
DECOMPOSITIONS OF COMPLETE MULTIPARTITE GRAPHS 

INTO SELFCOMPLEMENTARY 

FACTORS WITH FINITE DIAMETERS 

DALIBOR FRONCJEK* 

McMaster University 

ABSTRACT. For r 4 we determine the smallest number of vertices, 
.<71-( d), of complete that are decomposable into two iso-
morphic factors for a given finite diameter d. We also prove that for a 

,d such graph exists for each order than gr( d). 

1. INTRODUCTORY NOTES AND DEFINITIONS 

In this paper we study decompositions of finite complete multipartite graphs 
factors with prescribed diameter. A factor F of a graph 

is a subgraph of G having the same vertex set V. A decomposition of 
into two factors Fl (V, Ed and F2 (V, is a pair of factors such 
o and El U E2 E. A decomposition of G is called isomorphic if 

. An isomorphism <p . Fl F2 is then called a complementing permutation 
and the factors Fl and F2 the selfcomplementary factors with respect to G or simply 
the selfcomplementary factors. The diameter diam G of connected graph G is the 
maximum of the of distances y) among all of vertiees of G. If 
G then diam G 00. The order of a G is the number of 
vertices of G while the size of G is the number of its For terms not defined 

[1]. 
and A. Rosa [7] and later P. Tomasta [9], D. Palumbfny [8], and 

studied decompositions of complete graphs into iso­
diameter. E. Tomova [10] studied decompositions of 

into two factors with given diameters and determined all 
of diameters of sueh factors. T. Gangopadhyay [5] studied decompo-

sitiom; of (1" ~ 3) into two factors with given diameters 
and determined also all possible pairs of diameters of such factors. 
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In this article we join both concepts. We study decompositions of complete 
T-partite graphs, for r' ;:::: 5 into two isomorphic factors with a given diameter (for 
T 2,3,4 see [3],[4]). We always assume that the number of vertices of an r-partite 
graph is at least T + 1, i.e. the graph is not a complete J{,. 

T. Gangopadhyay [5] proved that a complete r-partite graph for r ;:::: 3 de­
composable into two factors with the same finite diameter d exists if and only if 
d 2,3,4 or 5. He also determined the smallest orders of such decomposable 
graphs. 

A complete T-partite graph is d-decomposable if it is decomposable into two 
fadors with the same finite diameter d. If we in addition require the factors to be 
mutually isomorphic, we say that the graph is d-isodecomposable. We also often say 
that a graph G is isodecomposable if it is d-isodecomposable for a finite diameter d 
which we do not determine specifically. 

We show that there are d-isodecomposable 
of the above mentioned diameters for any r 
slnallest decomposable graphs. 

2. PRELIMINARY THEOREMS 

T'-partite graphs for each 
5. In all cases we also present 

We denote a complete r-partite graph with r partite sets having ml, m2, ... , m, 
vertices, respectively, ]{mI,m2, .. ,m r • Or, if there are more hav-
ing the same cardinality, we denote the complete graph having 
of cardinality ni for i 1,2, ... ,s by J( hI In this case we always suppose 

n I 

that kl + k2 + ... + ks T and ni i= nj for i= j. 
Let f,( d) denote the smallest number of vertices of a complete r-partite d-

decomposable graph. If such a number does not then we define f,(d) 00. 

It is obvious that any d-isodecomposable complete T-partite graph J(mI ,m2, ... ,mr 

must have an even number of edges and hence the number of parts having odd car­
dinalities must be 0 or 1 (mod 4). A graph with this property as well as the 
corresponding T-tuple ml, m2, ... ,m, is called admissible. 

We can similarly introduce g,( d) as the smallest number of vertices of a com­
plete d-isodecomposable T-partite graph. We also define g~ (d) as the smallest in­
teger with the property that for any n ;:::: g~( d) there is a complete r-partite d­
isodecomposable graph with n vertices. Finally, we define h,( d) as the smallest 
integer such that any admissible complete T-partite graph with at least h,( d) ver­
tiees is d-isodecomposable. If such numbers do not exist, we again put g,(d) = 00, 

g;.( d) 00 or h,( d) = 00, respectively. It is obvious that 

f,(d) ~ g,(d) ~ g~(d) ~ h,(d). 

