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ABSTRACT. For r > 4 we determine the smallest number of vertices,
g»(d), of complete r-partite graphs that are decomposable into two iso-
morphic factors for a given finite diameter d. We also prove that for a
given pair 7, d such a graph exists for each order greater than g,(d).

1. INTRODUCTORY NOTES AND DEFINITIONS

In this paper we study decompositions of finite complete multipartite graphs
into two isomorphic factors with a prescribed diameter. A factor F of a graph
G = G(V, E) is a subgraph of G having the same vertex set V. A decomposition of
a graph G(V, E) into two factors Fy(V, E1) and Fy(V, E;) is a pair of factors such
that By N Ey = 0 and E; U By = E. A decomposition of (& is called isomorphic if
Fy = 5. An isomorphism ¢ : Fy — F is then called a complementing permutation
and the factors Fy and F; the selfcomplementary factors with respect to G or simply
the selfcomplementary factors. The diameter diam G of a connected graph G is the
maximum of the set of distances dist¢(z,y) among all pairs of vertices of G. If
(G is disconnected, then diam G = oo. The order of a graph G is the number of
vertices of G while the size of G is the number of its edges. For terms not defined
here, see [1].

A. Kotzig and A. Rosa [7] and later P. Tomasta [9], D. Palumbiny [8], and
P. Hic and D. Palumbiny [6] studied decompositions of complete graphs into iso-
morphic factors with a given diameter. E. Tomova [10] studied decompositions of
complete bipartite graphs into two factors with given diameters and determined all
possible pairs of diameters of such factors. T. Gangopadhyay [5] studied decompo-
sitions of complete r-partite graphs (r > 3) into two factors with given diameters
and determined also all possible pairs of diameters of such factors.
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In this article we join both concepts. We study decompositions of complete
r-partite graphs, for r > 5 into two isomorphic factors with a given diameter (for
r = 2,3,4 see [3],[4]). We always assume that the number of vertices of an r-partite
graph is at least r + 1, i.e. the graph is not a complete graph K,.

T. Gangopadhyay [5] proved that a complete r-partite graph for r > 3 de-
composable into two factors with the same finite diameter d exists if and only if
d = 2,3,4 or 5. He also determined the smallest orders of such decomposable
graphs.

A complete r-partite graph is d-decomposable if it is decomposable into two
factors with the same finite diameter d. If we in addition require the factors to be
mutually isomorphic, we say that the graph is d-isodecomposable. We also often say
that a graph G is 1sodecomposable if it is d-isodecomposable for a finite diameter d
which we do not determine specifically.

We show that there are d-isodecomposable complete r-partite graphs for each
of the above mentioned diameters for any r > 5. In all cases we also present
smallest decomposable graphs.

2. PRELIMINARY THEOREMS

We denote a complete r-partite graph with r partite sets having mq,ma, ..., m,
vertices, respectively, as K, ms,,...m,. Or, especially if there are more parts hav-
ing the same cardinality, we denote the complete r-partite graph having k; parts
of cardinality n; for 1 =1,2,...,s by I'(n;;1 nk2 ke In this case we always suppose
that ky + ky + -+ -+ k; = 7 and n; # nj for 1 # j.

Let f.(d) denote the smallest number of vertices of a complete r-partite d-
decomposable graph. If such a number does not exist, then we define f,(d) = co.

It is obvious that any d-isodecomposable complete r-partite graph Ky ,my,...m,
must have an even number of edges and hence the number of parts having odd car-
dinalities must be 0 or 1 (mod4). A graph with this property as well as the
corresponding r-tuple my,ms, ..., m, is called admissible.

We can similarly introduce g,(d) as the smallest number of vertices of a com-
plete d-isodecomposable r-partite graph. We also define g..(d) as the smallest in-
teger with the property that for any n > ¢.(d) there is a complete r-partite d-
isodecomposable graph with n vertices. Finally, we define h,(d) as the smallest
integer such that any admissible complete r-partite graph with at least h,(d) ver-
tices is d-isodecomposable. If such numbers do not exist, we again put g,(d) = oo
g1.(d) = oo or h,(d) = oo, respectively. It is obvious that

3

fr(d) < go(d) < gi(d) < he(d).

