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In 1992 Denes and Keedwell proposed an authentication scheme in 
which a message is divided into blocks of length t and a set of signature 
characters is obtained by taking the product of the elements of each block. 
An analysis of the security of Denes and Keedwell's scheme will be pre­
sented in this paper. It will be shown that the method used to divide the 
message into the blocks impacts on the security of the scheme. Also it 
will be shown that under certain circumstances the t-ary product is not 
unique, and so there are classes of binary operations all of which produce 
the same signature or authentication tag. 

1 Introduction 

In 1992 Denes and Keedwell [2] used the theory of quasigroups to develop a new 
technique for authenticating a digital message. Let Q be a set of objects and define 

binary operation, *, on the set Q such that given any two elements a, b E Q the 
equations a * x band y * a = b each have exactly one solution. Then Q together 
with the binary operation * define a quasi group , denoted by (Q, *). A quasigroup 
may be thought of as a latin square bordered by a headline and a sideline. For 
more information on quasigroups see [1]. Essentially, Denes and Keedwell took the 
digits of a message and used the binary operation of a quasigroup to compute the 
product of the digits. This product formed the signature or authentication tag and 
was appended to the message. The signed message was sent and the receiver used 
the binary operation of the same quasigroup to verify that the authentication tag 
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corresponded to the message. So the authentication process can be classified as a 
cryptographic checksum. 

An analysis of the security of this method of authentication will be presented in 
this paper. 

In Section 2 it will be shown that if the product is obtained by simply multiplying 
consecutive digits of a message then it is possible for an eavesdropper to forge a 
signed message and under certain circumstances recover the entire quasi group and 
impersonate the sender. Therefore one should use the alternative method suggested 
by Denes and Keedwell to selecting the blocks. It will be mentioned that this method 
is secure against the attack presented in this paper. 

During the investigation of this scheme it became apparent that the structure of 
the quasi group also impacted on the security of the scheme. Computer simulation 
of an attack on the scheme verified that it was possible to identify several isotopic 
quasigroups all of which produce the same signature for messages of a given length. 
Two quasigroups (Q, *) and (P, EB) are said to be isotopic if there exists an ordered 
triple (0:, (3, ,) of one-to-one mappings 0:, f3, "'( of the set Q onto the set P such that 

o:(x) EB (3(y) = "'((x * y), for all x,y E Q. 

The ordered triple (0:, (3, ,) is said to be an isotopism. If the one-to-one mappings 
a, f3, , map the set Q onto itself and if 

a(x) * f3(y) "'((x * y) for all x,y E Q, 

then the ordered triple (a, f3, "'() is said to be an autotopism. For more details see [1]. 
In Section 3 the structure of isotopic quasigroups will be investigated. A class 

of quasigroups on a set Q will be identified and it will be shown that, for given 
values of t, the product of t elements using the binary operation of anyone of these 
quasigroups returns the same value. Finally, the impact of these general results on 
the authentication scheme proposed by Denes and Keedwell will be discussed. 

2 Possible attacks on the authentication scheme 

The method of authentication proposed by Denes and Keedwell is as follows. 
Let M be the set of all possible messages on m symbols over an alphabet 

Q {1, ... , q}. The sender X begins by choosing a quasigroup (Q, * ). When the 
sender wishes to authenticate a message M al a2 ... am he begins by dividing the 
message into blocks. Assume for now that there are s blocks each of length t, that 
is, m = st. Let 

be one such block and denote it by Bi,. A signature character bi IS obtained by 
calculating the product 
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This process is repeated for each block of the message. The characters 
bl, bz). ,bs form the signature or authentication tag. This authentication tag is 
concatenated to the message and 

is transmitted as a signed message to the receiver Y. The receiver Y also holds a copy 
of the quasigroup (Q, *) and uses it to authenticate the message. When Y receives a 
message al az ... am bl bz ... bs, the authentication tag is verified as being authentic 
if, for each i 1, ... ,s, 

If m is not a multiple of the block length t, then Denes and Keedwell modified the 
scheme as follows. Let m t( s - 1) + r. Then one may take s - 1 blocks of length t 
and the last block of length r or alternatively t r blocks of length t - 1 and s - t + r 
blocks of length t. 

