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Abstract 
In [1] it is shown that the first order theory of almost all generalized Steinhaus 

graphs is identical to the first order theory of almost all where each general-
ized Steinhaus graph is given the same probability. A natural probability measure 
on generalized Steinhaus graphs is obtained by independently assigning a probabil-
ity of p for each entry in the generating string of the graph. With this probability 
measure it is shown that the first order theory of almost all uniform generalized 
Steinhaus graphs is identical to the first order theory of almost all graphs. 

1. Introduction. 

The concept of a generalized Steinhaus graph was introduced in [1]. In this 
paper we consider uniform generalized Steinhaus graphs, these form a subset of the 
set of generalized Steinhaus graphs which includes the usual Steinhaus graphs. The 
definition follows the usual pattern of first defining a uniform generalized Steinhaus 
triangle and then using this to build the adjacency matrix of a uniform generalized 
Steinhaus graph. 

We define a uniform generalized Steinhaus triangle of order n and type s 
to be the upper triangular portion of an n by n binary array A = (ai,j) whose entries 
satisfy ai,j Crai-l,j-r (mod 2) where 2 ::; i ::; n - 1 , i + s - 1 ::; j ::; n, 
Cr E {O, I} and Cs-l = 1. Note that other than the condition Cs-l = 1 there are no 
conditions on the values of Cr. We will assume there is a fixed (but arbitary) choice 
of values for the Cr. With this fixed choice we investigate the resulting collection of 
all uniform generalized Stenhaus graphs. 

The associated uniform generalized Steinhaus graph is the labeled graph whose 
adjacency matrix is obtained from the uniform generalized Steinhaus triangle by 
making A symmetric with a zero main diagonal. We will represent the vertex set 
of a uniform generalized Steinhaus triangle and graph by Vn = {I, 2, ... , n}. The 
generating string of the uniform generalized triangle and graph consists of (al,j )";=2 
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plus the first s 2 entries in rows 2 through n if 8 2. If there are fewer than 8 2 
entries in a row then each entry in the row becomes of the gelller'atl,ng 
For convenience we will refer to the entries in the ge:neI:atlmg 

O'<P1nlP ..... !'l't:t1'rlO: and the remaining the .............. 'U'JI. ... <A.A 

We define a probability measure on uniform of 
order n and type s by requiring that Pr(g1' 1) Pn,r where Oland g1' 
is any element in the generating string. We then define 
min(Pn'Tl qn,1')' function f( n) with the that 
n, 0 f(n) 1 and mn,1' f(n) for each g1' in the I">'-'JLL'-d.U.VJLJ.LI"> 

probability bound. We say that almost aU uniform ge.nt:Jl·i::\..Lll!Jt:U 

........ r ... "',"" ... 1-" if the probability that a uniform 1'".'-" ................ LLIJ'YU. 

,",,".(,VI">.,,,, ... t"T appro:a,C!les one as n (the number of -,;,p,,.'t1f'P<;! 

l,U'L1.l,':CUL of almost all on the 
this 

for Steinhaus F,.I.''''pJLU', 

aXIoms are 
-n. ........ .,.."0,...1-,, that for any first order nr,nn,prt:v 

can be deduced from finite number of axioms. If A 
relation for a then the first order axiom scheme of 

Axiom k: For any of and 
each with k 
In it is demonstrated that for each axiom almost all Steinhaus (with 

the restrictive the axiom. A similar result is shown 
in [1] for Stenhaus measure. We now 
extend these results to show that for each axiom almost all uniform 
Stenhaus satisfy the axiom. 

Suppose we restrict our attention to uniform Steinhaus graphs with 
fixed generator values. We give this set of the conditional prob-
ability measure, conditioned on the choice of values for the generators. 
Equivalently, we fix the diagonal and define the probabilities for 1 's and 
O's on the first row as described above. Let f > 0 and k and 8 be positive integers. 
Let 

E o < 'Y < k( k ) 1 (log log s - 8 - log f) . 2 2 + 1 og s 

Note that the expression on the right is positive for f small. (Here and 
throughout this paper log means log2') 

Theorem 1.1: Let k and 8 be positive integers and f < Also, let 'Y be 
as above. For any fixed choice of diagonal generators and any choice of probability 
measure using the probability bound n -"( almost all uniform generalized Steinhaus 
graphs satisfy Axiom k. Furthermore, there is a function g( n) such that g( n) -t 0 
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and the probability that Axiom k is not satisfied by a uniform generalized Steinhaus 
graph with n vertices with fixed diagonal generators is bounded by g( n) independent 
of the choice of values for the diagonal generators. 