The first and last inequality can be in some cases sharp. For instance, Gan-
gopadhyay [5] proved that f.(2) = r 4 1, but we show that ¢.(2) = r + 1 only
if 7 = 1 or 2(mod4) while g.(2) = r + 2 for r = 0(mod4) and g,(2) = r + 3 for
r = 3(mod 4). The last inequality can be sharp as well: for r = 0(mod4) it holds
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that ¢,(5) = g.(5) = r + 5, but h(5) = co. It is an immediate consequence of the
following result.

First we need some definitions. Let N = {1,2,...,n}. Two sequences B =
bi,by,..., b, and C = c1,¢2,...,¢, are 1somorphic if there exists a one-to-one
mapping ¥ : N — N such that b; = cy(;). The degree sequence of a graph G with a
vertex set vy,vs,..., v, is the sequence A = ay,as,...,a, where a; = degv;. The
sequence is isodecomposable if there exist isomorphic sequences B = by,bz,...,bn
and C' = ¢y, ¢g,...,cqn such that a; = b; + ¢; for each ¢ € N. Obviously, a graph G
is isodecomposable only if the degree sequence of G is isodecomposable. Moreover,
G is isodecomposable into two factors with a finite diameter only if the degree
sequence of G is isodecomposable into two sequences with all positive entries.

Theorem 1. Let I,m,r,s;r # s be odd numbers. Then the graph K, = is not
d-isodecomposable for any d.

Proof. The degree sequence of K.ugm is p,p,...,P,4,¢, ..., q where both numbers
p=(—1)r+msand g =Ir+ (m —1)s are odd and both appear in the sequence
an odd number of times, namely p appears Ir = t times and ¢ appears ms =n —t
times. Suppose, to the contrary, that K.~ is isodecomposable. We may assume
without loss of generality that p < ¢. Let 4 = a1,4a2,...,a, and B =by,by,...,b,
be isomorphic sequences such that a; +b; =pfori=1,2,...,t and a; + b; = ¢ for
i=t+1,t+2,...,n Let a(i) (8(3)) for i = 0,1,...,p be the number of terms of
ar,az,...,a¢ (by,ba, ..., bs) which are equal to ¢ and &/(j) (3'(y)) for1 =0,1,...,q
be the number of terms of a1, @et2,.-.,an (big1,be42,-..,bs) which are equal
to 5. Obviously, a(i) = B(p — ) and /(1) = B'(q — 7).

Because t is odd, there must be i such that a(i) > B(i) . Let ip be the
smallest number ¢ such that (i) > B(7) . Denote k = a (i) — 3(¢). As the sequences
A and B are isomorphic, 1o must appear in byy1,be42, ..., by k-times more than in
@141, Qed2, - - 5 Gn, 1e., B'(10) — a'(io) = k. Then a'(g — 10) — (¢ — t0) = k, ie.,
q — 10 appears more often in @41, @42,...,0n than in beyy, begn, ..., by Hence
q — 1o must appear in by, by, ..., b; k more times than in a1, as, ..., a;, which yields
B{(q — i) — a(q ~ 1) = k. This is equivalent to a(io +p— ¢) — B(io +p — ¢) = k.
Because k > 0, we have a(ic + p — ¢) > B(io + p — ¢). From the minimality of iy
it follows that ip + p — g > 19, which contradicts our assumption that p < g and
therefore K, m is not isodecomposable. [

Corollary 2. h.(d) = oo for every r = 0(mod 4) and any d.

Proof. Given any r = 0(mod4) and any order n, we can construct an infinite
class of graphs Kynq1 (4n41)7—1 With order greater than n. Since r — 1 is an odd
number, the graph Kjp, 41 (4nt1)r-1 is not d-isodecomposable by Theorem 1 and
hence h.(d) = oo for any d. O

On the other hand, we prove later that g,(d) = g..(d) for each r > 5 and each
possible finite d. This equality was proven to be true also for r = 2,3,4 and all
finite diameters in [3],[4].
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3. CONSTRUCTIONS

In this section we construct d-isodecomposable complete r-partite graphs of
the smallest orders for every » > 5 and every possible finite diameter d.