Denes and Keedwell give two methods for generating the blocks. These are out­
lined below. 

Method 1. 

The block Bk contains the t consecutive symbols 

for k 0,. ,s - 1 of the message M. 

Method 2. 

Let L be the latin square corresponding to the quasigroup (Q, *) and assume for 
k 1, .. , q, entry k occurs in the cells (ikl ,jk1), ... , (ikq,jkq) of L. 

Further, assume that the message M is of length qZ. Then one selects q blocks 
B l, ... Bq as follows. For k 1, .. , q, the (ikr -1)q+ jkr-th, (1 ~ r ~ q), characters 
of the message M are placed in block B k • 

Denes and Keedwell only described this method for m qZ and t = q. However, 
it is possible to vary these parameters. If the block size t is less than q, the first 
t occurrences of the entry k are used to select the symbols of block Bk and if t is 
greater than q, then one works modulo q. If the message is of length less than qt, 
then one of the easiest techniques for handling this situation is to pad the message 
out by adding dummy symbols. This technique will be discussed in more detail later 
in the paper. 

Denes and Keedwell briefly discussed the security of their scheme and pointed 
out that each of the possible symbols of the alphabet is equally likely to occur as 
an authentication character. Denes and Keedwell also pointed out that the longer 
the signature (that is, the smaller the size of each block), the more certain one is 
of the authentication, but one must balance the size of the blocks against the cost 
of a longer signed message. However, there are other considerations. The following 
analysis shows that the method used to select the blocks affects the security of the 
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scheme. It will be demonstrated that under certain circumstances it is possible for 
an outsider to forge signed messages and in some cases impersonate the sender. 

The attack presented here will be based on the assumption that an eavesdropper 
can intercept a large number of signed messages. It will be assumed that the size 
of the alphabet Q and size of the quasigroup are known to the eavesdropper, and, 
for now, it will be assumed that they are the same. It will also be assumed that the 
block size is constant and is known. Using this information it is easy to take a signed 
message and use the division algorithm to calculate the number of blocks. Once 
this is obtained it is possible to identify those symbols which are message characters 
and those which are authentication characters. The actual method of attack will 
depend on the procedure used to select the blocks. Therefore Methods 1 and 2 will 
be analysed separately. 

Method 1. 

Assume that the sender uses Method 1 to select the blocks and that two blocks 
al a2 ... au au+l ... at and Cl C2 .. Cu au+! '" at have been intercepted. Further­
more, suppose that both of these blocks possess the same authentication character. 
Certainly, an eavesdropper can deduce that 

Now, whenever the product ( .. ((al * a2) * a3) * ... ) * au occurs in a message, it may 
be replaced by the product (,,((Cl * C2) * * ... ) * Cu., and vice versa. Therefore, it 

certainly for an eavesdropper to forge messages. 
Furthermore, if an eavesdropper intercepts two blocks which coincide in the last 

t 2 places and in the authentication character 1 then significant information about 
the quasigroup has been obtainedc Take the blocks and authentication character 
given below. 

( ... (( al * a2) * a3) * ... ) * at = b 

( ... (( CI * C2) * a3) * ... ) * at b 

From these blocks it may be deduced that 

or, more importantly, that the entries in the cells (aI, a2) and (CI l C2) of the multipli­
cation table for the quasigroup (Q, *) are the same. At this point the exact value of 
this entry is not known, only that the cells contain the same entry. For now this entry 
is identified with a new symbol, say a , from a set A and this information is stored 
in the corresponding cells of a pair table. The pair table is a q X q table bordered by 
Q, and an entry a E A is placed in the cells (aI, a2) and (Cl' C2) of the pair table if 
al * a2 CI * C2. If an eavesdropper can intercept enough information, then he may 
use equivalent pairs together with his knowledge that the table forms a quasigroup 
to recover all entries of the pair table. Note that the pair table gives a quasigroup 
(A,Ee) which is isotopic to (Q,*). 
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If the eavesdropper can identify the isotopism, then he may recover the quasigroup 
(Q, *). To do this the eavesdropper returns to the intercepted messages and identifies 
those blocks which coincide in the last t 3 places and authentication character. He 
now has sets of equivalent triples. The triples d1 , da) d3 and el, ea, e3 are said to be 
equivalent if it can be deduced that 

This information can also be recorded in a triple table. A triple table has q columns 
and as many rows as there are distinct entries in the pair table. The set Q borders 
the triple table with a headline, and the entries of the pair table border the triple 
table with a sideline. A new symbol, say /3, from an arbitrary set B is taken and 
placed in the cells (ad, d3) and (ae , of the triple table, if Old and a e are the entries 
in the cells (d1, da) and (el' ea), respectively, of the pair table. 

