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ABSTRACT. Previously the authors characterized the 3-connected graphs with 

a Hamilton path containing only two contractible edges. In this paper we extend 

this result by showing that if a 3-connected graph has a diameter containing only 

two contractible edges, then that diameter is a Hamilton path. 

INTRODUCTION AND TERMINOLOGY 

All graphs in this paper are finite, undirected and simple. 

Let G be a 3-connected graph. An edge e xy in G is said to be contractible 

if the graph obtained from G by contracting e is also 3-connected. Otherwise, e is 
said to be noncontractible. For G i=- K4 and e = xy E E(G), one easily sees that 

e is noncontractible if and only if there exists S E V (G) such that S = {x, y, s} is 

a 3-cutset of G; in that case we say that e and S are associates of each other. We 

use Ec (G) to denote the set of all contractible edges of G and En (G) for the set of 

all noncontractible edges. For H a subgraph of G we set Ec(H) = Ec(G) n E(H) 
and En(H) = En(G) n E(H). We also let G[H] denote the subgraph induced by 
V(H). If no confusion can arise, we will often use H for any of V(H), E(H) or the 

subgraph H. For x E V(G), N(x) will denote the set of neighbours of x in G. 

A consequence of a result in Dean, Hemminger and Toft [DHT87] is that every 
diameter of a 3-connected graph G contains at least two contractible edges of G. In 

[ACH93] the authors characterized the 3-connected graphs with a Hamilton path 
containing only two contractible edges; we denote this class by H2 . Now let 'D2 

denote the class of 3-connected graphs G that have a diameter containing only two 
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contractible edges of G. In this paper we show that such a diameter is in fact a 

Hamilton path. That is, our goal is to prove the following. 

Theorem. V 2 = 1{2' 

We refer the reader to [ACH93] for other background information. Since we 

will refer to several results from that paper it seems desirable to keep the numbering 

of them unchanged. Therefore, we will use letters or names to refer to some of the 

remaining results. As was done there we hereafter let G denote a graph in V 2 

and let P = (XI, X2,"', xn) denote a fixed diameter in G that contains only two 
contractible edges of G. Of course, N(Xl), N(xn) ~ V(P) since P is a diameter. 

And, by way of contradiction, we will assume throughout that P is not a Hamilton 

path. Now it is known [AH093] that if G has a longest cycle that contains at most 

three contractible edges of G, then G is hamiltonian. Thus, we also assume hereafter 

that Xl is not adjacent to Xn in G. And since we know from computer checks that 

the theorem is true for n < 10, we will avoid messy small cases by assuming that 

n ~ 10. We will refer to Xl as the left end of P and using this order, we let eL and 

eR denote the two contractible edges in P where eL is to the left of eR. We use the 

notation [Xi, Xj] for 1 ::; i ::; j ::; n to denote the path (Xi, Xi+ 1, ... ,Xj)' 

We will refer to a 3-cut S = {XilXHI1V} associated with f = XiXHI E En(P) 
simply as a cut; it is called a bad cut if v t/. V(P) and a good cut if v E V(P). 

An edge f E En(P) is called a bad edge if it has no good cut associated with it. 

Of course, a consequence of our theorem here is that there are no bad cuts or bad 

edges! Never mind; a cut S separates P into either two or three segments (anyone 

of which can be empty- but no more than one according to the following lemma) 

which we denote by Ls, Ms and Rs where Ls(Rs) is to the left (right) of S while 
!vIs is between the edge f and the vertex v when v E V(P) and is not adjacent to 
fin P. 

A result, so basic to all that we do that we will seldom refer to it again as such, 
is Lemma 1 of [DHT87]. 

Lemma DHT. If S is a cut associated with f = xixHl E En(P), then every 
component of G - S intersects P. 

