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Let G be a finite group. A subset S of G not the identity element 
1 of G called C I -subset (C( stands for isomorphism"), if for any 
isomorphism D(G, S) ~ D(G, T), there is f AutG such that T = f(S). G 
is called a DCI-group if every subset of G {I} is a CI-subset. G is called 
a GCl-group or simply a C I -group if every inverse-closed subset of G {I} 
is a CI-subset. (DCI and GCl stands for "digraph Cayley isomorphism" and 
"Graph Cayley isomorphism" respectively). 

Note that the Cayley digraphs of a group G corresponding to two Cl-subsets 
are not necessarily isomorphic. For instance, let G Z8, S = {I, and 
T = 5}. Then both Sand Tare C I -subsets of G. Theorem 3 in section 
2.) But D(G,S) =f:. D(G,T). For otherwise, since S is a CI-subset of G, there 
would exist an automorphism f of G mapping S into T. This is impossible since 
both 1 and 5 are generating elements of G, but 2 is not. 
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In our terminology, the well-known Adam's conjecture [1] is equivalent to 
the statement that finite cyclic groups are Although Elspas and 
Turner disproved this conjecture by showing that is not a DC I -group and 

is not a C I -group [8], this led to further study of CI - and DC I -groups. In 
[13], Godsil proved that Zp EB Zp is a C I -group. In In 
[4], Babai and Fra.nkl discussed the properties of of a 
of odd order. Considering that the determination of C I-or DC I -groups is 
very difficult, Xu and defined the so called m-CI- and m-DCI-groups. 

1. Let G be a finite group and maG is called 
an m CI-group if every inverse-closed subset S of G - {I} with ISm is 
a CI-subset. G is called an m DCI- group if every subset of G {I} with 
ISm is a CI -subset. 

In [9-11], the authors determined all abelian m -Q'1:0Ul)S (m 3). In 
[12], the authors characterized abelian 4 

The main purrose of investigating m - DCI - or m CI - groups is to 
Cayley or graphs of small But from the known results 

we can see that m DC I-or m are On the 
other hand, when considering the classifications of or 
we need only consider the strongly connected ones or connected ones. Based on 
these two the first author of this paper proposed the following definition. 

2. A finite group G is called a m if 
every generating subset S of G with I S I:::; m is a C I -subset. G is called a 
weakly CI-group if every inverse-closed generating subset of G with 18m 
IS C I -subset. 

From the results obtained in this paper we can see that the conditions im-
posed on weakly m - DC I-groups are weaker than those on m - DC I -
groups. 

We list below some known results which will be used in our discussions. To 
this end, we introduce the so-called homocyclic groups. 

We use mZn to denote the direct sum of m copies of the cyclic group Zn 
and call it a homocyclic group. 

Theorem 1.[9]. a). A finite abelian group G is 1 - DCI if and only if 
every Sylow subgroup of G is homocyclic. 

b). A finite abelian group G is' 2 - D CI if and only if G is 1 - DC I and every 
Sylow 2-subgroup of G is cyclic or elementary abelian. 

Theorem 2. [10-11]. a} A finite abelian group G of odd order is 
3 - DCI if and only if every Sylow subgroup of it is homo cyclic and its Sylow 
3-subgroup is cyclic or elementary abelian. 
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b). Let G H EB where H is the Sylow 2-subgroup of G. Then G is 
3 - DC I if and only if T is 3 - DC I and H is either cyclic of order at most 4 
or abelian. 

Notations and definitions not defined here can be found in [5-7]. 

§2.. The main results 

The first author of this paper proposed at the Third China-USA Conference 
on Graph Theory and Combinatorics the following rrtT"p,r"1".1',rp· 

1. finite group is weakly 2 DCI. 

The following theorem partially settles this conjecture. 

