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Abstract 

The intersection problem for block a..sks for values of k it is 

to find two B d and based on the V, with 
IBI n B:;d k; that is, k common blocks. 

We define to be the of cornDI.ete graph 
solve the 

intersection 

1 

1.1 

Let G be a (undirected) which is some subgraph of another graph H. A 
G-decomposdion of H is a block (V, where V is the vertex set of Hand B 

decomposition of H into copies of G. In the case where H is Knl 
on n vertices, this is also called a G-design of order n. 

The intersection problem for asks for what values of k it is possible to 
find two (V, B1 ) and (V, two decompositions of a complete 

with vertex set V) with IBI n B21 k; that is, having precisely k common 
blocks. 

Define IG(Kn) to be the of achievable intersection sizes for a G-design of 
order n. It is easy to see that any two (V, Bd, (V, on the same vertex 
set with IBll IB21 = b blocks can never have b 1 blocks in common; that is, 
b - 1 t/:. Ie;( Kn) for any G. 

This problenl has been considered for many combinatorial structures; a recent 
survey is [2]. In the specific case of small G-designs, where G is a graph with up to 
four vertices or up to four edges, a summary appears in [3]. 
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For the rest of this paper we look ae(~onl1.p()S11tlOl:lS of 
comes from 

;Cl,,~:pr1r.p(j that "this 
is to further paper by 

the latter paper does not mention the word. For the sake of having U'-'iUvU~.U.un 
the the been The denoted 
four 

to note that the vertex the free end of the 
1{"",'r,('""" which form the 4. 

of J{n wi th vertex set then we denote the 
it a dragon of order n or 

e] or 
and 

The of this paper solution the intersection n"f",n'c> ..... for this five-
vertex We show that for all n for which the 
set of intersection numbers is l.e. 
the number of blocks in tll(; 

1.2 

In order to find intersection Uu.uu,,, .... ,-,. two '''-'',iU' . .L'4 '-L' .• '" are 
trading. 

The former involves permuting the vertices of the original 
(J" D, where (J" is the D design. 
The latter (also referred to in the literature as mutually 

namely 'YlP'''''YYl'IIT1'Yl and 

This is denoted 

C!-,JL<lA ... lJ.L)1., some of the blocks set of blocks which use 
involves 

the same 
We shall denote a trade by a table of the form 

b~c,d e] ,B,I',O-E] 
g,h,i j] '7,B,D-K] 

[k,l,m,n- 0] [\p.,v,~ -11"] 
where the blocks on the left are those in the original design which are to be 
and those on the right are their replacements, so the blocks on the right cover precisely 
the same edges as the blocks on the left (here, of course, {a, b, c, ... } = {ct,,B, 1', ... } ). 
Moreover, if T is some trade, then we use ITI to refer to the number of blocks being 
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traded, called the volume of the trade and to represent the trade applied to 
the D. 

Two other forms of notation are used to trades. Firstly, Ti represents 
the trade i times (i.e. with the vertices used in the trade 

where "appropriately" is defined in the context of the 
trade if and (J two with enlle'-(1lSlO111t V.L"~.u.L""" 

we T U (J to be the union of the wi th block set to 
the union of those blocks from and (J and for the final block set. 

1.3 

It is clear that for a dragon of order n to n must be 0 or 1 (mod 5). 
This is a the fact that the number of in the complete on 
n n( n mnst be a multiple of the number of 1Il 

a dragon, which 
We also that neither K5 nor can be U-deICOInpos'eci; 

Lemma 1 There is no dragon des£gn of order 5. 

Proof: (~) = 10 edges, so a V-decomposition would involve two dragons. 
one out leaves no of more than 3, so another cannot But 

be found. o 

Lemma 2 There £s no dragon design of order 6. 

Proof: has (~) = 15 so a would involve three dragons. 

Without loss of gc.an take Ol¥ed 
The vertices then (after removal of the dragon) have degrees 5, 4, 3, 3, 3 and 2. 

Now consider the vertex of degree 2. Either this vertex is part of a C4 in one of 
the two remaining dragons in the decomposition, or else the pendant edges from 
each C4 in the two remaining dragons are those edges leading to this vertex. 

In the former case, there is only one possible way to form the cycle of length 
4 containing the vertex, and removing those edges leaves no cycles of length 

greater than three for the fin~~:. 