For N E {Ls, Ms, Rs} and nonempty, the component of G - S that con
tains N might contain one (but not two by Lemma DHT) of the other members of 

{Ls, lvIs, Rs}; but if it contains neither, then we say that S isolates N. Moreover, 

if M s is isolated by S, we call S a natural cut. If M s is not isolated by S, then we 

call S an unnatural cut; it is unnatural to the right (left) if Rs(Ls) is isolated by S 

(see Figure 1). Thus bad cuts and cuts consisting of three consecutive vertices of 
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P are unnatural both to the left and to the right. 

The cut S {xi, xi+ l' is natural in the above graph while it is 
left-unnatural in the graph below (the jumper from Xi to Xj indicates 

the components in each case), 

Figure 1 

Using the above terminology, Lemma 2 of [DHOS9] is as follows. 

Lemma 1 [DH089]. If S is a natural cut, then lVIs contains an endvertex of 

at least one of eL or eR. 

This lemma is used to locate contractible edges in P so often that we often use 

it implicitly. In that connection, we note that all cuts associated with XIX2 and 

Xn-lXn are natural ones. 
As suggested by the notation Ls , Ms and Rs, one ,vould expect, in the case of 

a good cut, that G - S commonly has three components. We now show that is not 

the case here, whether S is a natural cut or not. 

Lemma 2. If S is a cut, then G - S has only two components. 

Proof. The claim is immediate by Lemma DHT if S is a bad cut. So let 

S = {Xi,XHl,X s } with Xs E V(P). Obviously we may assume that 2 ::; i ::; n - 2, 
that i + 3 ::; s ::; n - 1 and, by way of contradiction, that Ls, Ms and Rs are 
each isolated by S. Therefore, by Lemma 1, at least one of Ls or Rs fails to 
contain an endvertex of a contractible edge of G. Since the two cases are similar 
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we only consider one. So assume that eL is to the right of XHI. Thus we have a 

cut T = {Xl, X2, Xt} with Xt E V(P). We consider the possible values of t. First 

note that t rJ [3, i + 1]; for if t E [3, i + 1], MT contains an endvertex of eL or eR by 
Lemma L Thus, since Xi must be adjacent to vertices in the component containing 

Rs, we must have t ~ s + L But this contradicts that and Rs are isolated by 

S since Xl must be adjacent to vertices in RT · I 

Natural cuts are generally better behaved than unnatural cuts and many of the 

results for cuts from [AH93] carryover to them, almost verbatim, as in [ACH93]. 
The minor differences from [ACH93] are in the proofs; if X E and C is a component 

of G S, then there is an edge from X to C. In the case, when P was a 
Hamilton path, this was an edge to a vertex in P. Now it just gives us a P-jumper 

(or more simply, a jumper since they will always refer to P) from X to a vertex 
y E C n Pi that is, an xy-path that is openly disjoint from P. We will use the 

notation Pi,j for a jumper between distinct vertices Xi, X j E P. Likewise, if S is an 
unnatural cut to the left, for example, then there is a jumper from Ms to Rs but 

none to Ls. On the other hand, if S = {Xi, XHl, v} is bad cut, then there are 
jumpers from L s to Rs, but they must all go through v. Since we will need to refer 

to the part of these paths from v to P we will call them semi-jumpers. 

One of the useful results about cuts concerns "crossed natural cuts" , except now 

natural cuts can cross in four different ways; to the inside, to the outside, to the right 

side, and to the left side. So let S = {Xi, XHl, xs} and T {Xj, Xj+l, xd be natural 
cuts with i + 1 ~ j. Then Sand T are crossed to the inside if i + 1 ::; t < s ::; j; 

they are crossed to the outside if t ~ i and j + 1 ~ s; they are crossed to the right 

if j + 1 ~ s < t; and they are crossed to the left if s < t ~ i. 

Lemma 3 [Crossed Natural Cuts). Let S = {Xi, Xi+l, xs} and T 
{Xj,Xj+l,xd be crossed natural cuts with i + 1 ~ j. Then 

(1) Sf = {Xi, XHlJ xd is a natural cut if MSI =f. 0, 
(2) Tf = {Xj, Xj+I, xs} is a natural cut if !vIT' =f. 0, and 

(3) if j =f. i + 1, then Xs and Xt are consecutive in P (in the case of being crossed 
to the outside, this means that t = 1 and s = n). 