Because the probability bound is independent of the choice of diagonal gener-
ators we have the following corollary. 

Corollary 1.1: Using the notation of Theorem 1.1, with probability bound n-'Y 
almost all uniform generalized Steinhaus graphs satisfy Axiom k for any fixed k. 

2. Preliminaries. 

In [2] the entries in the vth row of Pascal's triangle (mod 2), henceforth 
refered to as Pascal's triangle, are used to determine when changing the entry in the 
generating string of a Steinhaus graph win change a particular entry (v, w), v < w, 
in the corresponding adjacency matrix. Visually this corresponds to imagining the 
single one in the first row of Pascal's triangle overlaying the (v, w) entry in the 
adjacency matrix and the (v - 1 )th row of Pascal's triangle overlaying the generator 
positions w v + 1 through w. Any of the generator positions which are overlaid by 
a one from the (v - 1 )th row of Pascal's triangle will change the entry in the (v, w) 
position of the adjacency matrix if switched from 0 to 1 or vice versa. In this type 
of approach it is particularly important to use rows from Pascal's triangle where 
the number of ones in the row is small. 

We wish to use a similar technique for uniform generalized Steinhaus graphs. In 
order to do so we first develop some results for generalized Pascal triangles of type 
s (mod 2). A generalized Pascal triangle of type s (mod 2), henceforth 
refered to as a generalized Pascal triangle of type s, is a table Y with entries defined 
recursively by 

YO,j { 
0 for j =I=- 0 
1 for j = 0 

and for i 1 and all integers j, Yi,j CrYi-l,j-r (mod 2), where Cr E {O, I}. 
Thus Pascal's triangle is a generalized Pascal triangle of type 2 with Co = Cl = l. 
The first few rows of a generalized Pascal triangle of type 4 with Co = 1, Cl = 0, 
C2 = 1 and C3 = 1 are given below. Note that each row should be filled out to the 
right and left with zeros. 

1 
1 
1 
1 
1 

o 
o 
o 
o 

1 1 
o 0 
1 1 
o 0 

1 0 
1 0 
o 0 

1 
o 1 
o 0 

1 
1 

1 
o 0 o 1 

Lemma 2.1: Let Y be a generalized Pascal triangle of type s. If there are at 
most w ones in the base two representation of a row number then there are at most 
SW ones in that row. 
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Proof: In Y there is a one in the entry with position (1', c) if and only if the 
number of allowed paths from position (0,0) to position (1', c) is odd. An allowed 
path progresses down the table one row at a time so that with each step there is 
a j with 0 j 1 and Cj 1 so that one steps to the right j steps. This 
is equivalent to counting (mod 2) the number of strings of l' numbers from the set 
S = {j ICj I} of step sizes so that the entries in the string sum to c. 

The idea is to cancel out in of length l' the same sum. 
The number of left after caIlce.IlIn.f!, an upper bound on the number of 
entries in row l' which are L 

If the first two entries of a are different then by those entries 
we get another with the same length r and the same sum. Therefore we can 
cancel these two strings. Thus we need consider the whose first two 
entries are identical. Similarly we can up the third and fourth fifth and 
sixth entries, and so on and consider where the up entries are 
equal. Note that if l' is odd then there is an at the end which is not 
with any other In this case we say that there is block of size 1. 

Using the same as above we can cancel out in where 
the common value of the first two entries different from the common value of 
the third and fourth entries. So we only need consider where the first four 
entries are identical. Similarly we can consider only where the entries are 
identical within blocks of size 4. Note that at the end there will be an unmatched 

when in the base two of l' there is 1 in the 2's In this 
case we say there is a block of size 2. Note that in this block of size 2 the entries 
are equaL 

Continuing in this manner we need consider which have a block of 
size 2i if and only if in the base two representation of r there 1 in the 2i place. 
But there are at most 5 W such strings. 0 

Generalized Pascal triangles are treated within the framework of a much more 
general theory on cellular automata developed by Willson in and [6]. The par-
ticular result we wish to utilize later states that the number of ones in row 2q j, q a 
non-negative integer, equals the number of ones in row j, j L 

Lemma 2.2 Let 5 > 1 be a natural number, 0 < € 5, and b a positive 
integer. The number of integers m between 1 and 2& whose base two representa-
tion has at most wanes where SW 2b€ is at least for some K > 0 

independent of b. 