Thus this does not lead to a dragon decomposition. 
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In the latter of more than 
three in the relna,lnllllg 

Thus also does 

this was shown 
Bermond, Rosa and from here by rr.,-, C'T.,."r-T"'" 

dragon of order n for n 10, and intersection 
numbers for all such U<;,c)l):;lli), 

We 

of 
10), n 20; 

'_L'-""-t-L'~Ul_M intersection 
sizes in the process. 

2.1 

sets and blocks for 
1J'-""""II.llC intersection sizes for each of these 

where b is the number of blocks in the 
pernmt;atlOI1S and trades used to i"lnd these values: 

Permutations in Table 
t'e:rInut;ltl()nS in Table 
t'eJrIllut;ltlCms in Table 6; 

J{16: Permutations in Table 

tables appear the end of the 

trades in Table 3. 
trades in Table 5. 
trades in Table 7. 
trades in Table 9. 

In the remainder of the paper, the notation Dn IS used to refer to the 
design of order n defined in Table 1. 

2.2 K 5,5 

Label the vertices of J{5,5 as ij to represent (i,j), where i E {O, ... ,4} andj E {O, I}. 
Let D5 be [01,00, 11,30 21] cycled modulo 5- (that is, first parameter modulo 

5, second parameter fixed). Then D5 is a V-decomposition of J{5,5. 



If IS with bipartite sets QlX"~nr\prl that generated by cycling 
[00,01,10,31 (modulo 5- is also a V-decomposition of 

and moreover n I = 0. 
Hence we that Iv (K5,5) ~ {0,5}. 

2.3 K 1n n == 0,1,5,6 (mod 10), n ~ 20 

2.3.1 

We construct of order n for all The construction 
is of two for n 0,1 (mod 10) and n 

@ I<lOm, K lOm+1: 

Label the vertices of K lOm as x adjoin a point for K lOm+1' 

One is then: 

(1) For 
For each i, 0 

2i + I} x 
For K lOm+1 : 

m, place a copy of V-design of order 10 onto the points 

For each i, 0 
2i + I} 

copy of a u-ue:,Utll of order 11 onto the points 

(2) For each i,j with 0 :s; i < j 2m, when i is odd or j i + 1, place a copy of <1 

V-decomposition of onto the X Z5) U ({j} x 

that this forms a valid decomposition of Kn by counting blocks and 
,",VJLJ.u.1UICCl..LJ.JLI", edges covered by each part of the decomposition. 

Label the vertices of K lOm+5 as Z2m+1 X include. a point CXJ in the case of K lOm+6 • 

Define an equivalence relation P ~ X Z2m+l such that P is symmetric and for 
i < j, (i,j) E P if and only if j E {O, 1,2}) or (i is odd and j = i + 1). 

This partitions Z2m+l into one class of size three and successive classes of size two (in 
increasing numerical order): {O, 1, 2}, {3. 4}, {5, 6}, ... ,{2m 1, 2m}. 

Label each class using the unique odd number in the class, i.e. let Pi denote the 
unique class containing i, where i is in Z2m+1 and is odd. 

A sui table design is then: 

(1) For K 10m+5: 

(a) For each i, 1 ::; i < m, place a copy of a V-design of order 10 onto the 
points P2i+1 x Z5. 

(b) Place a copy of a V-design of order 15 onto the points PI X Z5. 
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a copy of v-,ne"lQ'n of order 11 onto the 

(b) ~"'U'-"JH:'U of order 16 onto the U {oo}. 

copy of a 

As valid de<:OlllpClsltlOn of by \AJlHJ.lJ.LL.l'" blocks 
each of the de<:OTIClP()S11GlO:n. 

2.3.2 Intersection Numbers 

We now calculate the intersection numlwrs for these U\A>lM.UU. 

Define an EB such that for two sets Sl 
the sd of all UV,',')LIJl.L 

by defining m * 
that a.;:';:'Vl.l.a.Ll 

We consider solutions to each case n 

We have {O, 1, ... ,7, 

rn. * 1, .. , 7, 

1, ... ,9m - 2, 

{O, 1, ... ,9m - 2, 

1, ... ,10m2 m -- 2, 10m2 

6 (mod 10) uGfJo.".Q,lJ<"J.Y 

5}. Hence 

1) - 5, -I)} 

But 10m2 
- m is the number of blocks in a of so we 

know 10rn2 'In 1 t/:. and thus we have a complete set of intersection 
llUlllbers. 