3. Every finite abelian group is weakly 2 DC I. 

Proof. Since a cyclic group is m DCI if and only if it is weakly m-DCI 
[15]), the theorem thus follows by Theorem 1 for cyclic groups. Henceforth, 

we assume that G is finite non-cyclic abelian group. 

Let S 
D(G, 

{a,b} and T {a',b'} be two 
D(G, T). We consider two cases. 

# 2b. 

subsets of G with 

Since digaphs are vertex transitive, we can find an isomorphism f 
from D( G, to D( G, T) such that 1(0) 0, where ° is the zero element of 
G. Then T. Since 1 N+(S) 1= 3, we have that 1 N+(T) 1= 3, therefore 
2a' # 2b'. Without loss of generality, we assume that f(a) a' and f(b) b'. 
Since a + b is the only cornman out-adjacency vertex of a and b, f( a + b) must 
be the only cornman out-adjacency vertex of a' and b'. Thus f( a + b) = a' + b', 
and so 2a', f(2b) = 2b'. By using induction on i + j, it is not difficult 
to show that f(ia + jb) ia' + jb' for any non-negative integers i and j. Since 
S is subset of G, each element of G can be expressed in the form 
ia + jb, thus f E AutG. 

Case 2. 2a = 2b. 

Since G is not cyclic, we have G ~ (a) EB (a - b) ~ (a') EB (at - b'). Thus the 
following mapping 

f: ia + j(a - b) I-t ia' + j(a' - b') 

is an automorphism of G and clearly, f( a) = a' and f( b) = b'. This completes 
the proof. 
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The following theorem characterizes weakly 3 DC I -abelian groups. 

Theorem 4. A finite abelian group is weakly 3 - DCI if and only if one 
of the following conditions is satisfied: 

i). The order of G is odd or the rank of G is at least 3. 

ii).G is of even order with rank at most 2 and its Sylow 2-subgroup is a cyclic 
group of order at most 4 or a homo cyclic group with rank 2. 

To prove Theorem 4, we establish a sequence of lemmas. 

The following lemmas [1-2] show that if the conditions in Theorem 4 do not 
hold for an abelian group, then it is not weakly 3 - DC I. 

Lemma 1. Let G e Zm, where 8 I n, m) = 1 and each prime 
divisor of m is also a prime divisor of n. Then G is not weakly 3 - DC I. 

Proof. Set S = {a,b,c}, T = {a',b',c'}, where 

and 

{

a = 
b= 
c= 

(1,1) 
(n/2 + 1,1) 
(2,0) 

{

a' (1,1) 
b' (n/2 + 1,1) 
e' (n/2 + 2,0). 

Then, since 81n, e' and e have the same order -? and it is easy to check that 
G has the following decompositions with respect to the subgroups (c) and (c'), 
respectively. 

2m-l 2m-l 

G U ((c) + ia) = U ((e') + ia'). 
i=O i=O 

Since m is odd and n is divisible by 8, we have the following equalities: 

2ma = me 
b' = a' + ~e' 

2ma' = (~+ m)e'. 

With these equalities in mind, we can prove that the following mapping f: 

kc + la J--lo ke' + la' (0 ::::; k < n/2, 0 ::::; I < 2m) 

is an isomorphism from D( G, S) to D( G, T). If there is ¢ E AutG such that 
¢;( S) = T, then by considering the orders of elements in Sand T we have 
that ¢;( e) = e'. If ¢( a) .= a', then ¢;( b) = b' . Since 2ma = me, we have that 
2ma' = me', and so nm/2 == 0 (mod n). This contradicts the condition that 
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m) 1. When ¢( a) = b', we can obtain a similar contradiction. Thus G is 
not a weakly 3 DCI-group. 

Lemma 2. Let n 2n1 ql, m = 2m1 q2, where (ql,2) = (q2,2) 1, nl > 
ml ::::: 1. Then G Zn ED Zm is not a weakly 3 - DC I -group. 

