consider the general case of powers of r distinct primes pi1,. .., pFr. Sup-
pose, again, that I' = Cos(G, H, X) is indeed a Cayley graph C(G', X'). Let j;
denote the number of generators z’ € X' whose order is divisible by p;, 1 < i < r.
Obviously,

Jit gt g <X = | XH]| (4)

(The equality |X'| = |X||H| follows from the fact that [X’| has to be equal to the
valency of T)

Now, for each of the p;’s, we repeat the process cutlined in the above part of our
proof for the special case r = 1. Let W; denote the set of all closed oriented walks
of length p* in I based at an arbitrary but fixed vertex agH, let I; be the i(‘t of all

(p2 + 1)-tuples (bo; (21, A1), - (x fc‘,h &), bo € aoH, z;€ X, h; € H, I—L lx h; =

1, and let n; be the number of OI‘bltS of ]ength 1 of the cyclic shift on /;. As argued
before, n; = I, |H| and |W;| = n; (mod p;), for all 1 < ¢ < r. Consider the sum
Yi—in: = [H| i I, By one of the assumptions of our theorem, S0, [, > |X],
and thus,

2ol H| > X1 H. ()

i=1
The inequalities (4) and (5) together yield the following simple observation: there
exists a prime p,, s < r for which {,,|H| > j,. The rest of the pmof follows from
Lemma 1. The number |W,| of closed oriented walks of length pf in I' is, on one
hand, congruent (mod p,) to the number j,. On the other hand, it is congruent
(mod p,) to the number I, |H| > j,. Since p, > I, |H| by assumption, the latter is
impossible. The proof is complete. O

We have stated Theorem 2 in the most general setting with the prime powers
being quite arbitrary. For practical applications we would like to make the following
remark. Suppose that G is finite and p is an odd prime that does not divide the order
of 7. Then p does not divide the size of the vertex set of T' = Cos(@G, H, X) either, and
therefore I, even if it happens to be Cayley, cannot possibly have generators of order
p. On the other hand, since G contains no elements of order p, the number of pairs
(z,h)in X x H, satisfying the equality (zh)? = 1, is zero as well. Thus, p contributes
0 to both sides of our inequality and therefore carries no information of whether the
obtained graph is Cayley or not. Consequently, to construct finite VINCG’s, we are
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only interested in prime powers that divide the order of (7. (Obviously, there are no
limits on their choice for infinite G’s.)

Although Theorem 2 handles as its special case the prime power p*, its main
strength (as opposed to the original Theorem 1) lies in its applicability to composite
numbers. The possibility of considering the elements of X with respect to different
primes adds a lot of freedom to the original construction from [7]. The following
applications illustrate well the advantages of Theorem 2 over Theorem 1.

4 Applications

Construction 1. Let p > ¢ be two odd primes such that 2(p — ¢)(p— ¢+ 1) < ¢.
Take y = (L 2...p—q+ 1) and 2 = (p— ¢+ 1...p), two permutations of the set
{1,2,...,p}, and consider the permutation group (7 = <z, y>, generated by z and
y. Let H = <y> and X = {z,27'}. Obviously, XHX N H = {1}. Furthermore,
l, > 2, since z and z7" are both of order ¢, and [, > 2, since (zy)P = (27 'y)" = 1.
Thus, l,+4, > 4> 2= |X|. Also,p > ¢ > 2(p—q)(p—q+1), where 2(p—q)(p—q+1)
is an upper bound for both [,|H| and {,|H|. Theorem 2 implies that Cos(G, H, X)
is a vertex-transitive non-Cayley graph. O

Construction 1 is very generic and can be altered in multiple ways. The set
X can be, for instance, extended by any of the powers of z together with their
inverses. The lower bound on ¢, however, has to be adjusted to | X|(p—¢)(p —q+1).
Another extension of X can be made by adding any number of cyclic permutations
of a prime length intersecting {1,2,...,p} at at most one point. Similarly, the
subgroup H = <y> can be replaced by just about any permutation group H' acting
on {1,2,...,p — g+ 1}, with a minor restriction that each of the elements of H’,
different from the identity, has to move the point p — ¢+ 1.