The first and last inequality can be in some cases sharp. For instance, Gan­
gopadhyay [5] proved that f,(2) = r + 1, but we show that g,(2) = T + 1 only 
if T == 1 or 2(mod4) while g,(2) = r + 2 for r == O(mod4) and g,(2) = r + 3 for 
T == 3(mod4). The last inequality can be sharp as well: for r == O(mod4) it holds 
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that gr(5) = g~(5) = r 5, but hr(5) 00. It is an immediate consequence of the 
following result. 

First we need some definitions. Let N {I, 2, ... ,n}. Two sequences B 
b1 , b2 , .• , bn and C Cl, C2, .•. ,Cn are isomorphic if there exists a one-to-one 
mapping 7./J : N --+ N such that bi C'I/J(i). The degree sequence of a graph G with a 
vertex set 'VI, V2, ... ,Vn is the sequence A aI, a2, ... ,an where ai deg Vi. The 
sequence is isodecomposable if there exist isomorphic sequences B b1 , b2 , ... , bn 

and C Cl, C2, .. ,Cn such that ai bi + Ci for each i EN. Obviously, a graph G 
is isodecornposable only if the degree sequence of G is isodecomposable. Moreover, 
G is isodecomposable into two factors with a finite diameter only if the 
sequence of G is isodecomposable into two sequences with all positive entries. 

Theorem 1. Let I, m, r, r =I- s be odd numbers. Tben tbe graph Krl8m is not 
d-isodecomposable for any d. 

Proof. The degree sequence of 8m is p, p,. ., p, q, q, ... ,q where both numbers 
p (l - l)r + ms and q lr + 1)8 are odd and both appear in the sequence 
an odd number of times, namely p appears lr t times and q appears m8 n t 
times. Suppose, to the contrary, that Krl is isodecomposable. We may assume 
without loss of generality that p < q. Let A = aI, a2, ... ,an and B b1, b2 , ... ,bn 

be isomorphic sequences such that ai + bi P for i = 1,2, ... , t and ai + bi = q for 
i = t + 1, t + 2, ... , n. Let a(i) ((3(i)) for i = 0,1, ... ,p be the number of terms of 
aI, a2,.· . ,at ,bz , ... , bt) which are equal to i and a'(j) ({3'(j)) for i 0,1, .. ,q 
be the number of terms of aHl, aH2, . .. ,an (bH1 , bH2 , . .. ,bn) which are equal 
to j. Obviously, a(i) (3(p i) and a'(i) (3'(q - i). 

Because t is odd, there must be i such that a( i) > (3 (i). Let io be the 
smallest number i such that a( i) > (3( i) . Denote k = a( i) - (3( i). As the sequences 
A and B are isomorphic, io must appear in bH 1, bt+2 , .•• ,bn k- times more than in 
aHl,aHZ, .. ,an) i.e., (3'(io) - a'(io) = k. Then a'(q io) - (3'(q - io) = k, i.e., 
q - io appears more often in aH 1, aH2, .. ,an than in bt + 1, ... , bn . Hence 
q - io must appear in b1, b2, ... , bt k more times than in aI, az, ... , at, which yields 
(3(q - io) a(q io) = k. This is equivalent to a(io + p - q) (3(io + p - q) k. 
Because k 0, we have a(io + p - q) (3(io + p - q). From the minimality of io 
it follows that io p - q 2:: i o, which contradicts our assumption that p < q and 
therefore ]{r1 is not isodecomposable. 0 

Corollary 2. hr(d) 00 for every r 0(mod4) and any d. 

Proof. Given any r ° (mod 4) and any order n, we can construct an infinite 
class of graphs ]{2n+l,(4n+l)"-1 with order greater than n. Since r - 1 is an odd 
number, the ]{Zn+l,(4n+l)r-l is not d-isodecomposable by Theorem 1 and 
hence hr ( d) = 00 for any d. 0 

On the other hand, we prove later that gr(d) = g~(d) for each r 2:: 5 and each 
possible finite d. This equality was proven to be true also for r 2,3,4 and all 
finite diameters in [3],[4]. 
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Figure 1 

3. CONSTRUCTIONS 

In this section we construct d-isodecomposable complete I-partite graphs of 
the smallest orders for every T' ;::: 5 and every possible finite diameter d. 