Proof: Consider strings of O's and 1 's of length b. Let w = bd where d < -1 € < L - ogs 

There are clearly (!) strings of this sort containing exactly wanes. Using Stirling's 
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formula we have 

(!) b! 
w!(b w)! 

J2;b 

bb+j 
w)(b-w)+! 

1 
y'2;bdbd+j (1 d)b(l-d)+j 

K 
v'bdbd(l - d)b(l-d) 

K >--
v'bdbd 

K > ------;--

where K -J 1 is independent of b. (Of course, this value of K is valid for b 
2'1fd(1-d) 

sufficiently large. In general K may need to be decreased to account for a few small 
values for b.) 0 

Let v and w, v < w, be vertices in a uniform generalized Steinhaus graph of 
type 8 and Y be the generalized Pascal triangle. Define B( v, w) = {:rl max(l, w -
(v -1)(8 1))::; :r ::; W,Yv-l,w-z = I} and H(v,w) w (v 1)(8 -1). Observe 
that H(v,w) is the smallest entry in B(v,w) as long as w > (v 1)(8 -1). We now 
show that B( v, w) is the set of positions in the top generating string which affect 
the entry in the (v, w) position of a uniform generalized Steinhaus graph of type s. 

Note that we have defined H(v,w) for v < w. We wish to define H(v,w) 
to be the same as H(w,v) in the case that v > w. In other words, H(v,w) 
max(v,w) - (min(v,w) - 1)(8 -1). 
Lemma 2.3: Suppose that G and G' are two uniform generalized Steinhaus 
graphs whose generating strings are identical except in one position in the first 
row where the entries are different. Then for any pair of vertices (v,w) with w 2: 
(v - 1)(8 - 1) the adjacency matrices for G and G' differ in position (v,w) if and 
only if the position where the generating strings for G and G' differ is in B(v,w). 

Proof: Consider the uniform generalized Steinhaus graph H whose generating 
string consists of all zeros except in the position (1, t), where it is 1. Let Y be 
the corresponding generalized Pascal triangle. Note that the adjacency matrix for 
H at position (v,w) is simply the entry Yv-l,w-t. Since the adjacency matrix of G 
added to the adjacency matrix of G' (mod 2) gives the adjacency matrix of H the 
lemma follows. 0 
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3. First Order Properties. 

The purpose of this section is to prove Theorem 1.1. First we give a few 
more definitions and develop some technical lemmas. For T contained in Vn define 
BT(V) UtETB(v,t) and HT(V) {H(v,t)lt E T}. By Lemma 2.3 BT(V) is the 
set of all entries in the top generating string which when will change the 

in the (v, t) for some t E in the adjacency matrix. We say a 
sequence VI, V2, ... ,Vr is if for each 1 i r and each t E T, 
HT(vd n BT(Vj) 0 for j < i, IHT(vdl ITI and H(Vi,t) O. 

Lemma 3.1: Let G be a uniform Steinhaus graph of order nand 
s with fixed diagonal Given T V with ITI 2k and 0 < E 10; 8 there 
is an integer N and constant C 0 such that if n N there is aT-independent 
sequence of length at least . Note that C and N both depend 

on k, and E, but are 

Proof: Let tl .. , t2k be the elements of T listed in order and write each one as 
ti We begin showing that there must be two consecutive ti in T with 
a number of elements from the top string of G between them. 
Let ao 0 and a2k+l 1. Pick 0 2k so that <Xi+I _. ai and 

there is at least one such i since the 
lTl1:PT'\T::t I into 2k + 1 intervals. Now there exist ",..,t·"",,,, .. ,,..., a', b' 

and 2b'+1. Suppose 

b' a = b' a' 2fi, Now < 
taking log base 2 we b' - a' -2 + that is b 
We take N sufficiently large so that for n N, b a > O. 

, let a = at + fi 
4 so 

a 2 2fi. 