N ow by considering both the pair table and the triple table the isotopism can be 
identified. 

In view of this, the following is an attack which, given enough information, will 
reveal the entire key and allow the eavesdropper to impersonate the sender. 

ATTACK 

Step 1. Group the blocks into classes according to their authentication characters. 
From now on, disregard the authentication characters. At this stage there are blocks 
of size t in at most q classes. Blocks in the same class have the same authentication 
character. 

Step 2. Within each of these classes, group the blocks according to their k-th (k t 
initially) message characters. From now on, disregard this k-th character. There are 
now reduced blocks of size k - 1 in (initially, at most q2) classes. The reduced blocks 
in the same class have the same product. 

Step 3. At this point there may be a reduced block common to two of the classes. 
This indicates that the blocks of these two classes all have the same product. Con­
sequently, these classes are merged into a single class. This process is repeated until 
there are no reduced blocks occurring more than once. 

Step 4. Repeat Steps 2 and 3 for k = t 1, t 2, ... ,4. Note that at this point there 
are reduced blocks of size 3 sorted into classes and that any two blocks in the same 
class have the same product. Retain this information for later use. Then repeat Steps 
2 and 3 again for k = 3. At this point there are reduced blocks of size 2 grouped 
such that any two blocks in the same class have the same product. 

Step 5. Use the information obtained in Step 4 to construct a pair table and a triple 
table. 

Step 6. The fact that the key is a quasigroup on q symbols can now be used to 
complete the pair and triple tables. 

Step 7. Now, with both tables complete, select one of the elements of A. Try, one at a 
time, assigning the characters of the alphabet Q to this symbol. For each assignment, 
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compare the pair and triple tables to determine the correspondence between the 
elements of the sets A and B. Then determine the correspondence between the sets 
A and B and the characters of the alphabet Q. It is at this stage that contradictory 
statements may lead to the ruling out of certain assignments. For each assignment 
not giving rise to a contradiction a single quasigroup is produced. 

Step 8. In the event that a unique quasigroup has not been produced in Step 7, then 
the intercepted blocks and corresponding authentication can be used to check 
which quasigroup gives the correct authentication characters for these blocks. At this 
point it is possible that several quasigroups have been obtained by this procedure, 
and that these all produce the same authentication characters for the given block 
size irrespective of the block chosen. (This point is expanded on in Section 3.) 

This attack is illustrated with the following small ex,am.olc':!. 

Example 2.1 Assume that the quasigroup used in the signing transformation is of 
order 5 and that this is the size of the alphabet, Q. Also assume that the block size 
is four. 

An eavesdropper intercepts the message 

3 3 3 1 4 4 5 5 5 4 5 5 3 3 4 
1 5 2 2 4 5 3 2 3 4 5 2 4 2 2 
1 2 3 4 4 1 1 2 5 2 1 2 

and the corresponding authentication tag 

433 254 352 4 4. 

Using Method 1, eleven blocks with their corresponding authentication characters 
can be identified. These are 

((3*3)*3)*14 

((5 * 3) * 3) * 4 = 2 

((2 * 3) * 4) * 5 = 3 

((4*1)*1)*2=4 

((1*4)*4)*5 

((1*5)*2)*2 

((2 * 4) * 2) * 2 
((5*2)*1)*2 

From the above equations, it can be seen that 

3 * 3 = 4 * 5, 1 * 5 = 2 * 4, 

3 

5 

5 

4. 

4 * 1 = 5 * 2, 1 * 4 = 2 * 3 = 5 * 5, 

and the pair table 

* 
1 
2 
3 
4 
5 

1 

E 

2 
D 

E 

80 

3 

B 
A 

D 

4 

B 
C 

((5 * 5) * 4) * 5 = 3 

((4*5)*3)*1=4 

((1 * 2) * 3) * 4 = 2 

1 * 2 5 * 3, 

5 
c 

A 
B 



is produced. This completes to the pair table given below. 

