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Abstract

The intersection problem for block designs asks for what values of & it is
possible to find two designs (V, By) and (V, By), based on the same set V, with
|By N By| = k; that is, having precisely k common blocks.

We define a dragon design to be the decomposition of a complete graph
into copies of graphs isomorphic to Cy with a pendant edge. We solve the
intersection problem for all such dragon designs.

1 Problem Overview

1.1 Background

Let G be a simple (undirected) graph which is some subgraph of another graph H. A
G-decomposition of H is a block design (V, B) where V is the vertex set of H and B
is an edge-disjoint decomposition of H into copies of G. In the case where H is K,
the complete graph on n vertices, this is also called a G-design of order n.

The intersection problem for G-designs asks for what values of k it is possible to
find two G-designs (V, By) and (V, By) (that is, two decompositions of a complete
graph with vertex set V) with |By N By| = k; that is, having precisely k common
blocks.

Define Ig(K,) to be the set of achievable intersection sizes for a G-design of
order n. It is easy to see that any two designs (V, By), (V, B,) on the same vertex
set with |By] = |By| = b blocks can never have b — 1 blocks in common; that is,
b—1¢ Ig(K,) for any G.

This problem has been considered for many combinatorial structures; a recent
survey is [2]. In the specific case of small G-designs, where G is a graph with up to
four vertices or up to four edges, a summary appears in [3].
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For the rest of this paper we look at decompositions of K., into copies of a graph
which we call a dragon. (The name dragon comes from a paper by Bermond, Huang,
Rosa and Sotteau [1], where it is asserted that “this graph belongs to a class of graphs
called dragons” and the reader is referred to a further paper by Huang [5]. However,
the latter paper does not mention the word. For the sake of having something to call
the graph, the name has been retained.) The dragon, denoted D, is a cycle of length
four plus a pendant edge:

It is important to note that the vertex at the free end of the pendant edge s
distinct from the four vertices which form the cycle of length 4, so this is a graph
with five vertices and five edges. We denote the above dragon by [a,b,c,d — e] or
equivalently [c,b,a,d — e], so that the edges used are {a,b}, {b,c}, {c,d}, {d,a} and
{d, e}.

If B denotes the set of all such blocks obtained from an edge-disjoint decomposition
of K, with vertex set V, then we denote the resulting design by D = (V, B), calling
it a dragon design of order n or equivalently a D-decomnposition of K,,.

The rest of this paper gives a solution to the intersection problem for this five-
vertex dragon. We show that for all n for which dragon designs of order n exist, the
set of intersection numbers is complete, 1.e. Ip(K,) = {0,1,... ,b~2,b}, where b is
the number of blocks in the design.

1.2 Methods

In order to find intersection numbers, two techniques are used, namely permuting and
trading.

The former involves permuting the vertices of the original design. This is denoted
by oD, where o is the permutation and D a design.

The latter (also referred to in the literature as mutually balanced sets) involves
replacing some of the blocks by a disjoint set of blocks which use precisely the same
edges. We shall denote a trade by a table of the form

[a7b7 c,d— e] [Oc,,[},’)’,(S_ 6]
[fvgahvi"j] [Cvnyevb—/{}

k,1,mn—o] | [\ p,v,é—n]
where the blocks on the left are those in the original design which are to be replaced,
and those on the right are their replacements, so the blocks on the right cover precisely
the same edges as the blocks on the left (here, of course, {a,b,c,...} = {a, 4,7, ... .
Moreover, if 7 is some trade, then we use |7| to refer to the number of blocks being
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traded, called the volume of the trade [4], and (D) to represent the trade applied to
the design D.

Two other forms of notation are used to manipulate trades. Firstly, 7% represents
the trade r cycled appropriately ¢ times (i.e. with the vertices used in the trade
permuted), where “appropriately” is defined in the context of the design to which the
trade applies. Secondly, if 7 and ¢ are two trades with edge-disjoint original block
sets, we define 7 U o to be the union of the trades, with original block set equal to
the union of those blocks from 7 and ¢ and similarly for the final block set.