Proof. Set S {a, b, c} and T = {at, b' , c'}, where 

and 

{

a' 

b' = 
c' 

(n/(m,n),I) 
(n/(m,n) +n/2,1) 
(1,0) 

(n/2(m, n), 1) 
(n/2(m, n) + n/2, 1) 
(1,0). 

Then it is easy to see that G has the following decompositions with respect to 
the subgroups (c) and (c'). 

m-l m-l 

U((c)+ia) U ((c') + ia') 
i=O i=O 

and the mapping f: 

ka+[cf--*ka'+[c', (0 k m 1,0 l::=.:;;n-l) 

is an isomorphism from D( G, S) to D( G, T). Since the orders of a,b, and c 
are m,m, and n respectively, and the orders of a', b' and c' are 2m, 2m and n 
respectively, there is no automorphism of G mapping S into T. Thus G is not 
weakly 3 - DCI. 

The following lemmas [3-5] are presented in preparation for proving the suf­
ficiency of Theorem 4. 

Lemma 3. Suppose that D( G, {a, b, c}) ~ D( G, {a', b', c'}), D( G, {a, b, c}) 
is strongly connected, and 2a, 2b, and 2c are distinct. Then there is an auto­
morphism f of G such that f {a, b, c} = {a', b', c'}. 

Proof. It suffices to consider the following case: 

and 

{ 
;~ = :: ~ 
2c a + b 

{ 

2a' 
2b' 
2c' = 

c' + b' 
a' +c' 
a' +b'. 
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The other cases can be discussed in a similar way as in [8]. 

Set x = b - a and x' b' - a'. Then ord(x) ord(x' ) = 3 and G (a, x) 
(a', x'). If G is cyclic, then both a and a' are generating elements of G and so the 
mapping f: ka 1--7 ka' is an automorphism of G satisfying the specified condi­
tions of our lemma. If, otherwise, G is not cyclic, then G ~ (a)EB(x) = (a')EB(x'), 
and the mapping f: ka + lc 1--+ ka' + lx' is the desired automorphism of C. 

Lemma 4. Let G be an abelian group of even order, G?F Zn Z2( 4 In), 
G?F Zn(8 In). Suppose that S = {a, b, c} is a generating subset of G satisfying 
the following: 

{ 
2a 
2c = 

2b 
a+b 

and D( G, S) ~ D( G, T). Then there exists some automorphism f of G such 
that f(S) T. 

Proof. Let f be an isomorphism from D( G, S) to D( G 1 T) satisfying 
f(O) O. Then f(S) = T. Suppose that T = {a',b',c'}. Without loss of 
generality, we assume that f( a) = a', f( b) b' and f( c) c'. It is easy to 
see that 2a' 2b' and 2c' = a' + b'. Thus G (a, a - c) (a', a' c') and 
ord(a - c) = ord(a' - c') = 4. We consider two cases. 

Case 1. (a - c) n (a) = {O}. 

In this case, G ~ (a) EB (a-c). If (a' c') n (a') -# {O}, and a' c' E (a'), then 
G is cyclic. By Theorem 2 we are done. If a' -c' E (a'), then 2(a' c') E (a') and 
2( a' -c') = ord( a')a' /2. If, in addition, ord( a')/2 is odd, then G (a'-c')EB{2a') 
is cyclic, by our condition and Theorem 2, we are done. If ord( a')/2 is even, set 

b" = (a' - c') - ord(a')/4 

Then 2b" 0, G = (a', b") and if b" tt (a'), then G is cyclic, and the theorem 
follows by Theorem 2. If b

ll 

rf- (a'), then G 3: (a') EB (b") , and 4 I ord(a'), 
contradicting our condition. If (a' - c') n (a') = {O}, then G ~ (a' - c') (a'), 
and the theorem follows readily. 

Case 2. (a - c) n (a) = {O}. 