* 1 2 3 4 5 
1 A D E B C 
2 D A B C E 
3 B C A E D 
4 E B C D A 
5 C E D A B 

Assume that another transmission is intercepted with enough information to equate 
the triples 

(3 * 3) * 2 (5*1)*3 (1*4)*1 (4*3)*2 (2 * 2) * 5 (3 * 5) * 4 

(1*4)*5 (4*1)*3 (4*5)*4 (3 * 2) * 5 (2*1)*3. 

This information can be used to recover the triple table 

* 1 2 3 4 5 
A d a b e c 
B b e c a d 
C c b a d e 
D a d e c b 
E c d b a 

which has the structure of the pair table but with rows permuted. If the information 
from the pair and triple tables is combined, then the quasi group used to compute the 
authentication characters can be recovered. This is done by assigning a particular 
value to A and then checking the feasibility of this assignment. For instance, suppose 
one takes A 5. Then by comparing the corresponding rows of the pair and triple 
tables, it may be deduced that d C, a E, b D, e = A and c B. Now trying 
to determine B, produces 

B * 1 = b = D = 2 * 1 :::} B 2, 

and 
B 1. 

Thus there is a contradiction and so A -/: 5. 
Continuing in this manner, it is found that A 1 is the only possibility and the 

quasi group 

* 
1 
2 
3 
4 
5 

1 
1 
2 
4 
3 
5 

2 
2 
1 
5 
4 
3 
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3 
3 
4 
1 
5 
2 

4 
4 
5 
3 
2 
1 

5 
5 
3 
2 
1 
4 



is thus recovered. 

In general, the recovery of ( Q, * ) is dependent on equating and this is depen-
dent on the amount of information an eavesdropper can intercept. Using computer 
simulation techniques, on a SPARC 10 model 30, which first generated B random 
blocks and their signature characters, it was possible to recover the quasigroup under 
the following circumstances. 

TABLE 2.1 
RECOVERY OF THE QUASIGROUP 

Order of Q Block size Number of Blocks CPU time 
10 6 1600 less than 2 sec 

7 5000 less than 15 sec 
8 14000 less than 4 min 
9 40000 less than 45 min 
10 130000 less than 13 hr 

15 4 1000 less than 1 sec 
5 2000 less than 2 sec 
6 6500 less than 25 sec 
7 22000 less than 8 min 
8 78000 less than 2.5 hr 

20 4 1200 less than 2 sec 
5 4400 less than 10 sec 
6 17000 less than 3 min 
7 65000 less than 1.5 hr 
8 280000 less than 36 hr 

For fixed order of Q, it can be seen that increasing the block size will increase the 
number of blocks usually required to recover the quasi group . The following lemma 
gives an upper bound on this increase. 

Lemma 2.1 If one can recover the quasigroup given B blocks of size t} then one may 
recover the quasigroup given qB blocks of size t + 1. 

Proof. This proof uses the methods described in the attack above. Suppose that 
B blocks of size t can recover the quasigroup and that qB blocks of size t + 1 have 
been intercepted. After carrying out Step 1 of the attack, take the largest class 
and disregard all other information. Now, if the attack proceeds as described, the 
execution of Steps 2 and 3 has the same effect as starting again with Step 1 and 
treating the class of blocks of size t + 1 as blocks of size t. This follows from the fact 
that in these steps the appropriate characters are used only for grouping purposes 
and their actual values are not significant. Treating the information in this manner, 
there are at least B blocks of size t and under the above assumption these may be 
used to reconstruct the quasigroup. 
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Remark. Lemma 2.1 gives an upper bound for the number of blocks needed to 
recover a quasigroup of order q when the block size is increased from t to t + 1. 
However, the empirical evidence given in Table 2.1 suggests that this bound can be 
improved by a factor of Vii, 

The results indicate that once the block size or the alphabet size increases these 
techniques will not be enough to recover the entire quasigroup. However, blocks 
will still coincide in a certain number of positions and under these circumstances an 
eavesdropper will still be able to forge messages. 

In addition, the following points should be noted . 