1.3 Necessary conditions

It is clear that for a dragon design of order n to exist, n must be 0 or 1 (mod 5).
This is a consequence of the fact that the number of edges in the complete graph on
n vertices, which is (';) = n(n — 1)/2, must be a multiple of the number of edges in
a dragon, which is 5.

We see also that neither K5 nor Kg can be D-decomposed:

Lemma 1 There is no dragon design of order 5.

Proof: Ks has () = 10 edges, so a D-decomposition would involve two dragons.
2 g g

But taking one out leaves no cycles of length more than 3, so another cannot
be found. O

Lemma 2 There is no dragon design of order 6.

Proof: Kg has (g) = 15 edges, so a D-decomposition would involve three dragons.

The vertices then (after removal of the dragon) have degrees 5, 4, 3, 3, 3 and 2.

Now consider the vertex of degree 2. Either this vertex is part of a Cy in one of
the two remaining dragons in the decomposition, or else the pendant edges from
each Cy4 in the two remaining dragons are those edges leading to this vertex.

In the former case, there is only one possible way to form the cycle of length
4 containing the vertex, and removing those edges leaves no cycles of length
greater than three for the final dragon:

Thus this does not lead to a dragon decomposition.
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In the latter case, there do not exist two edge-disjoint cycles of length more than
three in the remaining edges (once the two pendant edges are also removed):

Thus this also does not lead to a dragon decomposition. O

However, for all n > 10, these conditions are also sufficient; this was shown by
Bermond, Huang, Rosa and Sotteau [1, 5]. We proceed from here by constructing
dragon designs of order n for n = 0,1 (mod 5), n > 10, and finding intersection
numbers for all such designs.

2 Intersection Numbers

We begin by finding intersection sizes for pairs of dragon designs of orders 10, 11, 15
and 16, by looking at explicit decompositions of the appropriate complete graphs.
In order to proceed with the general construction we look also at D-decompositions
of Ksg, the complete bipartite graph on 10 vertices.
We then construct dragon designs of order n for n = 0,1,5,6 (mod 10),n > 20;
we do this by generalising from our explicit decompositions, deducing intersection
sizes in the process.

2.1  Initial Cases

Table 1 gives appropriate parameters, vertex sets and starter blocks for dragon designs
of orders 10, 11, 15 and 16. The set of possible intersection sizes for each of these
designs is Ip(Ky,) = {0,1,... ,0—2,b}, where b is the number of blocks in the design.
The following tables give the permutations and trades used to find these values:

K00 Permutations in Table 2; trades in Table 3.
Ky1: Permutations in Table 4; trades in Table 5.
Ky5: Permutations in Table 6; trades in Table 7.
Kig: Permmtations in Table §; trades in Table 9.

(The tables appear at the end of the paper.)
In the remainder of the paper, the notation D, is used to refer to the dragon
design of order n defined in Table 1.

2.2 Kj;

Label the vertices of K55 as 1] to represent (7, 5), wherei € {0,... ,4} and j € {0,1}.
Let D5 be [01,00, 11,30 — 21] cycled modulo - (that is, first parameter modulo
5, second parameter fixed). Then Ds is a D-decomposition of Kj 5.



If Es is Ds with bipartite sets swapped — that is, Fs is generated by cycling
[00,01, 10,31~ 20] (modulo 5~ as before) — then Ejs is also a D-decomposition of
Ky 5, and moreover [Es N Ds| = 0.

Hence we see that In(Kss) 2 {0,5}.

2.3 K,,n=0156 (mod 10), n > 20
2.3.1 Designs

We construct D-designs of order n for all remaining admissible n. The construction
is of two forms, for n = 0,1 (mod 10) and n = 3,6 (mod 10).

o Kiom, Kiom+1:
Label the vertices of Kigm as Zam X Zs; adjoin a point co for Kigm41-

One design is then:

(1) For Kigm:
For each 1,0 < ¢ < m, place a copy of a D-design of order 10 onto the points
{20,221 + 1} X Zs.