One of the basic questions related to VINCG's is the problem of characterizing
the positive integers n, for which there exists a VINCG of order n, the so-called
non-Cayley numbers ([9]). Since any of the multiples of a non-Cayley number is also
non-Cayley, most of the work in the area is devoted to products of small powers of
prime factors ( [10], [11], [12], [14]). Although Construction 1 is easy to use and
yields a large number of possible alterations, and, eventually, of new VINCG’s, the
orders of the graphs obtained are usually close to factorials. Also, it is hard to control
the orders of the graphs obtained. This makes this construction relatively unsuitable
for finding non-Cayley numbers.

The following constructions do not suffer from this drawback. The applications
included focus on the particular unresolved case n = 2pips...pg, k& > 2 where
P1,- - -, Pk are distinct primes, p; = 3 (mod 4), 1 <7<k ([12]).

Construction 2. This is a generalization of the triangle group (2,r, p) construc-
tion from [6]. Let G = <a,y> be a two-generator group satisfying the identities
y' = 2™ = (zy)" = 1, and take H = <y> and X = {z,27'}. Suppose further that
both m and n are prime powers, m = p}', n = pl*, and consider the coset graph
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['= Cos(G, H, X). If I,,l,, denote the number of products zh € XH of orders
being powers of py, p,, respectively, then obviously I,, +1,, > | X|+1 > | X|. (Notice
that, in fact, the set X can be extended by any number of nontrivial powers of z
together with their inverses and the inequality will still hold true.) Theorem 2 asserts
under these conditions that I' is a VTNCG provided the folowing three conditions
are satisfied:

pl>1m'“1[:l?71'l’p‘2>lpz'!HI:lm'l’ (6\)
XHXNH = <1>. (7)

Despite the relatively strict conditions on G and (I,m,n), there is an abundance of
examples of such a situation in the theory of regular hypermaps (see e.g. [4]).

Ezample 1. All computations included in this example as well as in the following
examples have been based on the primitive representations listed in [3] using the
software package GAP.

Let G be the projective special linear group PSLy(23) represented on 24 points.
Then G is a (4,11,23) group : ¢ = <z,y>, ' = y* = (24)* = 1, where

x = (1,18,12,9,8,11,16,20,2,5,4)(3,1 7,15,7,13,24,23,6,21,19,10),
and

v = (1,11,3,20)(2,17,4,8)(5,23,16,12)(6,14,22,24)(7,13,10,9)(15,21,19,18).

Take H = <y> and X = {z,27'}. The number l;; of products in X of order
Il is 2, as well as lys, the number of products of order 23. Further, XHX N H =
<1>, and since [H| = 4, the conditions in (6) are readily satisfied. The resulting
vertex-transitive graph Cos((/, /, X) is therefore non-Cayley. Its order |G|/|H] is
11-23.24/4 =2-3.11-23 = 1518, a new non-Cayley number. O

Ezample 2. Now, consider the primitive action of G = P51,(43) on 44 points.
Then (7 is a (3,7,11) group: G = <z,y>, 27 = y® = (ay)'! = 1. Taking H = <y>
and X = {z, 27!}, the numbers [; and l1; are both equal to 2, and XHXNH = <1>
again. The VINCG obtained is of order 44 -43-21/3 = 922.7.11 . 43. 0

Because of its squared factor 22, the non-Cayley number obtained in Example 2
has been previously known. One way to obtain a previously unknown non-Cayley
number would be to consider an element of order 2 instead of 3 for the element Y.
Although this actually works and the obtained non-Cayley number 2-3.7-11-43 is
really new, it seems to be more efficient to “shoot” for 2-7-11 - 43 right away and to
get 2-3-7-11-43 as a consequence. In order to do that we need to factorize (7 by
& subgroup of order 6 (there are no elements of order 6 in PSL,(43)). However, the
number 6 is not only too big for using 7 as one of the primes considered, it is also
too big for using the number 11 (since /;; has to be at least 2, we get the inequality
11<lyy - |H] = 11 - 6; unsuitable for the use of Theorem 2). That leaves us with 43
alone. The main obstacle in using Theorem 2 for this situation is the fact that we
need to use a set X with at least | X| + 1 pairs (z,h) € X x H satisfying (zh)P =1,