Construction 3. (aJ Case T' == O(mod4). For T' = 8 we take the graph shown 
in Figure l.a. To get a selfcomplementary factor of I{2,2,2,1, ... ,1 with parts W = 
{wo},U1 = {Ull,U12},U2 = {U2I,U22},U3 = {U31,U32}, Vi = {vi},i = 1,2,3,4, we 
add all edges U21X and U31X for x E {WO,VI,V2,V3,V4} whenever the edge UllX ex­
ists and all edges U22X and U32X whenever the edge U12X exists. The complement-
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ing permutation cP is determined by the (Wo), (UllUI2), (U21 U22),(U31 U32), 

(VIV3V4V2)' For any r = 4k + 8,k ~ 1, we add parts Vs , V6, ... , V 4k+4, where 
Vj {Vj}. Then for every quadruple V4i+l, V4i+Z, V4i+3, V4i+4 we add the edges 
of the path P4 (V4i+I,V4i+Z,V4i+3, V4i+l V4i+2,V4i+2 V4i+3,V4i+3 V4i+4, 

and join the end-vertices V4i+l and V4i+4 of P 4 to all "preceding" vertices, i.e., to 
the vertices UII, U12, U21, U22, U31, U3Z, Wo, VI, V2, ... , V4i. The new of cP are 
then (V4i+l for i 1,2, ... , k. 

(b) Case r 1(mod4). For r = 5 we take the selfcomplementary factor 
shown in l.b. The parts of J{Z,l,l,l,l are W {w, wo}, VI = {vt}, V 2 

{V3}, V 4 {V4}, the complementing permutation cP is determined by 
( Wo ), ( W ), ( VI For any r' 4k + 5, k ~ 1, we add again vertices 

'V5, 'V6, ... ,V4k+4 (or, more precisely, parts Vj {'V j}) and for every quadruple 
V4i+l,'V4i+2,V4i+3,V4i+4 we add the of the path P 4 (V4i+l,V4i+2,V4i+3, 

V4i+l V4i+2, V4i+2 V4i+3, V4i+3V4i+4, and join the end-vertices V4i+l and 
to all "preceding" vertices, to the vertices Wo, w, VI, V2, . .. ,V4i. The 
of cP are now (V4i+lV4i+3V4i+4V4i+2) for i 2, ... , k. 

(c) Case 7' For r 6 we take the selfcomplementary factor 
shown in l.e. The complementing permutation ¢ is determined by the 

(WO),(UIU2),(VI For any r 4k + 6,k 1, we add again vertices 
.. , V4k+4 and all the as in the case (b). The new eycles 

for i = 2, .. , k. 
3(mod4). For r 7 we take the selfcomplementary factor 

shown in l.d. The ¢ is determined by the 
(wo), (Ull UI2), (U21 U22), (VI For any r 4k + 7, k 1, we again adcl 

edges and permutation as in the previous cases. 0 

We continue with smallest 3-isodecomposable graphs for each r ~ 5. The 
construction is in all cases very similar to the previous one. We again take first the 
T-partite factors for r = 5,6,7,8 and extend them by adding paths P4 , but we join 
to the "preceding" vertices the inner vertices of P4 rather than the end-vertices. 

Construction 4. (aJ Case r == O(mod4). For r 8 we take the graph shown 
in Figure 2.a. To get a selfcomplementary factor of J{2,2,2,1, ... ,1 with parts W = 
{'wo},U1 {Ull,U12},U2 = {U21,Un},U3 {U31,U32},1/i = {vi},i = 1,2,3,4, we 
add all U21X and U3IX for x E {WO,Vl,V2,V3,V4} whenever the edge UllX 

exists and all edges U22X and U32X whenever the edge U12X exists. The com­
plementing permutation ¢ is determined by the cycles (wo), (un U12), (U2I U22), 

(U31U32),(VIV3V4V2). For any r = 4k+8,k 1, we add parts Vs = {vs},V6 = 
{V6}, ... , V 4k+4 = {V4k+4}. Then for every quadruple V4i+l, V4i+2, V4i+3, V4i+4 we 
add the edges of the path P 4 = (V4i+l,V4i+2,V4i+3,V4i+4), namely V4i+lV4i+2, 

V4i+2 V4i+3, V4i+3V4i+4, and join the inner vertices V4i+2 and V4i+3 of P 4 to all 
"preceding" vertices, i.e., to the vertices Ull,U12,U21,U22,U31,Un,Wo,Vl,V2, ... , 

V4i. The new cycles of cP are then (V4i+lV4i+3V4i+4V4i+2) for i = 1,2, ... , k. The 
vertices at distance 3 apart are always U31 and Un. 