Construction 3. (a) Case r = 0(mod4). For r = 8 we take the graph shown
in Figure l.a. To get a selfcomplementary factor of K59 2,1,... 1 with parts W =
{wo}, Ur = {ui1, w12}, Uz = {ua1,ua2},Us = {us1,use}, Vi = {vi},i = 1,2,3,4, we
add all edges us1z and usyz for z € {wo,v1,v2,vs,vs} whenever the edge uj 1z ex-
ists and all edges ug22 and ugzz whenever the edge ujaz exists. The complement-

64



ing permutation ¢ is determined by the cycles (wo), (u11t12), (u21u22), (uz1use),
(vivgvave). For any r = 4k + 8,k > 1, we add parts Vs, Vg, ..., Vikre, where
Vi = {v;}. Then for every quadruple vyiy1, Vait2,Vaits, Vaira we add the edges
of the path Py = (v4it1, Vait2, Vaits, Vaita)s 1€, Vait 104i42, Vait204i43, V4it3Vsitds
and join the end-vertices v4;41 and vyipq of Py to all “preceding” vertices, i.e., to
the vertices wui1,u12, 21, Uga, Us1, Use, Wo, V1, Va,. .., V4. LThe new cycles of ¢ are
then (vVait1Vairsvaipavaigs) fori=1,2,... k.

(b) Case r = 1(mod4). Forr = 5 we take the selfcomplementary factor
shown in Figure 1.b. The parts of Ky11,1,1 are W = {w,wo}, Vi = {1}, V2 =
{v2}, Vs = {v3},Va = {v4}, the complementing permutation ¢ is determined by
the cycles (wo), (w), (vivsvave). Forany r = 4k + 5,k > 1, we add again vertices
V5,V6,...,Vik+4 (Or, more precisely, parts V; = {v;}) and for every quadruple
V4it1s Vdit2, Vaits, Vaira we add the edges of the path Py = (v4i+1,v4¢+2,v4i+3,
1)41+4>, i.e., Vai4+1V4i42, V4i42V4i4+3, V4i+3V4+4, and jOil’l the end-vertices V441 and
v4i4+4 Of Py to all “preceding” vertices, i.e., to the vertices wg, w, vy, vy,...,v4. The
new cycles of ¢ are now again (vi4104i4304i440ai42) for i = 1,2,... k.

(¢) Case r = 2(mod4). For r = 6 we take the selfcomplementary factor
shown in Figure l.c. The complementing permutation ¢ is determined by the
cycles (wo), (u1uz), (vivsvavy). For any r = 4k + 6,k > 1, we add again vertices
(i.e., parts,) vs,vs,. .., var4s and all the edges as in the case (b). The new cycles
of ¢ are ag&in (U4i+1v41‘+3?}41’+4v41‘+2) for ¢ = 1,2, e ,k‘.

(d) Case r = 3(mod4). Forr = 7 we take the selfcomplementary factor
shown in Figure 1.d. The complementing permutation ¢ is determined by the
cycles (wo), (u11u12), (v21uz2), (V1vsvev,). For any r = 4k + 7,k > 1, we again add
the vertices, edges and permutation cycles as in the previous cases. [J

We continue with smallest 3-isodecomposable graphs for each r > 5. The
construction is in all cases very similar to the previous one. We again take first the
r-partite factors for r = 5,6, 7,8 and extend them by adding paths Py, but we join
to the “preceding” vertices the inner vertices of Py rather than the end-vertices.

Construction 4. (a) Case r = 0(inod4). For r = 8 we take the graph shown
in Figure 2.a. To get a selfcomplementary factor of Kj2,2,1,..,1 with parts W =
{wo}, Uy = {ur1,uiz2}, Uz = {uzr,usn}, Us = {us1,usa}, Vi = {vs},1 = 1,2,3,4, we
add all edges ug;z and uziz for z € {wo,v1,v2,v3,v4} whenever the edge ujjz
exists and all edges uzpx and ussz whenever the edge ujzz exists. The com-
plementing permutation ¢ is determined by the cycles (wo), (w11u12), (ua1u2s),
(usiusz), (vivavgvy). For any r = 4k + 8,k > 1, we add parts Vs = {vs},Vg =
{’Ua}, ceey V4k+4 == {’U4k+4}. Then for every quadruple Vaid1y Vai+2, V4443, V4544 WE
add the edges of the pa.th P4 = (U4,-+1,v4,~+2,v4,~+3,v4i+4), namely V4i41V444-2,
V4i+2V4i+3,V4i+3V4i+4, and join the inner vertices vy;qs and vgys of Py to all
“preceding” vertices, i.e., to the vertices w1, u12,u21,Us22, Us1, Usz, Wo, V1, Va, ...,
vai. The new cycles of ¢ are then (vsiy1vaitsvVaitavaits) for ¢ = 1,2,...,k. The
vertices at distance 3 apart are always us; and uss.