• Denes and Keedwell also suggested that the order of the quasigroup may be 
taken to be larger than the size of the alphabet from which the message symbols 
are chosen. This is certainly feasible and would make it harder to recover the 
entire quasigroup. However, it would still be possible to forge authentication 
tags under these circumstances . 

.. Thus far it has been assumed that the size of the message is divisible by the 
block size. If this is not the case, then Method 1 would yield a final block 
of length less than t. It would be unwise to simply take these elements to 
constitute a block. It is conceivable to have a block of length 2 which would 
immediately give an eavesdropper the exact value of one of the entries in the 
quasigroup. In this case the last block should be padded out with some dummy 
symbols. One way to do this is to take the quasi group to be of order greater 
than the size of the alphabet, A, and let z E Q \ A. Then if one has a block 

for some k, then the authentication tag may be calculated by computing the 
product 

( ... (( ( ... (al * a2) * ... ) * ak) * z) * ... ) * z b 

where t - k occurrences of the symbol z have been joined to the block. 

Method 2. 

If the latin square is used first to identify all symbols which belong to the same 
blocks, then the security of the scheme is greatly enhanced. The method of at­
tack suggested above relies on the fact that an eavesdropper can readily identify a 
block and its corresponding authentication character. From here an eavesdropper can 
equate blocks and begin to forge signed messages. If one uses the second method to 
select the blocks, then this information is not available to an eavesdropper. However, 
it is still theoretically possible to gain information about the quasigroup and hence 
forge messages. 

To present a theoretical attack on this method the following result is proved. 
Assume that the message is of length q2 and the block size is taken to be q. 

Lemma 2.2 Let (Q, *) be a quasigroup and let Ma = al a2 ... aq2 bal ... baq and 
Me = Cl C2 ••• Cq2 bel ... beq, where ai, Ci, bj E QJ be signed messages. Assume that 
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the authentication tags have been calculated according to Method 2. If Mil. and Me 
are such that they coincide in q2 - 2 or q2 3 message symbols and at least q - 1 
authentication characters) then the message symbols which differ must belong to the 
same block. 

Proof. Since (Q, *) is a quasigroup for each x, y E Q there exists a unique z E Q 
such that x * z y. It now follows that if two blocks of length q coincide in q 1 
message symbols and the corresponding authentication character, then they must in 
fact be in the same block. The result now follows. 

Corollary 2.1 If Mil. and Me are such that they differ in at most 3 message sym­
bols and only one authentication character bi ) then the entries in the table of the 
quasigroup (Q, *) corresponding to these message characters must be i. 

The proof of this corollary follows directly from the description of Method 2. 
The attack presented below assumes that a large number of messages have been 

intercepted. Also it is not necessary to assume that the message size is q2 or the 
block size is q. In these cases one selects the blocks the techniques mentioned 
earlier. However, for ease of exposition it will be assumed that the message size is q2 
and the block size is q. 

ATTACK 

Step 1. 
Intercept two messages which coincide in q2 - 3 or more message symbols and all 

but one authentication character. Denote a pair of differing message symbols by au 

and CU1 and denote the differing authentication character by bai and 

Step 2. 
Calculate v and w such that u = vq + w. Take an q by q array and label the 

headline and sideline 1, .. ,q. Then place i in cell (v, w) of this array. 

Step 3. 
Check to see if the array can be completed uniquely to a quasigroup. If so stop 

as the key has been recovered, otherwise repeat Steps 1 and 2 until the partial array 
does complete uniquely. This array is the key. 

The probability of recovering a message which corresponds to a given message in 
q2 _ 3 or more places is less than 

Therefore, one can see that the probability of recovering the entire quasigroup or even 
forging a message is very small. Hence this method seems to offer a secure method 
of authentication. 
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3 Quasigroups and autotopisms 

As mentioned earlier for certain quasigroups (Q, *) it is possible to find a quasigroup 
( Q , such that for some t 

for all Xi E Q, 1 :::; i :::; t. That is it is possible to find a class of quasigroups all of 
which will produce the same authentication characters for a given block size. It is 
the concurrence of authentication tags for several different quasigroups which is the 
subject of this section. The theory behind these ideas is now discussed. 

In what follows ~ denotes the identity permutation. 