(b) Case r == 1(mod4). For r = 5 we take the selfcomplementary factor 
shown in Figure 2.b. The parts of J{2,1,I,I,I are W {w, wo}, VI = {vt}, V 2 = 

65 



Wo 

V1 

111 

Wo iI2 

iI2 

W t13 

V3 

V, 

V, 

(a) r == O(mod 4) (b) r == l(mod 4) 

Wo V3 

til 114 

U11 

iI2 Wo 

Un 

113 III 

114 112 

(c) r == 2(mod 4) (d) r == 3(mod 4) 

Figure 2 

{-vd, {va}, V4 {V4}, the complementing permutation 1Y is determined by 
the cycles (wo), (w ), (VI V3V4 V2)' For any r = 4k + 5, k 2:: 1, we add again vertices 
Vs, V6, ... ,V4k+4 (i.e., parts Vj = {Vj}) and for every quadruple V4i+l, V4i+2, V4i+3, 

V4i+4 we add again the edges of P4 = (V4i+I, V4i+2, V4i+a, V4i+4), i.e., V4i+lV4i+2, 

V4i+2 V4i+3, V4i+3V4i+4, and join the inner vertices V4i+2 and V4i+3 of P 4 to all "pre­
ceding" vertices, i.e., to the vertices Wo, W, VI, V2, . .. ,V4i. The new cycles of 1Y are 
now again (V4i+l V4i+3V4i+4V4i+2) for i = 1,2, ... , k. The vertices having mutual 
distance 3 are V k+ I and V4k+4. 

(c) Case 7' == 2(mod4). For r = 6 we take the selfcomplementary factor 
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shown in Figure 2.c. The complementing permutation ¢ is determined by the 
(wo), (Ul U2), For any I = 4k + 6, k ~ 1, we add again vertices 

(parts) V5, VB, ... ,V4k+4 and all the as in the case (b). The new cycles of <P 

are again (V4i+lV4i+3V4i+4V4i+2) for i 1,2, ... ,k. The vertices Ull and U12 are 
always at distance 3. 

(d) Case I 3(mod 4). For r 7 we take the selfcomplementary factor 
shown in Figure 2.d. The complementing permutation ¢ is determined by the 

(wo), (un (U21 U22), (VI V3V4V2). For any I 4k + 7, k ~ 1, we again add 
the and permutation as in the previous cases. 0 

In constructions of factors with diameters 4 and 5 we use a different approach. 
To increase the number of parts, we "blow up" the path P4 induced by vertices 
'.".,L\J~LM~HM to different trivial parts. 

First we construct smallest selfcomplementary factors with diameter 4 of the 
complete I-partite graphs for each I 5. 

Construction 5. Case r 0(mod4). We start with decomposition of the 
graph with the parts W {wo}, U1 {Ull,U12}, 

{U21,U2d, Vi {vd,i 1,2,3,4. The selfcomplementary fac-
tor is shown in Figure 3.a. The complementing permutation <p determined 
by the (WO),(UllU12),(U2IU22),(U31 (VIV3V4V2) The vertices having 
distance 4 are Ull and U31 For any I 4k + 8, k 1, we add parts Vj 
{vJ},i 5,6, .. ,4k + 4. Now we "blow up" the path P4 (0) = (Vl,V2,V31 

We add the of the V4i+l V4i+2, V4i+2V4i+3, V4i+3V4i+4 for 
= 1, ... ,k, all edges V4i+l V41+2, V4i+2V4l+3, V4i+3V41+4 and all V4i+ZV41+2 

and V4i+3V41+3 for all i, l E {O, 1, ... , k}, i #- l. We also add the edges V4i+rX 

for all i 1,2, ... ,k and I 1,2,3,4 whenever the edge VrX exists. Here x is any 
vertex of WUU1 UU2 U In other we take the path P4 (0) (VI, V2, 1)3, V4), 

put thf: vertices V4i+1', 0, ... ,k; r 1,2,3,4 "into" the vertex Vr and substi-
tute the original edge V 1' V r +1 for all possible edges V4i+1'V41+r+l. The vertices V4i+2 

and V4i+3, i 0,1, ... , k induce complete graphs f{k+l, while the vertices V4i+l and 
V4i+l, 0, ... , k remain mutually non-adjacent. Finally, every vertex V4i+r has 
the same neighbours in W U UI U U2 U U3 as the vertex V r . One can check that Ull 

and U31 are at distance The new of <p are now (V4i+lV4i+3V4i+4V4i+2) for 
1,2, ... ,k. 
(b) Case I == 1(mod4). We first decompose the graph f{4,1,1,1,1 with parts 