For 1(10m+1:
For each 7,0 < 1 < m, place a copy of a D-design of order 11 onto the points

({24,20 + 1} x Zs) U {co}.
(2) For each i, with 0 <1 < j < 2m, when 7 is odd or j > 7 + 1, place a copy of a
D-decomposition of K5 onto the points ({1} x Zs) U ({J} x Zs).

It is easy to see that this forms a valid decomposition of K, by counting blocks and
considering edges covered by each part of the decomposition.

o Kiomis, Kiomss:
Label the vertices of Kiom4s as Zizme1 X Zs; include a point oo in the case of Kigm6-

Define an equivalence relation p € Zgmt1 X Zomt1 such that p is symmetric and for
i <7, (3,7) €pifand only if (4,5 € {0,1,2}) or (¢ is odd and j =i+ 1).

This partitions Zgny; into one class of size three and successive classes of size two (in
increasing numerical order): {0,1,2},{3,4},{5,6},...,{2m —1,2m}.

Label each class using the unique odd number in the class, i.e. let p; denote the
unique class containing 7, where ¢ is in Zyp41 and is odd.

A suitable design is then:
(1) For Kiomss: .
(a) For each i,1 <1 < m, place a copy of a D-design of order 10 onto the

points paiy1 X Zs.
(b) Place a copy of a D-design of order 15 onto the points p; X Zs.
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For Kiomys:
(a) For each i,1 < ¢ < m, place a copy of a D-design of order 11 onto the
points (paip1 X Zs) U {oco}.
(b) Place a copy of a D-design of order 16 onto the points (p; x Zs) U {0}

(2) For each i,j in different equivalence classes (i.e. p; % p;) place a copy of a
D-decomposition of K5 onto the points ({1} x Zs) U ({5} x Zs).

As before, it is easy to see that this is a valid decomposition of K, by counting blocks
and considering edges covered by each part of the decomposition.

2.3.2 Intersection Numbers

We now calculate the intersection numbers for these designs.

Define an operation @ such that for two sets S and Sy of integers, Sy 52 is
the set of all possible sums sy + sy, where s; is some element of S;. Generalise this
by defining m « 5 to be Sy & S, & ... b Sy, where S; = S for 1 < ¢ < m, noting
that associativity allows us to do so unambiguously. The multiplicative operation *
distributes over the additive operation & as usual.

We consider the solutions to each case n = 0,1,5,6 (mod 10) separately:

& [(1 Om

We have I(Ko) = {0,1,...,7,9} and I(Ks5) 2 {0,5}. Hence
- /‘ ; m »
[(BIOm) ;__\/ TTL*[([&lo)@‘l(Z) *[([‘;5,5)

5) m*{(),l,...,7,9}@4(?)*{0,5}

= {0,1,...,9m — 2,9m} & 2m(m — 1) * {0, 5}

= {0,1,...,9m —2,9m} & {0,5,... , 10m(m — 1) — 5, 10m(m — 1)}
= {0,1,...,10m* — m — 2,10m* — m}.

But 10m? — m is the number of blocks in a D-decomposition of Kiom, so we
know 10m* —m — 1 ¢ I(Kig,,), and thus we have a complete set of intersection
numbers.

e K10m+1

Here (K1) = {0,1,...,9,11}. Hence (i a similar fashion to the case of Kyom
above)

I(Kyom41)

V)

m ok I(Kn) @4(?) * 1(1(5’5)

= {0,1,...,10m* + m — 2,10m?* + m}.



But 10m? + m is the number of blocks in a D-decomposition of Kigms1, 50
we know 10n? +n — 1 ¢ I(Kignt1), and thus we again have a complete set of
intersection numbers.

o Kiomis
Now I(Ks) = {0,1,...,19,21}. Hence

1(1{10m+5> 2 I(Kls)@(m—-—1)*I(Kw)@((i(m~l)+4<m;1>*I(Ksys)

= {0,1,...,10m* + 9m, 10m* + 9m + 2}.