128



for some (quite restricted) prime p. That forces an existence of at least one pair
(z,h), (zh)P = 1, with h # 1. If it were not for this condition, we could simply
use sets X consisting of prime power elements and the pairs (z,1) would provide us
with a sufficient number of prime-power pairs. The necessity for existence of at least
|X| + 1 pairs in Theorem 2 comes from the fact that, for a general Cayley graph
(G, X), we are unable to make any statements about the number of generators
z € X, whose order is a power of p. However, for special cases of orders of Cayley
graphs (in particular for the relatively simple cases of “interesting” candidates for
non-Cayley numbers), we are able to limit the number of generators of certain prime
orders. Consider, for instance, the order 2pyps ... pr, where 2 < py < py <...p; are
distinet primes. Let (& be a group of this order. In the case when none of the divisors
of 2py ... pg-y different from 1 is congruent to 1 (mod pg), the Sylow theorem yields
that the Sylow py-subgroup of (7 is necessarily normal in (. That further yields
that (7 cannot be generated by elements of order py only. Thus, no connected Cayley
graph C(G, X) of order 2pyp, . .. pi satisfying the above mentioned condition can be
generated by | X| elements of order py.

Such a situation allows the following refinement of the lower bound on the number
of products of prime power order used in Theorem 2.

Theorem 3 Let p be a prime and let n be a positive integer such that no finite group
of ordern can be generated by a set of elements the orders of all of which are powers
of p. Let T = Cos(G, H, X) be a coset graph of order n (= |G|/|H|), which satisfies
the following conditions:

(i) XHX 0 H = {1} and <HXH> = G,

(ii) the number l,, of pairs (z,h) € X x H for which (zh)P* =1, is greater than or
equal to | X,

(i) p > L[ H|.
Then T is a vertez-transitive non-Cayley graph.

Proof. Because of the second part of condition (i), I' is connected. Compared
to Theorem 2, all we need to prove is that the new bound [/, > |X| is sufficient for
granting I' to to be non-Cayley. Suppose again the opposite, I' = C'(G", X'), and
consider the number of closed oriented walks of length p, based at a fixed vertex.
This number has to be congruent (mod p) to both j,, the number of elements z € X'
whose order is a power of p, and the number [,|H|. Since G cannot be generated by
elements of order p* alone, 7, is strictly less than the valency of T', 1. e. 7, < | X||H]|.
On the other hand, [,|H| > |X||H|, by assumption. This congruence is impossible,
since p > [,|H|, and we conclude that T" is not Cayley. O

No matter how restrictive the conditions imposed on n look, there are numerous
examples of this kind of a situation. Let us at least mention the order 2p;p, con-
sidered by Miller and Praeger in [12]. As proved in Theorem 1 of their paper, the
number 2p;p, is non-Cayley whenever p; and p, are odd primes and p; divides p; —1.
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This is indeed a case when no group of order 2p;p; can be generated by elements of
order p; only. Their original (rather sophisticated) proof can therefore be replaced
by a simple assertion that the group used in their construction certainly satisfies all
the conditions of Theorem 3. (However, without the knowledge of the suitable group
none of this would be possible.)

Another nice example of the use of Theorem 3 is the case 2711 - 43 mentioned
above:

Ezample 3. Let G = PS1,(43) in its action on 44 points, and take H = <y, z>
to be the 6-element subgroup of GG generated by the permutations

(1

(14,16)

y = (3,6,22)(4,29,15)(5,39, 13)(7,41, 33)(8, 38, 23)(9, 20, 21)(10, 19, 14)
1,30,34)(12, 16 35)(17, 42, 31)(18, 44, 28) (24, 40, 43)(25, 26, 37)(27, 36, 32),
2= (1,2)(3,17)(4,27)(5, 18)(6, 31)(7, 34)(8, 21)(9, 23)(10, 12)(11, 33)(13, 44)
(15,36)(19,35)(20, 38) (22, 42) (24, 25) (26, 43)(28,39)(29, 32)(30, 41)(37, 40),

and X = {z,27'} with

@ = (2,3,44,42,43,29,22,35,15,13,33,39, 18,36, 8,24, 7,41, 17,11, 20, 19, 31,
5,40, 14,26,25,34,28,4,38,21,37,9,27,6,12, 32,30, 10,23, 16).