(b) Case r = 1(mod4). For r = 5 we take the selfcomplementary factor
shown in Figure 2.b. The parts of K3 11,11 are W = {w,wo}, Vi = {v1},Vs =
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{v2}, Vs = {v3},Va = {v4}, the complementing permutation ¢ is determined by
the cycles (wp), (w), (vivsvavs). For any r = 4k + 5,k > 1, we add again vertices
Vs, Vg, .-, Vakts (1., parts V; = {v;}) and for every quadruple vyit1,vait2, Vaits,
V4ire we add again the edges of Py = (V4i41,Vait2, Vaits, Vaita), L€, Vait1V4it2,
V4i+2U4i+3, Vai+3V4ita, and join the inner vertices vyip and vyitps of Py to all “pre-
ceding” vertices, i.e., to the vertices wg,w,v1,vs,...,vs4;. The new cycles of ¢ are
now again (Vgip1V4i+3Veitavaite) for ¢ = 1,2,..., k. The vertices having mutual
distance 3 are vi41 and Vag4q.

(¢) Case r = 2(mod4). For r = 6 we take the selfcomplementary factor
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shown in Figure 2.c. The complementing permutation ¢ is determined by the
cycles (wo), (uruz), (vivzvavy). For any r = 4k + 6,k > 1, we add again vertices
(parts) vs,vg, ..., v4k+a and all the edges as in the case (b). The new cycles of ¢
are again (Ugi41U4i43V4aitavairz) for 1 = 1,2, ... k. The vertices u;; and uyy are
always at distance 3.

(d) Case r = 3(mod4). For r = 7 we take the selfcomplementary factor
shown in Figure 2.d. The complementing permutation ¢ is determined by the
cycles (wo), (ur1uiz), (U21us2), (v1v3vave). For any r = 4k + 7,k > 1, we again add
the vertices, edges and permutation cycles as in the previous cases. [

In constructions of factors with diameters 4 and 5 we use a different approach.
To increase the number of parts, we “blow up” the path P; induced by vertices
belonging to different trivial parts.

First we construct smallest selfcomplementary factors with diameter 4 of the
complete r-partite graphs for each r > 5.

Construction 5. (o) Case r = 0(mod4). We start with decomposition of the
8—partite graph I{2,2,2,1,..,,1 with the parts W = {'UJQ},U] = {ull,U]z},U‘z =
{ua, w22}, Us = {usi,uza}, Vi = {v;},1 = 1,2,3,4. The selfcomplementary fac-
tor is shown in Figure 3.a. The complementing permutation ¢ is determined
by the cycles (wo), (w11w12), (ug1usz), (usr1usz), (vivsvsvs). The vertices having
distance 4 are uy; and wugy. For any r = 4k + 8 k > 1, we add parts V; =
{v;},i = 5,6,...,4k + 4. Now we “blow up” the path P4(0) = (vi,vs,vs,v4).
We add the edges of the paths P4(2), namely viit1vaito, Vait20aits, VaitsVaips fOT
1= 1,2,...,k, all edges v4;41V4142, Vait2Valrs, Vaitavarra and all edges vg;4204142
and vgip3vs43 for all pairs 4,1 € {0,1,...,k}, 7 # [. We also add the edges vgiqr
forall ¢ =1,2,...,k and r = 1,2,3,4 whenever the edge v,z exists. Here z is any
vertex of WUU; UU; UUs. In other words, we take the path Ps(0) = {(vy,v2,vs,v4),
put the vertices vgiy,r,z = 0,1,...,k;r = 1,2,3,4 “into” the vertex v, and substi-
tute the original edge v,v,4, for all possible edges vg;4 V414 rr1- The vertices vyi4o
and vgi43,1 = 0,1,..., k induce complete graphs K41, while the vertices vg;4; and
vait1,t = 0,1,..., k remain mutually non-adjacent. Finally, every vertex vq;y, has
the same neighbours in WU U; UU, UU3 as the vertex v,.. One can check that uq;
and uz; are at distance 4. The new cycles of ¢ are now (Vgit1v4i43V4i4404i12) for
i=1,2,... k.