Proof. Suppose that Sand T are crossed to the inside and let Xk E MSI; 
that is, i + 1 < k < t. Now there can be no jumpers from Xk to any vertices in 

[Xl, Xi-I] U [Xs+b xn] since S is a natural cut; but neither can there be any jumpers 

from Xk to vertices in [Xt+l' xs] ~ MT since T is a natural cut. Thus MSI is isolated 
by Sf as claimed in (1). (2) is a symmetric version of (1) and by the same type of 

argument we see in (3) that {xs, Xt} is a 2-cut if t + 1 < s. The proof of (1) and (2) 
for the other type cuts is equally straightforward. For them however, j = i + 1 is 
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possible, and in that case {Xs, xd no longer needs be a 2-cutj for example if Sand 

T are crossed to the right with j = i + 1 and s + 1 < t, we can still have a jumper 

from Xi+l to Xs+l· I 

A similar, and equally useful, result for good cuts is the following. 

Lemma 4. If S = {Xi,XHllXs } and T {Xj,Xj+l,Xt} are good cuts with 

i + 1 j, j + 1 ~ sand j + 1 < t, then we don't have both that Rs is isolated by 

S and that RT is isolated by T. 

Proof. By way of contradiction, suppose that they are. Then we have a 

jumper from Xi to [Xs+l,Xn ] and another from Xj+l to [Xt+llXnJ. But the first 

jumper forces t 2: + 1, while the second forces s 2: t + 1. I 

Of course there is a symmetric version of this lemma involving Ls and LT. 
Our first "new" lemma is a similar "crossing" result for bad cuts. 

Lemma ACH. If S = {Xi, xHl, is a cut and f XjXj+l is a bad 

edge with i + 1 ~ j s, then is not isolated by S. 

Proof. that Rs is isolated by S and let B {Xj,Xj+llV} be a bad 

cut associated with f. So we have a jumper Q from Xi to Xq E [Xs+b Xn]. If 

i + 1 < J', then we must also have a jumper from XHI to [Xs+l' Xn]. But these two 
jumpers must go through v since B is a bad cut, which contradicts that P was a 

diameter (and (XIX2'" Xi' .. v ... XHI ... Xn) is longer than P). So we must have 

j = i + 1 > 2; the latter since N(xd C V(P). But then, all paths in G[LB U {v}] 
from Xl to v must pass through Xi; or such a path united with the portion of Q 
from v to Xq contradicts that Rs is isolated by S. Thus {Xi, XHb XH2} is a cut 

and so f is not a bad edge. I 

Now suppose that XIX2 E En(P) and that S = {XII X2, Xs} .is an associated 

good cut (clearly, XIX2 cannot be a bad edge). Then eL is to the left of Xs by 

Lemma 1. Moreover, we can pick Xs so that eR is to the right of Xs. This is obvious 

if eR = Xn-IXn so assume that Xn-IXn E En(P) and let T = {Xn-ll Xn, Xt} be an 
associated cut. Thus, by Lemma 3, we can take s ::; t and so, by Lemma 1, Xs is 

between eL and eR. Furthermore, since P is a diameter, all neighbours of Xl lie on 

P, so there is an edge XIXp with xp E Rs, that is, with p > s. In the following 

lemma we will divide into cases depending on whether there is such an xp to the 

left of eR or not. In either case, we find that there is only one such xp. 