U fUll U3,U4},V1 {Vl},V2 {V2},V3 {V3},V4 = {V4} into factors 
isomorphic to the one shown in 3.b. (The indicated vertex Wj appears later 
in the construction of of orders.) The complementing permutation 
is determined by the cycles (U1U3U4U2) and (VIV3V4V2). For any I 4k+5,k 1, 
we add the parts V5 = {V5}, VB {vd, ... , V 4 k+4 = {V4k+4} and "blow up" the 
path P4 (0) (VI, V2, V3, V4) exactly in part (a). The new cycles of <p are again 
(V4i+l for i 1,2,.. ,k. The vertices having mutual distance 4 
are UI ancl1l4. 

(c) Case I == 2(mod4). We start with the graph ]{4,1,1,1,1 with parts W = 
{wo}, U = {Ul' U2, U3, U4}, VI = {VI}, V 2 = {V2}, V3 = {V3}' V 4 = {V4} and decom-
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pose it into factors isomorphic to the factor shown in Figure 3.c. The complement­
ing permutation ¢ is determined by the cycles (wo), (UI U3 U4 uz) and (VI V3 V4 vz). 
For any r 4k + 6, k ~ 1, we again "blow up" the path P4(O) = (VI, V2, V3, V4) 
exactly as in part (a), adding the parts V5 = {V5}, V6 {V6}, ... , V4k+4 = {V4k+4} 
and the corresponding edges. The new cycles of ¢ are again (V4i+1 V4i+3V4i+4V4i+2) 
for i = 1,2, ... , k. The vertices at distance 4 apart are Ul and U4. 

(d) Case r == 3(mod4). For r = 7 we decompose the graph K 2,2,1,1,1,1,1 with 
parts W = {wo},U1 = {Ull,U12},U2 = {U21,U22}, VI = {vJ}, V2 {V2}, V3 = 
{ vd, V4 = {V4} into factors isomorphic to the graph in Figure 3.d. The comple-
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menting permutation <p is determined by the cycles (wa), (U11 U22), (U12UzI) and 
(VI V3 V4 vz). We increase the number of parts for any I = 4k + 3 as in the previous 
cases. The vertices having mutual distance 4 are U21 and U2Z. 0 

Finally, we construct factors of smallest 5-isodecomposable complete I-partite 
graphs for each I 5. 

Construction 6. In this construction we present only the factors of smallest 5-
isodecomposable complete I-partite graphs with I 5,6,7,8 and 9 parts. The 
factors of smallest graphs for any I ~ 10 can be obtained as in Construction 

"blowing up" the path P4(0) (VI, Vz, V3, V4)' 
(a) Case I O(mod The 8-partite graph K 4 ,z,Z,I, ... ,1 with the W = 

{wa},U1 = {Ull,UlZ,UI3, Uz = {UZ1,UZZ}, {U31, Vi {vd,i 
1,2,3,4, is 5-isodecomposable into the selfcomplementary factors shown in Figure 
4.a. The complementing permutation <p is determined by the cycles (wa), (U11U1Z), 

(U1.1U14), U22), un), (VI V3V4V2). The vertices mutual distance 4 are 
Ull and U14· 

(b) 1(mod4). The 5-partite graph K 4 ,2,2,2,1 with the W 
{wo},U1 U12,U13, U2 {U21, {U31, ,U4Z} 

is into the selfcomplementary factors isomorphic to the sub-
graph of the graph shown in Figure 3.b induced by the above mentioned parts. 
The complementing permutation <p is determined by the cycles (WO),(UllUIZ), 
(U1:3UI4),(U21U22),(U31U32),(U41U4Z). The vertices at mutual distance 5 are 11,11 

and U14. 