All we need to consider here is the number 43 equal to 2. Since 43 > 26 and
XHX N H = <1>, the conditions (i), (ii), (iii) of Theorem 3 are satisfied. Further-
more, the Sylow theorem ensures that no group of order |G|/|H| = 21 - 43 - 44/6 =
2-7-11-43 can be generated by elements of order 43 only, and 2-7-11 - 43 = 6622
is therefore a new non-Cayley number. A similar construction using a subgroup |H]|
of order 14 yields another new non-Cayley number: 2-3 - 11 - 43 = 2838, (All our
attempts to construct an order 2-3-7- 11 VINCG have failed because of too many
elements of order 43 in X - H.) OO

While all the previous examples yield finite number of non-Cayley numbers, in-
finite families of new non-Cayley numbers are certainly of the highest interest. One
such an infinite family is provided by the following construction.

Construction 3. Let p > 11 be a prime and let ¢ be the projective special
linear group P S Lo(p) of order p(p? —1)/2. Suppose further that none of the divisors
of (p* — 1)/4 different from 1 is congruent to 1 (mod p) and consider the matrices

(80 (1)

Both y and « are elements of (7, the first one of order 2 and the second of order p.
Let H = <y> and X = {z,z7'}. Then G = <HXH>, XHX N H = «<1>, and
2 <1, <4, since both z-1 and 271 -1 are of order p and there are at most 4 elements
in X - H. Thus, I, > |X| = 2, and since p has been taken to be greater than or
equal to 11, also p > [,|H| = [, - 2. All the requirements of Theorem 3 are therefore
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satisfied, and we conclude that the coset graph Cos(G, H, X) is vertex-transitive and
non-Cayley of order p(p® —1)/4.

Here is a list of the first few non-Cayley numbers obtained from the above de-
scribed construction. The dash denotes the primes that do not yield a non-Cayley
number; bold-face denotes the previously unknown non-Cayley numbers.

P 11 13 17 19 23 29 31 37 41 43 47 583
order 330 — — 1710 3036 — 7440 — — 19886 25944 -

The next new non-Cayley number obtained in this manner is the number 5666226.
0

We conclude our paper with a general construction that seems to be especially
well suited for applying Theorem 3.

Construction 4. Order (pg)"

Let p > ¢ be two primes and 1 < n < p/2 be a positive integer. Suppose that
p does not divide any of the numbers ¢ —1, 1 < i < n. Then any group of
order (pq)” contains a normal Sylow p-group and cannot be generated by elements
of order p* alone. Once more, this conclusion allows us to construct a coset graph
satisfying the conditions of Theorem 3. Let G be the wreath product of the group
Z, x Z, with Z, acting on {1,2,...,n} in the usual cyclic way. Then |G| = n{pg)™.
Let H = <((0,0),...,(0,0);(12...n))> be the isomorphic copy of Z, in G. Let
X = {((170)’ (0,0), (070)1 AR (070); id),((p - 1a0)7 (090)7 (07 0)> s 7(030); Zd)} Then
XHXNH = {((0,0),...,(0,0);id)}, HX H generates G, l, = 2, and p > [,|H| = 2n,
by assumption. All this together proves that Cos(G, H, X) is a VINCG of order
(pg)". B

Note also that the wreath product construction introduced here can be extended
to constructions of VINCG’s of any order m™, n > 2, for which one can somehow
prove that no group of order m™ can be generated exclusively by elements of prime-
power order p*, for some prime factor p of m.
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