(b) Case r = 1(mod4). We first decompose the graph K41,11, with parts
U = {ur,uz,us,ua}, Vi = {1}, V2 = {v},Va = {v3}, Vs = {v4} into factors
isomorphic to the one shown in Figure 3.b. (The indicated vertex w; appears later
in the construction of graphs of greater orders.) The complementing permutation
is determined by the cycles (uiususus) and (vivsveve). For any r =4k + 5,k > 1,
we add the parts Vs = {uvs}, Vs = {v6},..., Varte = {varss} and “blow up” the
path Py(0) = (v, vs,vs,v4) exactly as in part (a). The new cycles of ¢ are again
(Vaid1VaitsVaitavaiss) for @ = 1,2,... k. The vertices having mutual distance 4
are w1 and wuy.

(¢) Caser = 2(mod4). We start with the graph K4 11,1,1 with parts W =
{wo}, U = {ur,ug,uz,us}, Vi = {1}, V2 = {v2}, Vs = {vs}, Va = {v4} and decom-
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pose it into factors isomorphic to the factor shown in Figure 3.c. The complement-
ing permutation ¢ is determined by the cycles (wg), (v1uzusu,) and (vivzvavs).
For any r = 4k + 6,k > 1, we again “blow up” the path P,(0) = (v1,v2,vs, va)
exactly as in part (a), adding the parts Vs = {vs}, Vs = {vs},..., Vakss = {vakta}
and the corresponding edges. The new cycles of ¢ are Again (V4it1VairsVaitaVaitn)
for = 1,2,...,k. The vertices at distance 4 apart are u; and ug.

(d) Case r = 3(mod4). For r = 7 we decompose the graph K3 311,1,1,1 with
parts W = {wo}, U1 = {uir,u12}, U2 = {uar,uz2}, Vi = {01}, Vs = {v},Vs =
{vs}, Vo = {v4} into factors isomorphic to the graph in Figure 3.d. The comple-
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menting permutation ¢ is determined by the cycles (wo), (u11u22), (¥12u21) and
(viv3v4v2). We increase the number of parts for any » = 4%k + 3 as in the previous
cagses. The vertices having mutual distance 4 are ugy and wge. O

Finally, we construct factors of smallest 5-isodecomposable complete r-partite
graphs for each r > 5.

Construction 6. In this construction we present only the factors of smallest 5-
isodecomposable complete r-partite graphs with r = 5,6,7,8 and 9 parts. The
factors of smallest graphs for any r > 10 can be obtained exactly as in Construction
5—by “blowing up” the path Py(0) = (v1,v2, v, v4).

(a) Caser = 0(mod4). The §-partite graph Ky 32,1,...1 with the parts W =
{wo}, Ui = {u11,u12,u1s,u14}, Uz = {ugr,u22},Us = {uszr,us}, Vi = {vi},i =
1,2,3,4, is 5-isodecomposable into the selfcomplementary factors shown in Figure
4.a. The complementing permutation ¢ is determined by the cycles (wo), (v11u12),
(u1zu14), (u21u2z), (Us1usz), (v1vsveve). The vertices having mutual distance 4 are
uy1 and ujg4.

(t) Case r = 1(mod4). The 5-partite graph K4 22,21 with the parts W =
{wo}, Uy = {u11,u12,v1s, u14}, Uz = {ugr,u22},Us = {us1,usa}, Us = {141, u42}
is b-isodecomposable into the selfcomplementary factors isomorphic to the sub-
graph of the graph shown in Figure 3.b induced by the above mentioned parts.
The complementing permutation ¢ is determined by the cycles {wo), (ui1u12),
(wizuia), (u21%22), (Us1uaz), (ua1usz). The vertices at mutual distance § are uy
and ui4.