Lemma 5. Let S = {Xl, X2, xs} be a cut. Then there is a unique p > s with 

XIXp E E(G). Moreover, if eR E [xp,xn ], then N(xd = {X2,X3,Xp }, eL = X3X4 
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Proof. Suppose first that eR E [Xp, Xn] for some p with XIXp E E( G). So 

we have 4 ~ s < p < n. Thus there are no bad edges in [Xll Xp-l]' Note that there 

is a jumper Q from {Xl, X2} to Xq E Rs with q > and q i= p; otherwise {xs, Xp}. 

is a 2-cut separating Xl from Xn· 

Let eL XhXh+I' Since eR is to the right of x P1 there are cuts A and B 
associated with Xh-IXh and Xh+lxh+2,respectively. And, as noted above, A is 

good cut, say A Xh, xa} (note that A = S is And we claim that 

we can choose B to be a cut as well. For suppose that B = {Xh+l,Xh+2,V} 

is a cut with v E V(G) - V(P). Thus, as noted above, p + 1 h + 2 and Q 

must be (X2l v, Xq) since it goes from to RB and since P a diameter. Now v 

is not in the component containing Ms because of the edge VXq and so there are no 

edges from v to Ms; consequently, {Xh+ll Xh+2, xd is a cut associated with 

Xh+IXh+2. So as claimed, we can assume that B {Xh+I, Xh+2, Xb} is a good cut 

associated with Xh+IXh+2. 

The remainder of the proof of this lemma now proceeds just as that of Lemma 

5 in [ACH93]. I 

Theorem 6. The pair eL, eR is one of the following: 

(1) XIX2, Xn-lXn, or 

(2) XIX2, Xn-3Xn-2 or X3X4, Xn-IXn, or 

(3) X3X4, Xn-3Xn-2. 

Proof. Suppose that we don't have (1). Thus, by symmetry, we assume that 

XIX2 E En(P) and let S = {Xll X2, xs} be an associated cut. Consequently, there is 

an edge XIXp with s < p and, by Lemma 1, with eL to the left of Xs. If eR = Xn-lXn, 

then p < n since XIX n rf. E(G) and so (2) holds by Lemma 5. 

So suppose that Xn-lXn , E En(P) as well and let T {Xn-I, Xn, xd be an 

associated cut. Thus, as with S, we have an edge XnXq with q < t and with eR to 

the right of Xt. So by Lemma 5, dg(xd = dg(xn) = 3. Using symmetry and Lemma 

5, we can assume that we have one of the following two situations: (a) xp and Xq 

are both between eL and eR or (b) eL and eR are both in [XllXp]. We are done in 

case (a), since then eL and eR are as in (3) by Lemma 5. 

And case (b) does not occur. This is because of the edges XIXn-1 and Xn-2Xn 

(the latter is given by Lemma 5) and the assumption that P is a diameter but not a 

Hamilton path. For suppose that VXk is an edge with v E V(G) V(P) and Xk E P. 

So k i= 1, n and, if 1 < k < n -1, then the path (v, Xk, Xk+b' ", Xn-2, Xn, Xn-I, XI, 

X2,'" ,Xk-I) contradicts that P is a diameter. Likewise, the path (v, Xn-I, Xn, Xn-2, 

Xn -3l ... ,Xl) shows that k i= n - 1. I 
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We can now extend Lemma 5. 

Proof. By Lemma 5 and symmetry we only need to consider the case with 

eL = XIX2· Thus, by Theorem 6, eR is either Xn-3Xn-2 or Xn-IXn· 

By way of contradiction, assume that there exist i,j with Xi, Xj E N(Xl) and 
with 4 :::; i j n 1. Again by Theorem 6 we have that e R is to the right of 

Xi i = n - 2 implies that Xn-lXn is contractible). And since there can be 

no bad in [XbXi], we let S = {X2,X3,Xs } and T = {X3,x4,xtl be good cuts 
associated with X2X3 and X3X4, respectively. So s =? 1 and hence, by Lemma 1, s > i 
since eR is to the right of Xi. Thus 2:: j with Rs isolated by Sunless s = j and S 
is naturaL But, by Theorem 6, the latter forces eR Xn-3Xn-2 and = n - 2. But 

then, since n 10, 8' = {X21 X3, is a natural cut, in contradiction to Lemma 

1. Hence S isolates Rs and so we have a jumper from X2 to Xw with Xw E Rs. 
Because of that jumper t 1 and so, as with s, we have t j. But by Lemma 