In this case, it is not difficult to check that G 3: (2a) EB (a - c) and ord(a)/2 
is odd. Thus G is cyclic and the Sylow 2-subgroup of G is the cyclic group of 
order 4, and by Theorem 2, we are done. 

Lemma 5. Let G be a finite abelian group the Sylow 2-subgroup of which 
is either homocyclic with rank 2 or cyclic of order at most 4. Let S = {a, b, c} 
be a generating subset of G satisfying 2a 2b and 2a, a + b, a + c, b + c and 
2c are distinct. If D( G, S) 3: D( G, T), then there exists an automorphism of G 
which maps S into T. 
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Proof. Set T = {a',b',c'}. Let G = G1 GZ1 where G1 is the Sylow 
2-subgroup of G, and f be an isomorphism from D(G, S) to D(G, T) with 
f(O) = 0, f(a) a', f(b) = b' and f(c) c'. Then it is easy to see that 
2a' = 2b' , a' + b', a' + c', b' + c' and 2c' are distinct. 

By a similar proof as in the corresponding case in [11], we can deduce the 
following: 

for any positive integer k, f(ke) ke'. 

b). f(a - b) at b'. 

c). if k is odd, then f(ka) E {kar, kb'}, f(kb) E {ka', kb'}. 

d). if k is even, then f(ka + b) E {(k l)a', kat + b'}. 

if k is even, then f(ka) E {ka', (k - l)a' + b'}. 

f). if k is odd, then f(ka + lc) E {ka' + lc', kb' + le'}. 

Let ko be the smallest positive such that koa E (c). Assume that 

koa loc. 

In the following, we prove that f (ko a) E {ko a' , ko b' }. If ko is odd, this is the 
conclusion of We show that it holds for even ko by contradiction. For 
otherwise, we have bye) that f ( ko a ) ( ko 1 )a' + b' , and so 

Set 

and 

(ko - l)a' + b' loc' 

u 
{

a' -

.
bl = 
C' = 

(al,aZ) 
(bI , bz) 
(Cl' cz) 

(a~,a;) 
(b~, b;) 
(c~, c;). 

where the first coordinate belongs to G1 and the second coordinate belongs to 
Gz. Then 2al = 2b1 , 2ai = 2b~, and G1 (aI, al - b1 , Cl) = (ai, ai - bi, cD· 

If G1 is homocyclic with rank 2 and I GI 4, we claim that G1 ~ (al) EB (cd. 
Suppose al - b1 ~ (aI, Cl). Since G1 has rank 2, we know that (aI, CI) is a cyclic 
group. Since al - b1 is of order 2, G1 (aI, Cl) EB (al - b1). Since G I is 
homocyclic, we must alillo have I (aI, CI) I 2. But then I GIl = 4, contrary to 
assumption. Thus Gt = (at, Cl), and by an elementary group-theoretical result 
(the Second Isomorphism Theorem applied to a homocyclic group of rank 2), 
(al) n (Cl) is trivial, proving our claim. 
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Now set ord( al) ord( Cl ) = ord( a~ ) ord( c~) = 2n
, then in view of the 

equalities koa Zoc and G1 (al) EB (CI), we have koal locI O. Thus 
ord(ad I ko,ord(c!) 110 • On the other hand, by the equality (ko-l)a'+b' loc', 
we have (ko - l)a~ + b~ loci, and so a~ b~, a contradiction. 