To obtain the selfcomplementary factor of the complete 9-partite graph
K4322,,..,1, we have to add to the graph in Figure 4.b the parts Vi = {v1},V2 =
{v2}, Vs = {v3 }, Vi = {vs} and edges v;uj; for each ¢ = 1,2, 3,4 whenever the edge
wouj exists. The permutation ¢ contains now one more cycle, (vyvzv4vy).

(¢) Case r = 2(mod 4). The factor of the 6-partite graph K4 2,1,1,1,1 with the
parts W = {wwa)}vU = {ulvu27u37u4}7vl = {lh},Vz = {U2}»Vé = {’Ug},% -
{v4} is shown in Figure 4.c. The cycles of ¢ are (w), (wo), (v1ususus), (v1v3v409)
and the vertices at distance 5 are u; and uy.

(d) Case r = 3(mod4). The 7-partite graph K4 3,1,.,1 with the parts W =
{wo}, Uy = {u11,u12,u1s,u14}, Uy = {ug1,u22}, Vi = {01}, Vo = {v2}, V3 = {vs},
Vi = {v4} is 5-isodecomposable into the factors isomorphic to that in Figure 4.d.
The cycles of ¢ are (wp), (u11v12), (W13u14), (u21u22), (v1v3V4v2) and the vertices at
distance 5 are uy; and uq. O

4. SMALL GRAPHS: NEGATIVE RESULTS

We start with Gangopadhyay’s result [5] on decomposability into factors (not
necessarily isomorphic) with the same finite diameter.

Theorem 7. (Gangopadhyay) Let a complete r—partite graph Kp, m,,..,m, With
more than 4 parts be d-decomposable for a finite diameter d. Then d =2,3,4 or 5
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+me>r+1ifd=2;
+my>r+1ifd=3;
+my>r+2ifd=4;
+m,>r+4ifd=>5.

Our main goal is to prove the following.

Theorem 8. Let r > 5. Then

9-(2) =g-(3) = 9:(4) =7 +3, g-(8) =7+ 5 if r = 0({mod 4),
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g (2) =¢-3)=r+1, g:(4) =r+3, g-(5) =r+6 ifr = 1(mod4),
9-(2) =g.3)=r+1, g:(4) =r+2, g-(5) =r+4 ifr = 2(mod4), and
0 (2) = 9,.(8) = g-(4) =r+2, g,(5) =r +4 ifr = 3(mod 4).

From Theorem 7 it follows that for every r > 4,r = 2(mod4) and each d =
2,3,4,5, every r = 1(mod4) and d = 2,3, and every r = 3(mod4) and d = 4,5
all d-decomposable complete r-partite graphs are also d-isodecomposable. In the
other cases we need to show that there are no isodecomposable graphs of smaller
orders. To do this, we need the following lemma, proved in [4].

The nesghbourhood of a vertex z in a graph G, denoted Ng(z), is a set of all
vertices adjacent to z in G. If A is a set of vertices of G, then N¢g(A) is the union
of neighbourhoods of all vertices of A.

Lemma 9. Let K m,,...m.,7 > 3, be 5-isodecomposable into factors Fy and F;.
Let A; be the set of all vertices of excentricity 5 in F; and ¢ : Fi — Fy be a
complementing permutation. Then Ay N Ay = 0, Ay U Ay C V; and Np,(Ay) =
Nr,(Az), or equivalently ¢(Np, (A1) = Np, (A1). Moreover, if Vi is the partite set
containing Np, (Ay), then ¢(Vi) = Vi.

The following two theorems are immediate corollaries of the Lemma.

Theorem 10. Let Kpy; m.,....m, be 5-isodecomposable and let r > 3;my > m> ...
> my. Then my > 4 and my > 2.

For r = O0(mod4) an additional condition holds. Although the proof of the
theorem can be found in [4], we include it here for the sake of completeness and
because we refer to it later.

Theorem 11. Let r = 0(mod4) and Km, m,,..,m, be 5-isodecomposable. Then
at least 3 of the cardinalities mq,ms, ..., m, must be even.