3, RT cannot be isolated T so we must have i 4, t j and, by Lemma 1, 

eR Xn-3Xn-2 E [Xi, Xj]. But now, by the symmetric version of Lemma 5, we 
have j n 1. Thus s n - 1 since s 2:: j and Rs is isolated by S. This is a 

contradiction since Xn-2Xn E E( G) by Lemma 5. I 

V(P) with disjoint lUInners Pi,v from Xi to 

Xv and Pu,j from Xu to Xj, 

(1) If < u v j, if XuXu+l is a good edge and if v 
contains a contractible of G. 

(2) If i < u < j < v, if XuXu+l is a good edge and if j 
contains a contractible edge of G. 

Proof. We only prove (1) since (2) follows in a like manner .. So assume that 

v 2:: u + 3 and that [xu, Xv 1 contains no contractible edges. By assumption we 

have a good cut, call it Q, associated with XuXu+l. And there are no bad cuts 

associated with Xu+lXu+2 since an associated vertex would have to be on each of 

the two disjoint jumpers in the hypothesis. Thus we have cuts Q = {Xu,Xu+l,Xq } 

and S = {x u+I,Xu +2,Xs }' We must have s E [l,i] U [j,n] and since the two cases 
are similar, we only consider the one with s E [1, i]. Thus Ls is isolated by S 
because of the jumper Pu,j. Since Ls is isolated by 5, we have jumpers from 

both X u+l and Xu+2 to Ls; say Pu+1,w and P U + 2,Zl respectively. Note that we 
can take w =? z unless Ls = {Xl}' Thus, if Xn-lXn E En(P) with associated cut 

B = {Xn-I, Xn, Xb}, then we must have b 2: u + 2 by Lemma 4 for Band 5. But 
then v = n - 1 is not possible by Lemma 1, so we have b 2: v and e R is to the right 
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of XV' eR E {Xn-3Xn-2, Xn-lXn }. Again by Theorem 6, Of course we get the same 

conclusion if eR = Xn-lXn . 

Now consider the possible values of q. By Lemma 4 for Q and S, we must 

have q ~ i because of the jumper Pi,v' If i S; q S; u 1, then Q is a natural cut 

because of the jumper Pu + 2,z' Hence [Xi, Xu] contains the contractible edge e L, so 

eL = X3X4 and s S; i S; 3. But by Lemma 5, i =;6 3 and s =;6 2 because of the edge 

XIX3. And s =;6 1 since Ls is a component of G - S. So we don't have is; q S; u-1 
either. Therefore, because of the jumpers and we must have q ~ v with 

RQ a component of G Q and with jumpers from Xu and xu+ 1 to RQ. Thus, by 

Lemma ACH, we can take the cut associated with Xu+2Xu+3 to be a good one, say 

T = {Xu+2,Xu+3,Xt}. 

But now, because of these jumpers and Lemma 4 for S and we cannot have 

t < u. And we can't have u S; t S; v by Lemma 1 since in that case T would be a 

natural cut because of the jumper Pi,v' Moreover, we can't have t > j by Lemma 4 

for Q and T. Thus v < t S; j. But such a t doesn't a cut! That completes the 

proof of (1). I 

PROOF OF THE THEOREM 

Suppose that G is a 3-connected graph containing a path with precisely 

two contractible edges and consider a qualifying diameter P (x 1, X2, ... , xn) with 

n ~ 10. We shall show that P is a hamiltonian path in G. 

Assume that P is not a hamiltonian path and let Xi be the first vertex from 

the left that has a neighbour not in P; that is, N(Xh) C V(P) if h < while we 

have a vertex v ~ P with XiV E E( G). And since G is 3-connected, we have three 

openly disjoint semi-jumpers from v to P which, by the choice of i, we can take to 

be Pi, Pj and Pk to Xi, Xj and Xk, respectively, with the edge XiV as Pi and with 

2 < i + 1 < j < k - 1 (the inequalities since P is a diameter). Thus, k ~ i + 4 and, 

by the choice of i, all jumpers with one endvertex in [Xl, Xi-I] must be edges .. We 

also pick such v and k so that k - i is as large as possible, and after that choice we 

choose j as small as possible. 