But 10m? + 9m + 2 is the number of blocks in a D-decomposition of Kigm+s, SO
we know 10m? + 9m + 1 € I(Kiom+s), and so again we have a complete set of
intersection numbers.

e I{lom+6
Here I(Kis) = {0,1,...,22,24}. Hence

I(Kiomss) 2 I(Kie) @ (m— 1)« I(Ky)® (6(m -1)+ 4<m; 1)) * I[(Ksp5)

= {0,1,...,10m* + 11lm + 1,10m* + 11lm + 3}.

But 10m? + 1lm + 3 is the number of blocks in a D-decomposition of Kigm+ts,
so we know 10m? + 11m + 2 ¢ I(Kiom+s), and so we have a complete set of
intersection numbers for this case also.

3 Conclusion

It is known that a dragon design of order n exists if and only if n = 0,1 (mod 5) and
n > 10 (refer to [1, 5]).

Here we have shown that the achievable intersection numbers for such a design
are the complete set {0,1,...,b— 2,0}, where b = (’2’) /5 is the number of blocks in
a design of order n, so n =0 or 1 (mod 5), n = 10.

That is, we have proved:

Theorem There exist two dragon designs (V, By),(V, Bz) of order |V| = 0,1 (mod 5),
|V| > 10 with |B; N By| =k, for all k € {0,1,...,b— 2,0} where b is the number of
blocks in the design.
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No. of
Graph | Blocks Vertex set Starter bloclks
Ko 9 {c0,0,1,...,8} [0,2,5,4 — oo
modulo 9
Ky 11 {0,1....,10} [2,8,1.0— 6]
modulo 11
K5t 21 {c0, 04,10, 61,09, 15,... 69} [0, 02, 25, 11 — 0]
[34, 61,12 0y — o0
[20,61,44.05 = 14]
modulo 7 ( subscripts fixed)
Kyt 24 {o0} U(Zs x Z3) [30,11,01,00 — o]

ij shorthand for (7, J) [40,21,11,10 — o]

[00,31.21, Lo - (\o]

[10,41,31,30 — oc]

[41, 20, 20, oo- 12]

[22,10,21,00 — 32]

(32, 20,31, 40 — og]
[42,41,02.10 — 31]

modulo -3 (i.e. fixed first position)

P "An alternative decomposition can be found in [5].
! This decomposition is the one given in [1].

Table 1: Parameters for dragon decompositions of Ko, K11, K15 and Kig.

23 IDlonO"Dlg,
(05) 4

(02) 3

(01) 2
(012) 1
(0123) 0

Table 2: Intersection numbers for Kyo from permutations.



17’; T lD]o M T(.Dlg)l
5 | [0,2,5,4=00][[0,2,00,4~ 5] ;
[7,0,3,2~00] | [3,0,7,2— 5]
[0,2,5,4 — <] | [8,0,6,00 — 4]
3] [2,4,7,6 —00]| [0,2,5,4~ 6] 6
[4,6,0,8 —oco] | [7,6,2,4— 8]
4 T UT, 5
Note that 7; denotes the listed trade of size j.

Table 3: Intersection numbers for Ko from trades.

a ID“ N O'Dui
(06) 4
(04) 3
(02) 2
(01)(34) 1
(012)(34) 0

Table 4: Intersection numbers for Ky from permutations.

‘7" T ,Dn N T(Du)l

5 [2,5,1,0—6]|[0,2,5,1~7] 9
[&621m7 [3,1,2,6 — 0] ’
[2,5,1,0— [5,0,8,6 — 7]

3| [7,10,6,5— ] [10,7,0,6 — 1] 8
[8,0,7,6 ~1]| [2,0,1,6—7]
[2,5,1,0— 6] | [4,3,5,8 — 2]

4 [3,6,2,1~7]|[2,4,7,3—9] 7
(4,7,3,2—8]|[2,1,3,6 —0]
[5,8,4,3—9]]|[0,2,5,1—7]
[2,5,1,0—6]]|[5,8,7,2— 0]
[3,6,2,1~7]1[6,3,7,1—9]

5 (4,7,3,2—8]|[3,9,7,4— 2] 6
[5.8,4,3—9]|[1,3,2,8— 4]
[9,1,8,7~2]|10,1,2,6 — 3]
[2,5,1,0—6]| [4,7,5,8—2]
[3,6,2,1—7]]|[4,3,7,10 — 6]