Theorem 3.1 Let (Q J *) be a quasigroup for which there exists an autoiopism 
((7, 'l., o-k)} where k 1. Denote the order of 0- by d. If d I (kT - I + + .. + k + 1), 
for some T I} then there exist at least d -1 quasigroups of the form (Q, distinct 
from (Q, *) such that for any t == 1 (mod T) and for any XiI, .. , Xit E Q 

( .. ((XiI * Xi2) * Xi3) * ... ) * Xit (,,((Xil Xi2) Xi3) ... ) Xit· 

Proof. 
Assume there exists a quasigroup (Q I * ) for which (0-, 'l., o-k) is an autotopism. Then 

by definition 0-( x) *y (7k( x *y) for all x, y E Q. Notice that if o-m( x) *y o-Tnk( X *y), 
then o-m+!( x) * y = o-k( o-m( x) * y) o-k( (7mk( X * y)) o-(m+!)k( X * y). So by induction, 
o-m(x)*y o-mk(x*y),forallm L 

Define a binary operation ED as follows, for all x, y E Q, x y = o-(x * y). Then 
( Q , is an isotope of (Q, * ). 

Consider the equation 

(1) 

where Xl, ••• , Xt E Q. By definition Equation (1) holds for t 2. Assume that 
Equation (1) is true when t r and consider r r + L Then 

So by induction, Equation (1) is true for all t 2. 
If t l(mod T), then the exponent in Equation (1) can be simplified as follows: 

k t
-

2 +. . + k + 1 = krT- 1 + ... + k + 1, for some r ;:::: 1 

(k(r-l)T + .. + kT + 1)(kT- 1 + ... + k + 1). 

By assumption, d I (kT- 1 + ... + k + 1), so d I (k t
-

2 + ... + k + 1). Therefore, one may 
deduce that 
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Now let T (Im, for some m. Then for all x,y E Q 

and so (T,2JTk) is also an autotopism on (Q,*). Now define (Q, by 

x EBm y T (x * y), 

and let m range over the values 1,. ., d 1. Then it is easy to see that there exists 
d - 1 quasigroups (Q, EBm) distinct from (Q, *) such that 

( .. (Xl EBm xz) EBm ... ) EBm Xt = ( .. (Xl * xz) * ... ) * Xt, 

for all x, y E Q and any t l(mod T). 
o 

One can explore this theorem by taking the following example. Let (Q, *) be the 
quasi group below. Let (I be the permutation (1324). Take the autotopism 
((I, z, (I), where k 1 and choose T = 4. Let (Q, be the quasigroup (also listed 
below) such that X EB y (I(x * y) for all X,y E Q. 

* 
1 
2 
3 
4 

1 
1 
2 
3 
4 

2 
2 
1 
4 
3 

3 
3 
4 
2 
1 

4 
4 
3 
1 
2 

Using these quasigroups it can be seen, for example, that the product of the five 
elements listed below are equal. 

2 (((4 EB 3) EB 2) EB 3) EB 4 

If (Q, *) is a group, then it is easy to find a (I which satisfies the conditions of 
Theorem 3.1. In fact if (Q, *) is a loop with a left associative element 9 of order d, 
then one simplies takes (I( x) = 9 * x, k = 1 and T d. 

In addition it can be shown that if one takes a quasigroup (Q, *) satisfies the given 
properties then so does any quasigroup which is a direct product of (Q, *) with any 
other quasigroup. 

These examples lead to a discussion of the structure of the permutation (I and the 
quasigroup (Q, *). 

Lemma 3.3 Let (Q, *) be a quasigroup for which there exists an autotopism ((I, 2, (Ik) 
where k 2: 1 and (I is a permutation of order d for some d. Then (I can be expressed 
as the composition of disjoint cycles of order d. 

Proof. 
Consider (I as the composition of disjoint cycles. Take two disjoint cycles (I A and 

(IE of (I. Define A = {x E QI(IA(X) -I- x} and B = {x E QlaB(x) -I- x}. 
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Let x E A and y E B, and choose w to be the element of Q such that x * w y. 
Then for any x' E x' = a'ffl(x), for some m. SO x' *w = a'ffl(x) *w a'fflk(x *w) 
affik(y) E B. Thus Aw ~ B, so IAI = IAwl :s; IBI· Similarly, IBI :::; IAI. Hence 
IAI IBI. 0 

It is immediate that if d is the order of the permutation a, then d I q, where q = I Q I. 
If the square matrix A is a latin square, then a latin subsquare of order n of A is 

an n X n square submatrix of A which is itself a latin square. 