Proof. We need to show only that one of the numbers my,mq,...,m, must be
even, because if just one or two of them are even, then K, m,,.. m, has an odd
number of edges. Let Np, (A1) C V,. If [V;| is even, we are done. From Lemma 9
it follows that #(V,) = V, and hence ¢(Vi UV U+ UVo1) = ViUV U-- UV,
Then obviously K, ms,...,m, 1s isodecomposable only if the graph Kpni, mo,... m,_,
is 1sodecomposable. This is possible only if the number of odd parts is either 0 or
1(mod 4) which implies that at least two of the numbers my,ms, ..., m,_; must be
even. But |V,.| was odd and hence the actual number of even cardinalities among
my, mg,...,my.1 must be at least 3. O

Now we can exclude the small non-isodecomposable graphs.

Lemma 12. Let r > 4,7 = 0 or 3(mod4). Then there is no d-isodecomposable
graph K| my,...m, With r 4 1 vertices.

Proof. Obviously, there is only one complete r-partite graph with r + 1 vertices,
namely K511, 1, which is not admissible for r = 0 or 3(mod4). O
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Lemma 13. Let r > 4,7 = 0(mod 4). Then there is no d-isodecomposable graph
Ky ma,...,m, With r + 2 vertices for any d.

Proof. There are only two possible complete r-partite graphs with r + 2 vertices,
namely K;21,1,...1 and K3 11,..1. The former is not admissible, while the latter
is not isodecomposable by Theorem 1. O

Lemma 14. Let r > 4,7 = 0(mod4). Then there is no 5-isodecomposable graph
Koo ma,...m, with less than r 4§ vertices.

Proof. By Theorem 8, every 5-isodecomposable r-partite complete graph has one
part of cardinality at least 4 and another of cardinality at least 2 and by Theorem
12 it contains at least three even parts. Obviously, K43 2,1,...1 with r 4+ 5 vertices
is the smallest graph satisfying these conditions. O

Lemma 15. Let r > 4,r = 1(mod4). Then there is no 4-isodecomposable graph
Kony ma,...,m, With v+ 2 vertices.

Proof. There are two graphs Km, ms,.. m, with r 4+ 2 vertices. Kq 11,1, which
is not admissible, and K3,1,1,..1. Let us suppose that there is » = 1(mod4) such
that the r-partite graph K3 1,1,.. 1 is (2,4)-isodecomposable into factors F; and F3.
Let U = {uy,u2,us} be one part and V; = {v;},4 = 1,2,...,r — 1 the other parts,
and let V:V1 UV’;U"'UVT_L

We first assume that there is a pair of vertices u;,uj, say u;,uy, such that
dist p, (u1,uz) = 4. Obviously, Np, (us)U Np, (uz) C V and N, (u;) N Np, (uz) = 0.
Furthermore, there is no edge between N, (u1) and N, (uy). Let M = VA\Ng, (u1)\
Np,(uz). Then in Fy all vertices of Np (u;) are adjacent to ug, all vertices of
Np, (uz) are adjacent to uy, and each vertex of Np, (u1) is adjacent to all vertices
of Np, (uz). If the vertices u; and u; have no common neighbour in Fy, ie., if
M = @, the diameter of the graph (V Uuy Uug)p, = Fy — u3 is 3 and the only
vertices having excentricity 3 in this graph are u; and uz. Since ug is not adjacent
to either of them, we can see that exp, v; < 3, which yields diam Fy < 3. f M # 0,
then the diameter of the graph (V Uuy Uug)p, = Fy — ug is 2 and therefore again
diam F, < 3. Thus if distp,(z,y) = 4, at least one of the vertices z,y belongs to V.

Now we show that if distp, (z,y) =4 and ¢ = v; € V then y ¢ V. Suppose it
is not the case and there are vertices of V, say vi, v, such that distp, (vi,v2) = 4.
Denote F! the subgraph of F; induced by the vertices of V. Then clearly diam F] >
4. Tt is well known that if a factor of a complete graph K,, has diameter greater
than 3, then its complement (with respect to K,) has diameter at most 2. Because
(VY = K,_1, the diameter of Fj is at most 2. Then all vertices with excentricity 4
in F, belong to U, which is impossible by the preceding paragraph.