Now by Lemma 5 (dg(X3) 3 if eL = X3X4) and Theorem 6, eL is to the left 

of Xi and, by symmetry, eR is to the right of Xki that is, all edges in [Xi, Xk] are 

noncontractible. Moreover, we claim that, because of the choice of i, all edges in 

[Xl, Xi+2] are good edges. For let B = {Xh' Xh+l, w} be any bad cut. Then we must 
have a semi-jumper from w to LB. Thus we immediately have that all edges in 

[Xl, Xi+l] are good edges. And if h = i + 1, then all semi-jumpers from w to LB 
must go to Xi; thus {Xi, Xi+ 1, Xi+2} is a good cut. 

So let S = {Xi+b Xi+2, xs} be a good cut. Thus, by Lemma 1, we have that S 
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is an unnatural cut with S E [XI,Xi] U [XklXn]. 

We first assume that s 2: k. If S isolates Rs, then there is a jumper from Xi+l 

to Rs, which contradicts Corollary 8 since k 2:: i + 4. Hence, S is unnatural to the 

left, and so s = k and j i + 2. But there must be a jumper pI from Xi+l E S 
to Xw E Ms U Rs and, by Corollary 8, the only possibility is Xw Xi+3. But then 

(Xll' ,Xi,V,Pj Xi+2,XHI,P' ----l- XH3,"',Xn ) is a longer path than P. 

If s i, then S isolates So we have Xi+lXw and Xi+2Xz with X W1 X z E 

Moreover, Xw i= Xl or we have a longer path than P. So s > 1 and we can 

take w i= z; otherwise, - {xw x z } is contained in a component of G -

{XW1 Xs}. If w, z 2, then, by Corollary 8, [Xmax{w,z} 1 Xi+d contains eL. Hence 

eL X3X4, Xw X2 and X z Xl· But now, since XIX3 E E(G) in that case, 

(V,XilXi~I'"'' Xl,X2,Xi+I,xH2,"', is a longer path than P. But W,Z 

2 if s < i. 
So we can assume that max{ w, z} i-I and that i, that that 

S = {Xi,Xi+l,Xi+2} is a cut. Because of this cut we can now show that we have 

a structure on [Xi, Xk] that resembles what was called in [ACH93]. Now 

from Corollary 8, the cut and our choice of i, there are no from [Xl, 

to xn]. Likewise, by our choice of k, there are no from [Xk+l, Xn] to 

[Xll except XiXu with u k. But the latter forces k = j + 2 

over Xj (or Xj} a resulting 

in a path and Pj U So there is no such edge. Next 

we note that, because we chose j as small as possible, there are no semi-jumpers 

from {Xj} to Thus, by Corollary 8, there can be no semi-jumpers 

from a vertex in {V,Xk} to [XHl,Xj-3]; nor one to {Xj-Z, or we have 
longer path. Thus all jumpers that we now consider must be disjoint from 

Pi UPj UPk' So what is to prevent [Xj+l,Xn ] from being contained in a component 

of G -{Xil Xj}? the it can only be a squaring jumper from Xj-l to 

Xj+l or a jumper from Xk to Xj-d. Thus, for j 2:: i + 4, the only jumpers on 

[XHI' are the squaring jumpers Pq,q+z, i + 1 ::; j 3; and each must be there 

or {Xi, Xq+d is a 2-cut. 
Because of these C'r111<>r,ncr jumpers, we for j 2:: i + 3, a path Q from 

Xi+2 to Xi+l with V(Q) V([Xi+l, Xj-I]): if j = i + 3, it is (XH2' Xi+I); if 

j = i + 4, it is P H2 ,H4 ----l- xH4, Xi+3, PH3,Hl ----l- Xi+l); if j = i + 5, 

it is (Xi+2, Pi+2,i+4 ----l- Xi+4, XH5, Pi+5,i+3 --+ xi+3, Pi+3,i+l XHr), and so 
on, depending on whether j - i is odd or even. We also let PR denote the path 

(XHl, Xi, V, P j ----l- Xj I Xj+l, ... , xn). 