6 [4,7,83,2—~8]| [3,9,5,1—7] 5
[5,8,4,3—9]| [2,4,5,6— 9]
[6,9,5,4~10]| [0,2,3,6—4]
[7,10,6,5—0]| [0,1,2,56~—3]

Table 5: Intersection numbers for Ky; from trades.
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o iDIS n O'D15E
(0:2y)
(0:6,)
(0111)

(01241,)
(0:1,2y)
(0200)
(0,1,0,)
(01110215)
(0y00)

(01 0200)
(01 1121314151)
(01110200)

— e
Lo

O =N W T OY ~T 00

Table 6: Intersection numbers for K5 from permutations.

|7 7 |Dis V7 (Dys)|
9 [01,02,2,, 1, — co] | [1,,64,3,, 0, — 2] 19
[327617 15,0, *P’O] {O 03, 00, 11—22]
[01,02,2;, 11 — co] | [12,64,32,0, — 2]
3 [11,12,35,2) — 00 | [24,35, 15,14 — 23] 18
[32.61,12,0; — 00] | [14, 04,04, 00 — 24]
4 T Urs 17
] U TS 16
6 Ty UTd 15
7 s U TS 14
8 s UT? 13
9 75 U TS 12

Note that 7; denotes the listed trade of size ;.

Table 7: Intersection numbers for K5 from trades.
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o2 ‘Dw n UDIG‘
(00 40) 14
(00 10) 13
(00 41) 12
(00 30) 11
(10 30) 10
(00 10 20) 9
(00 10 31) 8
(00 10 30) 7
(00 40) (10 30) 6
(00 10 20 30) 5
(00 10 20 30 40) 4
(00 10 20 01 02 12) 3
(00 10 20 30 40 01) 2
(00 10 30 01 02 12 42) 1
(00 10 20 30 40 01 11) 0

Table 8: Intersection numbers for Kjg from permutations.
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|D1(; N T(Dm)]

[12,40,30,32 —

(12,32, 00,40 — 30

2 ] ] 22
32,20,31,40 — o] | [20,31,40,32  30]
30,11,01,00 — oo o1,31,12,02 0]

3| [31,12,02,01— oo] | [10,32,02,00 — o9 21
32,10,00,02— o0 | [00,30,11,01 — oo
30,11,01,00— oc] | [01,31,12,02 — 00

4 [31,12,02,01 — co] | [40,21,11,10 — 00] 9
[32,10,00,02— oo] | [10,32,02, 00 — 00]
[40,21,11,10»«00 [00,30,11,01 — o0
[30,11,01,00 — oo] | [41,22,12,11 — 01
[31,12,02,01 — oo} | (31, 12,02,01 — 00]

5 | [32,10,00,02~ oo} | [40,21,11,10 — 32] 19
[40,21,11,10 - co] | [00,30,11, 00 — 01]
[41,22,12,11 — oo] | [00, 10, 00,02 — 32]
[30,11,01,00—00] [32,02, 00,10 — 41]
[31,12,02,01 — co] | [11,12,22,41 — 31]

6 [32,10,00,02 — co] | [01,31,12,02— 00] 18
[40,21, 11,10 — o] [10,40,21,11— 0]
[41,22,12,11 — oo] | [00,01, 11,30 — 31]
[10,41,31,30 — oo} | [00, 10,30, 00 — 01]
[30,11,01,00 — oo] | [32,02, 00,10 — 11]
[31,12,02,01 — oo} | [41,20, 00,11 — 21]
(32,10,00,02 ~ co] | [00,00,01,02— 12]

7 | [40,21,11,10— cc] | [00,41,22, 12— 11] 17
[41,22,12,11 — oo} | [00,40, 21,31 — 12]

(00,31, 21,20 — oo] | [00,80,11,01 — 31]
[41,20,40,00 — 12] | [00, 10,40, 20 — 21]
8 To U T 16
9 T2 U Ty 15

Note that 7; denotes the listed trade of size j.

Table 9: Intersection numbers for K¢ from trades.
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