Thus we have only one possibility left, namely that there are vertices u; and
vj, say u1,v1, such that distg, (ug,v1) = 4. Then (V Uuy) = K, and the graph
(V Uuy)p, has diameter at most 2, because diam(V Uwu;)r, > 4. Hence the only
vertices which could have excentricity 4 in Fy are uz and u3. Then distg, (uz,us) =
4, which is a contradiction completing the proof. O
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Lemma 16. Let r > 4,r = 1(mod4). Then there is no 5-isodecomposable graph
Ky ,ms,..,m, With less than r 4+ 6 vertices.

Proof. By Theorem 8 every 5-isodecomposable graph Ko, m,,.. .m, contains K' =
K42,1,1,.,1- This graph has r 4 4 vertices and is not admissible for » = 1(mod4).

There are only 3 graphs or order r+-5, containing K'. The first one, K4 221, .1,
is not admissible. Let us investigate then the graph K5 3,1,1,...,1 and denote the part
with 5 vertices by Vi, and the part with 2 vertices by V2. It follows from Lemma
9 that the vertices which have excentricity 4 in either factor belong to V, and the
complementing permutation, ¢, takes V, onto itself. Hemnce, similarly as in the
proof of Theorem 11 the r-partite graph K 2,1,1,...,1 1s isodecomposable only if the
(r — 1)-partite graph K5 11,1 is isodecomposable. But K5 11 .. 1 has r — 2 trivial
parts, which is an odd number, and therefore is not d-isodecomposable for any d
by Theorem 1.

The last case, K43.1,1,...,1, is similar. By the same arguments as above, ¢ takes
the part with 3 vertices onto itself and K4 31,1,...,1 is isodecomposable only if the
(r — 1)-partite graph K4 11,...1 is isodecomposable, too. But for r = 1(mod 4) the
graph Ky 11,1 with r — 2 parts of cardinality 1 is not admissible, and therefore

adadyer

Ky431.1,...1 18 not 5-isodecomposable. [

sy bydyeeny

The proof of our main result is now straightforward.
Proof of Theorem 8. Apply Lemmas 12-16 and Constructions 3-6. O

Now we are ready to prove that once there exists an d-isodecomposable com-
plete r-partite graph, r > 5, of order pg then such a graph exists for each order
greater than pg.

Theorem 17. Let 5 < r < co. Then g.(d) = g.(d) for any finite d.

Proof. g-(d) = oo for d =1 or 5 < d < oo, hence the result is immediate.

To prove the assertion for any d, 2 < d < 5 we need to show that for a given
d and any p > g,(d) there is a complete r-partite d-isodecomposable graph with
p vertices. Let p = g,(d) + ¢. For d = 4 and r = 1(mod4) we take the factor
constructed in part (b) of Construction 5, add ¢ vertices wsy,ws,...,w, into part
U and join each of them in the factor Fy to all vertices vqi42,v4i43,7 = 1,2,..., k.
Then ¢(w;) = w; for each j = 1,2,...,q and obviously Fy & F,. In all other cases
one can see that ¢(wo) = wg. Therefore we can always add g vertices wy, wa, ..., w,
into part W and join in Fy each of them to all neighbours of wy. Then again
P(w;) =w, foreach j =1,2,...,qand F; 2 F,. O

Let us remark that the equality holds also for r = 2, 3,4 (see [3],[4]).

5. CONCLUDING REMARKS

We have found the smallest orders of complete r-partite graphs that can be
decomposed into selfcomplementary factors with a given finite diameter. However,
the spectrum of all such graphs is yet to be determined.
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P. Das {2] introduced the following classes of graphs. A complete graph without

one edge, K, = K, — ¢, is called an almost complete graph. A graph G with
n vertices is almost selfcomplementary if the graph K, can be decomposed into
two factors that are both isomorphic to G. We can similarly introduce a class
of almost complete multipartite graphs, i.e. the complete multipartite graphs with
one missing edge. Then we can study decompositions of such graphs into two
isomorphic factors, called almost selfcomplementary factors.
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