Lemma 3.4 Let (Q, *) be a quasigroup for which there exists an autotopism (a,?', a k) 
where k ~ 1 and a is a permutation of order d. Then the latin square corresponding 
to the multiplication table of (Q, *) can be partitioned into latin subsquares of order 
d. 

Proof. From Lemma 3.3 it can be shown that a a1a2 ... as where the order of ai 
is d, for 1 :::; i s. Define Ei {x I ai(x) =1= x} so IEil = d and the Ei partition Q. 

Also define "Yij {y I x * Y E Ej for some x E Ei } and = {x * y I x E Ei ,y E 
"Yij}. Then clearly ~ Ei"Yij. 

Suppose z E Then z = x * y for some x E Ei and y E "Yij. Now, by definition 
of the "Yij) there is an x' E such that x' * y E E j . Also, for some m, x a'ffl(x'). 
Thus 

z x * y = a'ffl(x') * y a'fflk(x' * y) E Ej . 

Hence Ei"Yij ~ and it follows that Ei"Yij :E j . 

Furthermore, since for any fixed x E :Ei there are d distinct values of y such that 
x * y E :Ej) we must have l"Yij! 2:: d. Thus d :::; l"Yijl :::; !:Ei"Yijl l:Ejl = d and hence 
l"Yij! d. 0 

In the next theorem it will be shown that for a given set Q it is always possible 
to construct a quasigroup (Q, *) which has the desired property. 

Theorem 3.2 For any q, k, T and d such that k 2:: 1, T > 1) d! q and 
d I (kT - 1 + ... + k + 1) I there exists a quasigroup (Q, *) of order q for which there 
is an autotopism (a,?', a k) satisfying the conditions of Theorem 3.1 with the given k 
andT. 

Proof. 
The proof is by construction. 
Let Q = {O, ... , q-1}, and let a be a permutation on Q which consists of s disjoint 

cycles ak of order d, for k = 1, ... ,so For k = 1, .. ,s, let Ek = {x! ak(x) =1= x}. 
Select subsets "Yij of Q of size d in such a way that the sets in any particular row 

or column of the array 
Yi1 Yi2 Yis 
Y21 Y22 Y2s 
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form a partition of Q. The rows of this array are used to construct s rows of the 
quasigroup table of (Q, * ). For i1, ... , s, choose Xi E :Ei and then, for each 
j 1, ... , s and for each y E Yij, define Xi * Y such that {Xi * y lyE Yij} = E j . The 
s rows Xl, ... ,Xs have thus been constructed. Using the information in these s rows 
and the fact that (a, 2, ale) is to be an autotopism of (Q, * ), the remaining rows of the 
quasigroup can be determined. 

Consider determining x' * y. Certainly, x' E :Ei for some i and so x' ai(xi) for 
some known value of m depending on the cycle decomposition of a. Now to determine 
x' * y one proceeds as follows x' * y ai( Xi) * Y = amle( Xi * y) amle(z). 0 

U sing the theory developed in this section, one can show that for an arbitrary 
block of given size it is possible to identify a class of quasigroups anyone of which 
may be used to construct a unique signature character. Consequently this class of 
quasigroups forms a set of equivalent keys, and this reduces the security of the key. 

4 Conclusion 

If one considers the original authentication technique suggested by Denes and Keed­
well and the analysis presented in this paper one can make the following conclusions. 

When the message is divided into blocks, Method 1 should not be used as it is 
certainly possible for an eavesdropper to obtain information which will allow him 
to forge messages and given enough information recover the entire quasigroup. If 
Method 2 is used then the scheme appears to be secure from the types of attacks pre­
sented in this paper. However, one should choose the parameters used in the scheme 
with care as certain sets of parameters can lead to equivalent classes of quasi groups 
all of which produce the same authentication tags. 

The authors also wish to mention that they have been told that Denes and Keed­
well have made some changes t~ the scheme. However, the scheme has a patent 
pending so it has not been possible to obtain these modifications and analyse them. 
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