If G l is cyclic of order 4, by the statement of a) and the fact that f(O) = 0, 

we have ord(c) = ord(c'), and so ord(cd ord(ci). In what follows, we show 

that ord(ad = ord(b1 ) 4. Assume, without less of generality that ordeal) ~ 

ord(b l ). Then al :f. o. If ord(ad 2, then since G1 (al,b1,cl) and 

ord(Gl ) = 4, we have ord(cd = ord(cD 4. Since ko is even, kOal lOCI 0, 

thus 4110 , and koai +(bi -aD loci = 0, that koai bi -ai· As bi -ai :f. 0 

and ko is even, we have 4 I ko. We will obtain the contradiction by showing 

that ~o a E (e). In fact, since koa Zoc and the order of G2 is odd, we have 

4fa2 ~C2' If 8 110 , then, since al 2Cl, we have 

Thus, ~o a E (c), a contradiction to the choice of ko. Thus, ord( al) = 4. As 
2b1 = 2al :f. 0, we have ord(bl ) 4. Next, we show by contradiction that 
ord(aD = ord(bi) = 4. If, otherwise, we assume that ord(ai) > ord(bi) , then 
ord(ai) = 2, bi O. Since {ai,bi,ci} generates G I , we have ord(ei) = 4. Now, 
since loci = koai + bi - ai = bi - ai -/:: 0 and 2loci 0, we have 2 I 10 but 
4 110 . On the other hand, since kOal lOCI:f. 0 (ord(cd ord(ci) = 4), we 
have 4 I ko. We then deduce that 

and 

io { ('2 + 2ord(c2))c = 

ko 2 mod 8, 
ko == 6 mod 8. 

/0 == 2 mod 8, 
10 == 6 mod 8. 

(-Cll *C2) 
(Cl,!tC2) 

10 == 2 mod 8, 
10 == 6 mod 8. 
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Since ord(cl) ord(al) = 4, we have al . Clea~ly, 'ra2 = ~C2' Thus 
E (c), a contradiction to the choice of ko. Thus ord(aD ord(b~) = 4. 

ko is even, we have kOal koa~. On the other hand, if ord( Cl) 2, then 
ord( cD 2 and so Cl c~. If ord( cd 4, then from the equality koao lOCI, 
we know that 10 is even and so lOCI = loc~. But then kOai = lOCI loc~ = 
koa~ + (b~ - aD = kOal + b~ - a~, thus a~ b~, and so a' b' , a contradiction. 

If G1 is homocyclic of rank 2 and IGII = 4 or G1 is cyclic of order 
2, then 2al 2bI 2CI = 2a~ 2b~ 2c~ O. As pointed out be-

ord(c) = ord(c'). Thus ord(cd ord(cD. Since ko is even, we have 
kOal = lOCI = O. Thus loc~ = O. On the other hand, from the equality 
(ko l)a~ + b~ = loc~, we have b~ - a~ (ko - l)a~ + b~ loe~ . 0, thus 
a~ b~, this is imposible. 

We thus conclude that 

f(koa) koa' 

Thus 

loc' E {koa', kob'}. 

If lo a' = ko c', consider the following correspondence: 

fo : ka + le f--+ kat + le' . 

If ka le for some non-negative integers k and 1, then by the choice of ko, 
we have ko I k. Let k koq. Then 

koqa = q(koa) = q10e = le 

and so 1= q10 +q'ord(e) for some q'. Thus Ie' (q1o +q'ord(e))c' = ka', and so 
fa is well-defined. fo is clearly an automorphism of G and fo( a) = a', fo( e) = c'. 
On the other hand, if the Sylow 2-subgroup of G is cyclic, then a - b = a' - b' 
and fa (a - b) = a' b', therefore, fo (b) b' . If the Sylow 2-subgroup of G is 
homo cyclic , assume that b = k1a + lIe, then f(b) = b' kIa' + llC' (the proof 
is similar to the above). Thus fo(b) = klfo(a) + fo(e) kIa' + IIC' = b', 

If 10 b' = ko c', we define the mapping fo as follows 

fo : ka + lc f--+ kb' + lc', 

Then by a similar discussion, we can deduce that fo E AutG and fo(S) = T. 
This completes the proof. 

Now we are in the p~sition to prove Theorem 4. 