K lOm+1 

Here 
above) 

1, ... ,9,11}. Hence a similar fashion to the case of K lOm 

{ 
2 0,1, ... ,10m + rn 2, 10m2 + 



But 10m2 + m is the number of blocks in a V-decOIl1position of K lOm+11 so 
we know 10n2 + n 1 I(KlOn+1 ), and thus we have a complete set of 
intersection numbers. 

Now I(K1s ) {a, 1, ... , 21}. Hence 

::) I(K1S ) EB (m 1) * I(KlO) (6(m - (
m -1) 4 2 *I(K5 ,s) 

{a, 1, .. 110m2 + 9m, 10m2 + 9m + 

But 10m2 + 9m + 2 is the number of blocks in a V-C1e(:OIIlPOS1.tlcln of K lOm+5 , so 
we know 10m2 + 9m + I(I{lOm+5) , and so we have a complete set of 
intersection numbers. 

Here I(K16 ) {a, 1,.. , 24}. Hence 

I(K lOm+6) ::> I(K'6) (m - 1) d(K11 ) Ell (6(m - 1) + 4( m ; 1) ) d(Ks,5) 

{a, 1,. 10m? + 11m + 1, 10m2 + 11rn + 3}. 

But 10m,'-' + 11m + 3 the number of blocks in a V-decomposition of K lOm+6 , 

so we know 10m2 + 11m + 2 ~ I(KlOm+6 ), and so we have a complete set of 
intersection numbers for this case also. 

3 Conclusion 

It is known that a dragon design of order n exists if and only if n == 0,1 (mod 5) and 
n 10 (refer to [1, 5]). 

Here we have shown that the achievable intersection numbers for such a design 
are the complete set {O, 1, ... ,b - 2, b}, where b = (;) /5 the number of blocks in 
a design of order n, so n a or 1 (mod 5), n 10. 

That we have proved: 

Theorem There exist two dragon designs (V, Bd, (V, B2) of order IVI == 0,1 (mod 5)J 
IVI 10 'with IBI n B21 = k, for all k E {O, 1, ... ,b - 2, b} where b 'is the number of 
blocks in the design. 
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Table 1: Parameters for C1el~OrnpIJS11GlOI1S of and 

Table 2: Intersection numbers for KlO from permutations. 



Table Intersedion numbers for from trades. 

Table 4: for from 

ITI 
2 

7] 
0] ----

7] 
3 1] 8 

7] 
--------

(4,3,5,8 2) 

4 
[2,4,7,3-9] 

7 
[2, 1,3,6 - 0] 
[0,2,5,1-7] 
[5,8,7,-2 - 0] -

[5,3,7,1 9] 
5 7,3,2 8] [3,9,7,4 2] 6 

8,4,3 9] [1,3,2,8 4] 
1,8,7- 2] [0,1,2,6 3] 

[2,5, 1, 0- 6] [4,7,5,8 - 2] 
[3,6,2,1 7] [4,3,7,10 6] 

6 
[4,7,3,2 8] [3,9,5,1 7] 

5 
[5,8,4,3- 9] [2,4,5,6 9] 

[6,9,5,4- 10] [0,2,3,6 - 4] 
[7, 10, 6, 5 - 0] [0, 1,2,5 - 3] 

Table 5: Intersection numbers for J{11 from trades. 
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Table Intersection numbers for from perm.ut.atlon;s. 

2 

3 

4 
5 
6 
7 
8 
9 

Note that trade of size 

14 
13 
12 

Table 7: Intersection numbers for f{15 from trades. 
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(J" ID16 n (J"D16 1 

(00 40) 14 
(00 10) 13 
(00 
(00 30) 11 
(10 30) 10 

(00 10 20) 9 
(00 10 8 
(00 10 30) 7 

(00 40)(10 30) 6 
(00 10 20 30) 5 

(00 10 20 30 40) 4 
(00 10 20 01 02 12) 3 
(00 10 20 30 40 01) 2 

(00 10 30 01 02 12 42) 1 
(00 10 20 30 40 01 11) 0 

Table 8: Intersection numbers for J{16 from permutations. 
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[30,11,01,00 10-

[31,12, 01- 11-21] 
[32, 10,00,02-- 02 12] 

7 [40,21,11,10 12-11] 17 
[41,22, 11- 31- 12J 
[00,31,21,20 ,01-31] 

20 - 21] 

8 72 U 76 16 
9 72 U 77 15 

Note that denotes the listed trade 

Table 9: Intersection numbers for f{16 from trades. 
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