To obtain the selfcomplementary factor of the conlplete graph 
, we have to add to the graph in Figure 4. b the parts VI { VI}, Vz 

V4 = {V4} and ViU jt for each iI, 2,3,4 whenever the edge 
WOUjl exists. The permutation <p contains now one more cycle, 

(c) Case I == 2(mod 4). The factor of the 6-partite graph K 4 ,2,1,1,1,1 with the 
W = {w,wo},U = {U1,U2,U3,U4}, VI = {vd, Vz = {Vz}, {V3}, V4 

{V4} is shown in Figure 4.c. The of <p are (w), (wa), (UI U3U4U2), (VI V3V4V2) 
and the vertices at distance 5 are 1.1,1 and U4. 

(ei) Case I 3(mod4). The 7-partite graph K 4 ,z,I, ... ,1 with the parts W 
{wo},U1 = {U11,UIZ,U13,U14},UZ {U21, U2Z},V1 {V1},VZ {vz}, = {V3}, 
V4 {V4} 5-isodecomposable into the factors isomorphic to that in Figure 4.d. 
The of <p are (wa), (U11 (U13U14), (VI V3V4VZ) and the vertices at 
distance 5 1.1,11 and U14. 0 

4. SMALL GRAPHS: NEGATIVE RESULTS 

vVe start with Gangopadhyay's result [5] on decomposability into factors (not 
necessarily isomorphic) with the same finite diameter. 

Theorem 7. (Gangopadhyay) Let a complete I-partite graph K m1 ,m2, ... ,m r with 
more than 4 parts be d-decomposable for a finite diameter d. Then d = 2,3,4 or 5 
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and 

(aj ml + m2 + ... + mr 2:: 7' + 1 if d = 2; 
(b j ml + m2 + ... + mr 2:: r + 1 if d = 3; 
(c j ml + m2 + ... + mr 2:: 7' + 2 if d = 4; 
(dj ml + m2 + ... + mr 2:: 7' + 4 if d = 5. 

Our main goal is to prove the following. 

Theorem 8. Let r 2:: 5. Then 
gr(2) = gr(3) = gr( 4) = 7' + 3, gr(5) = r + 5 if r == O(mod 4), 
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gr(2) gr(3) r' + 1, gr(4) / + 3, gr(5) / + 6 if/ 1(mod4), 
gr(3) = / + 1, gr( 4) = / + 2, gr(5) / + 4 if / 2(mod 4), and 
gr(3) / + 2, gr(5) = / + 4 if/ 3(mod4). 

From Theorem 7 it follows that for every / 4, r' 2(mod 4) and each d 
2,3,4,5, every r l(mod4) and d 2,3, and every / 3(mod4) and d 4,5 
all d-decomposable complete r-partite graphs are also d-isodecomposable. In the 
other we need to show that there are no isodecomposable graphs of smaller 
orders. To do this, we need the following lemma, proved in [4]. 

The neighbourhood of a vertex x in a graph denoted N G (x), is a set of all 
vertices to x in G. If A is a set of vertices of then NG(A) is the union 
of neighbourhoods of all vertices of A. 

,/ ~ 3, be b-lSode(~OInpOS,'Lbjre into factors FI and 
vertices of excentricity 5 and 4> : FI -+ F2 be a 

COlTI"(J'lelne.Tltln,f{ permutation. Then Al n A2 0, Al U C Vj and NFl (AI) 
4>(NpI(At)) = NFl (AI). ifVk is the partite set 

(Ad, then 4>(Vk) Vk. 

The following two theorems are immediate corollaries of the Lemma. 

Theorem 10. Let Is()dE~C(J'rIlJDo.'"al)le and let r 3; rnI rn?:. . 

m r . Then rni 4 

For r O(mod4) an additional condition holds. Although the proof of the 
theorem can be found in [4], we include it here for the sake of completeness and 
because we refer to it later. 

Theorem 11. Let 7' O(mod 4) and J{m l.m2, ... ,m r be 5-isodecomposable. Then 
at least of the cardinalities rnI, rn2, ... ,rnr must be even. 