Proof of Theorem 4: 
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::::}. Let G be a weakly 3 - DC I -finite abelian group that does not satisfy 
i); we prove that ii) holds for G. Now G is of even order and can be gener­
ated by some two elements of G. Suppose that G ~ EB Zm. Then mn is 
even .. Assume, without loss of generality that n is even. If m is odd, we can 
assume that each prime divisor of m is a prime divisor of n. By Lemma 1 , we 
know that the Sylow 2-subgroup of G is a cyclic group of order at most 4. If m 
is even, by Lemma 2, we conclude that the Sylow 2-subgroup of Gis homocyclic. 

By Theorenl 3, it suffices to check that any any 3-e1ement generating 
subset of G is a C I-subset. This is clear if G is of odd order (Lemma 3). If 
G satisfies ii), then by Lemmas (3-5], we know that G is weakly 3 - DC I. 
In what follows, we assume that the rank of G is at least 3. Suppose that 
D( G, {a, b, c}) ~ D( G, {a', b' , e/}) and {a, b, e} is a generating subset of G. Let f 
be an isomorphism from the first digraph to the second satisfying that f(O) O. 
We consider three cases. 

Case 1. 2a, 2b and 2e are distinct. 

In this case, the theorem follows readily from Lemma 3. 

Case 2. 2a = 2b = 2e . 

. In this case, we have that 2a' = 2b' 2c'. Since G can not be generated by 
two elements, we deduce that G ~ (a}EB{a-b) ~ (a'}EB{a' -b')EB(a'-e'). 
From this, the theorem follows readily. 

Case 3. 2a 2b f= 2e. 

Clearly, 2e f= a + b. Assume, without loss of generality that f(a) a', 
f ( b) b' and f (c) = e'. Then it is easy to see that 2a' = 2b', 2a', a' + b' , a' + e' , 
b' + e' and 2e' are distinct, and G (a, c, a b) (aI, e', a' - b'). 

If there exist non-negative integers k and I such that 

ka le (1) 

then by the proof of Lemma 5 (the statements c) and we know' that f (k a) E 
{ka' , kb', (k - l)a' + b/} and f(le) = Ie'. If f(ka) (k - l)a' + b' ·, then by (1), 
we have the following 

(k - l)a' + b' Ie' 

and so G can be generated by a' and e', a contradiction. Thus f( ka) = ka' or kb'. 

Now suppose that ko is the smallest positive integer such that koa E (c) and 
suppose 

koa = loe (2) 

Then by the above conclusion, we have that f(koa) E {koa', kob/}. 
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If f (ko a) ko a', we establish a correspondence fa in G as follows: 

fo : ka + Ie + m( a - b) 1---+ ka' + le' + m( at bl) (0 ::; m ::; 1). 

In the following, we prove that fa E AutG. 

If k1a+he+ml(a-b) = k2a+12c+m2(a-b), then ml m2, since otherwise, 
G can be generated by a and b, a contradiction. Now suppose, without loss of 
generality that kl ;:::: k2. Then (k1 - k2)a = (12 Idc. By letting f act on both 
sides of the above equality, we obtain the following 

By the former proved statement, we know that f( (kl - k2)a) E {( kl - k2 )a', (kl -
k2)bt}. If f((k 1 k2)a) (kl kz)b' -I (kl - k2)a', then kl k2 is odd and 

(kl k2 )b' 
(kl - k2 l)b' + b' 
(kl - k2 - 1 )a' + b' 

Thus G can be generated by a' and c', a contradiction. Therefore f ( ( kl - k2 )a) = 
(kl - k2 )a', and so 

(kl - k2)a' (l2 h)c' 

This implies that fa is well-defined, similarly, fo is a bijection. Thus fo E AutG. 
Clearly, fo {a, b, e} = {a', b', e'}. 

If f ( ko a) ko b', define f 0 as follows: 

fo : ka + Ie + m(a - b) 1---+ kb' + Ie' + m(b' - a') 

By a similar argument, we can show that fa E AutG and fo{ a, b, c} = {a', b' , e'}. 
This completes the proof. 
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