The coup de grace will come shortly by combining these paths with another 

path produced by using the "leap frog technique" which is based on the following 

lemma. We remind the reader that all jumpers into vertices to the left of Xi are in 
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fact edges by our choice of i. However, we continue to refer to them as jumpers, 

since it saves us from specifying each time that they are not edges of P. 

Lemma [Leap Frog]. If Pr,t is a jumper with Xt between eL and X r, with 

t < i-I and with no jumper from Xr further to the left than Xt, then there is a 

jumper Pt+1,u with u < t. 

Proof. Let Z = {Xt,Xt+1,Xz } be a cut associated with XtXt+1. Since Z is a 
minimal cut the only problem situation is clearly when the only choice for Z is as 

an unnatural cut to the right with z > t + 1, and hence with a jumper Q1 from Xt 

to Rz. And since {Xt, Xt+1, Xt+2} is not a cut, there is a jumper Q2 from Xa E Lz 
to Xb E Mz U {x z } with b> t + 2 . But applying Corollary 8 to Q1 and Q2 forces 

b = r, which contradicts our choice of t. I 

So suppose that we have a jumper Y' from y E {XHl' Xi+2} to Xt with t < i-l. 
Now using the Leap Frog Lemma, we will produce a path PL on V([Xll Xi-I]) U {y} 
from y to Xi-I' This will be achieved by producing two disjoint paths Y and W to 

Xl from y and Xi-I, respectively. Since this is done by an iterative procedure, we 

will let Y and W denote the paths at each stage. So initially we take Y = Y' and 

W {xi-d. Now, assuming that eL is to the left of Xt, "leaping over" Xt to Xu 

with u < t by a jumper that the Leap Frog Lemma assures us exists. If e L is to 

the left of Xu, then we extend Y in a like manner, that is, by "running down" P to 

Xu+l and "leaping over" Xu' We continue this procedure until our current jumper 

goes to the left of eL; say for example, that it extends Y by going from Xb+l to Xa' 

If eL = X1X2, then a 1 and we complete W by adding [Xl, Xb] to it. If eL = X3X4, 

then by Lemma 5, Xa E {Xl, X2}; if a = 1 complete W as before and, if a = 2, 

complete W by adding (Xb, Xb-l, ... , X3, Xl) to it while completing Y by adding the 

edge XIX2 to it. 

We are now ready to put things together. 

First suppose that j = i + 2. So we have a jumper from Xi+1 to Xt with t < i. 
If t = i-I, then (Xll X2,"', Xi-I, xHd followed by PR is a longer path than P. If 
t < i-I, then PL connected to PR by the edge Xi-IXi is a longer path than P. 

So we try j ~ i + 3. This time we use a jumper from Xi+2 to Xt with t < i. If 
t = i-I, then (Xll X2,"', Xi-I, XH2) followed by Q, which in turn is followed by 
PR, gives a longer path than P. If t < i-I, then we use PL followed by Q, which 
in turn, is followed by PR to get a longer path than P. 

Thus, if we let A = Xl, then, by the leap frog technique, we have completed the 

proof of the Theorem by producing a path W from Xi-I to A followed by a path Y 
to Xi+2. This completes the proof. I 

REMARK. The Leap Frog Lemma obviously applies in the more general 
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setting of Hz and so, starting at one end of P and applying the above technique, 

we see that all members of Hz are in fact hamiltonian. In this context, we have 

examples to show that Hk f:. 'Dk for k ;:::: 6, but we don't know what happens for 

k = 3,4 and 5. 
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