Proof. We m~ed to show only that one of the numbers mI, rn2, .. ,rnr must be 
even, because if just one or two of them are even, then I<ml,m2, ... ,mr has an odd 
number of Let NFl (AI) C Yr. If IVrl is even, we are done. From Lemma 9 
it follows that 4>(Vr) Vr and hence 4>(V1 U V2 U·· . U Vr - 1 ) = VI U V2 U· .. U Vr - 1 . 

Then obviously J{ml is isodecomposable if the graph J{m l,m2, ... ,m r _l 

is isodecomposable. This is only if the number of odd is either 0 or 
l(mod 4) which implies that at least two of the numbers ml, rn2, . . , rn r -I must be 
even. But was odd and hence the actual number of even cardinalities among 
m'l, mz, . .. ,rnr-l must be at least 3. D 

N ow we can exclude the small non-isodecomposable graphs. 

Lemma 12. Let r 4, / == 0 or 3(mod4). Then there is no d-isodecomposable 
graph ,m2, ... ,mr with / + 1 vertices. 

Proof. Obviously, there is only one complete r-partite graph with / + 1 vertices, 
namely KZ,l,l, ... ,l, which is not admissible for / == 0 or 3(mod4). D 
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Lemma 13. Let r > 4, r == O(mod4). Then there is no d-isodecomposable graph 
](ml,m2, ... ,m r with r + 2 vertices for any d. 

Proof. There are only two possible complete r-partite graphs with r + 2 vertices, 
namely ](2,2,1,1, ... ,1 and ](3,1,1, ... ,1, The former is not admissible, while the latter 
is not isodecomposable by Theorem 1. 0 

Lemma 14. Let r > 4, r O(mod4). Then there is no 5-isodecomposable graph 
](ml,m2, ... ,m r with less than r + 5 vertices. 

Pmof. By Theorem 8, every 5-isodecomposable r-partite complete graph has one 
part of cardinality at least 4 and another of cardinality at least 2 and by Theorem 
12 it contains at least three even parts. Obviously, , ... ,1 with r + 5 vertices 
is the smallest graph satisfying these conditions. 0 

Lemma 15. Let r > 4, r 1(mod4). Then there is no 4-isodecomposable graph 
len I ,m2,,,.,mr with r + 2 vertices. 

Pmof. There are two graphs ](ml,m2, ... ,m r with r + 2 vertices. ](2,2,1,1, ... ,1, which 
is not and ](3,1,1, ... ,1, Let us suppose that there is r 1(mod4) such 
that the r-partite graph ](3,1,1, ... ,1 is (2, 4)-isodecomposable into factors Fl and 
Let U {Ul' U2, U3} be one part and Vi = {Vi}, i 1,2, ... ,1' - 1 the other 
and let V VI U V2 U··· U Vr - 1 . 

We first assume that there is a pair of vertices Ui, Uj, say Ul, Uz, such that 
distFl (Ul 1 4. Obviously, NFl (UI) U NFl (uz) C V and NFl (Ul) n NFl (112) 0. 
Furthermore, there is no edge between NFl (ut) and NFl (U2). Let M V\NF1 (ud\ 
NFl (U2)' Then in Fz all vertices of ( U d are adjacent to U2, all vertices of 
NF\(u2) are to UI, and each vertex of NPI(uJ) is adjacent to all vertices 
of NFl (U2)' If the vertices UI and Uz have no common neighbour in Fz, if 
M = 0, the diameter of the graph (V U Ul U uZ)P2 = F2 - U3 is 3 and the only 
vertices having excentricity 3 in this graph are Ul and Uz. Since U3 is not adjacent 
to either of we can see that eXP2 V:j ::; 3, which yields diamF2 ::; 3. If M T 0, 
then the diameter of the graph (V U UI U uz) F2 = F2 U3 is 2 and therefore again 
diam F2 ::; 3. Thus if dist F;( x, y) = 4, at least one of the vertices x, y belongs to V. 

Now we show that if distF;(x,y) = 4 and x Vi E V then y ~ V. Suppose it 
is not the case and there are vertices of V, say VI, V2, such that distFl (VI, V2) = 4. 
Denote the subgraph of Fi induced by the vertices of V. Then clearly diam F{ 2:: 
4. It is well known that if a factor of a complete graph ]( n has diameter greater 
than 3, then its complement (with respect to ](n) has diameter at most 2. Because 
(V) = ]( r-l, the diameter of F~ is at most 2. Then all vertices with excentrieity 4 
in Fz belong to U, which is impossible by the preceding paragraph. 

Thus we have only one possibility left, namely that there are vertices Ui and 
Vj, say UI,Vl, such that distFI(Ul,VJ) = 4. Then (V U U1) ~ ](r and the graph 
(V U 'U1) F2 has diameter at most 2, because diam(V U Ul) PI 2:: 4. Hence the only 
vertices which could have excentricity 4 in F2 are U2 and U3. Then distF2 (U21 U3) = 
4, which is a contradiction completing the proof. 0 
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Lemma 16. Let I 4, I l(mod Then there is no 5-isodecomposable graph 
I{ml,m2, ... ,mr with less than 1+6 vertices. 

Proof. By Theorem 8 every 5-isodecomposable graph ]{ml,m2, ... ,m r contains ]{f 
I{4,Z,I,I, ... ,I' This graph has 1+4 vertices and is not admissible for I l(mod4). 

There are only 3 graphs or order 1+5, containing ]{'. The first one, ]{4,Z,Z,1, ... ,I, 

is not admissible. Let us investigate then the graph ]{5,Z,1,1 , ... ,1 and denote the part 
with 5 vertices VI, and the part with 2 vertices by Vz. It follows from Lemma 
9 that the vertices which have excentricity 4 in either factor belong to V2 and the 
cornplementing permutation, cP, takes Vz onto itself. Hence, similarly in the 
proof of Theorem 11 the I-partite graph ]{5,2,1,1 " .. ,1 is isodecomposable only if the 
(r' I)-partite graph ]{5,1,1, .. ,,1 is isodecomposable. But I<"S,I,I, ... ,l has 1-2 trivial 

which is an odd number, and therefore is not d-isodecomposable for any d 
by Theorem 1. 

The last case, ]{4,3,I,I , ... ,1, is similar. By the same arguments as above, cP takes 
the part with 3 vertices onto itself and ]{4,3,1,1",.,1 is isodecomposable only if the 
(7' I)-partite graph is isodecomposable, too. But for I l(mod4) the 

,1, ... ,1 with I - parts of cardinality 1 is not admissible, and therefore 
is not 5-isodecomposable. 0 

The proof of our main result is now straightforward. 

Proof of Theolem 8. Apply Lemmas 12-16 and Constructions 3-6. 0 

Now we to prove that once there exists an d-isodecomposable com-
ro-partite graph, r ~ 5, of order Po then such a graph exists for each order 

greater than Po. 

Theorem 17. Let 5 S; I 00. Then gr(d) g~(d) for any finite d. 

Proof. gr( d) 00 for d = 1 or 5 d < 00, hence the result is immediate. 
To prove the assertion for any d, 2 S; d ~ 5 we need to show that for a given 

d and any p gr( d) there is a complete I-partite d-isodecomposable graph with 
p vertices. Let p gr(d) + q. For d = 4 and I == l(mod4) we take the factor 
constructed in part (b) of Construction 5, add q vertices WI, Wz, .• ,Wq into part 
U and join each of them in the factor FI to all vertices 114i+Z, V4i+3, i = 1,2, ... ,k. 
Then cP( W j ) W j for each j 1,2, .. , q and obviously FI ~ Fz. In all other cases 
one can see that cP( wo) = Wo. Therefore we can always add q vertices WI, Wz, ... , W q 

into part Wand join in each of them to all neighbours of Woo Then again 
¢(Wj) Wj for each j = 1, ... ,q and FI Fz. 0 

Let us remark that the equality holds also for I 2,3,4 (see [3],[4]). 

5. CONCLUDING REMARKS 

We have found the smallest orders of complete I-partite graphs that can be 
decomposed into selfcomplementary factors with a given finite diameter. However, 
the spectrum of all such graphs is yet to be determined. 

73 



P. Das [2] introduced the following classes of graphs. A complete graph without 
one edge, En Kn - e, is called an almost complete graph. A graph G with 
n vertices is almost selfcomplementary if the graph En can be decomposed into 
two factors that are both isomorphic to G. We can similarly introduce a class 
of almost complete multipartite graphs, i.e. the complete multipartite graphs with 
one mlssmg Then we can study decompositions of such graphs into two 
isomorphic factors, called almost selfcomplementary factors. 

Acknowledgement. The author would like to thank Professor Alexander Rosa 
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