N ow we want to estimate the number of members :v of the top generating string 
between 2a and 2b such that the entries (x, t) in the adjacency matrix for G, t E T, 
are only affected by a 'small' number of members of the top generating string. As 
explained in Section 2 this is equivalent to that there are a 'large' number 
of rows between row 2a and row 2b in the Pascal triangle of type s 
which contain a 'small' number of ones. For ease of computation we consider only 
those x of the form 2a j, j 2: 1. By Willson's result we can equivalently count the 
number of x in the top generating string between positions 1 and 2b-a such that 
row j - 1 of a generalized Pascal triangle of 8 contains no more than SW ones 
where 8 W 2(b-a)€. By Lemma 2.2 in the first 2b-a rows of a generalized Pascal 
triangle of type s there are at least rows containing no more than 

8 W ones. Thus there are at least values of j such that those x of 

the form 2aj between 2a and 2b are for the required T-independent set. 
Let W be the set of all row numbers in a generalized Pascal table of type 

s which contain no more than 8 W ones. Let C(a, b) = {xl2a x 2& , x: = 
2aj wherej E W}, x E C(a,b) and t E T. Note that t =I=:v, so either t ti 2a' 
or else t 2:. ti+l 2b', For t < x:, H(x,t) = x (t - 1)(8 - 1) x. Moreover 
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> 1 so + t + s ts - 1 > 0, hence 0 < t) For t 

> 2b _2-c 1) 
or t - - 1) + 1) > Hence, t) t - l)(s - 1) Combining 
these two results we see that for each in C(a,b) we have = 2k ITI and 

t) > 0 for each t E T. 
List the elements in C( a, b) in order and label them hl h2, ... We start a 

T-independent set by setting = hI Clearly {xtl is a T-independent sequence. 
We then assume inductively that S1' {Xl, ... , C b) is aT-independent 
set and attempt to add another element Xr+l E C( a, b) to always choosing 
X 1'+l the smallest element in C( a, b) so that U {X 1'+l} is T-independent. 

There are two required conditions for S1'+1 to be T-independenL First, 
= ITI has already been verified. The other condition is that HT(X1'+I)n 

BT( Xi) 0 for i r. Since Xl,.. ,Xr have been chosen then there are at 
most 4k 2rsw forbidden values for X 1'+1. This can be seen since for each Xi and each 
t E B(Xil t) consists of at most SW elements. So there are at most 2krs w values 
which are forbidden for H T ( Since IHT ( x r +l)1 there are at most 4k 2rsw 

forbidden values for X r +l. We have already shown that IC(a,b)1 > K 

Thus, in order to show that suitable values exist for X 1'+l, it is sufficient to show 
that 4k 2 r s W < ---=--n:--:-,r::-

Recall that SW :::; and let C1 Then the following inequalities 
give sufficient conditions for -lnaepeJIlGlem; sequence of r. 

v1J-(l2(b-a)€ (-10;-S) 
Cl r < 

v1J-(l ""1O"gO log S 

Thus there is a T-independent sequence oflength at least L = -----'C"-'l'---,("Lb-Ca::-l"j-::-e • 

v'b=Cl( I:;' ) 
Now using the estimates n - 2 - 28 :::; b - a :::; log n we see that there 
is a T-independent sequence of length at least L = C elogn where 

Vlog n( ) (2k+l) log. 

o 

Lemma 3.2: Suppose VI , ••• 'V1' is aT-independent sequence for some set T c Vn 
of order 2k. Let G be any uniform generalized Steinhaus graph of type s with n 
vertices and fixed diagonal generators. Then by changing only the entries in the 
top generating string indexed by H T (Vi) it is possible to attain any combination 
of adjacencies between Vi and the vertices in T. Furthermore, making the changes 
does not change the adjacencies between Vj and the vertices of T for any j < i. 
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Proof: Let (al,j)j=2, ... ,n be an arbitary top generating string for a uniform gen-
eralized Steinhaus graph of type s with fixed diagonal generators which gives an 
adjacency matrix (ai,j). Label the elements in T by t 1 ,... tr where H( Vi, tI) > 
... > H(Vij tr)' It is then clear that by changing the value of al,H(v;,td, the value 
avi,tl changes. Furthermore, changing al,H(lIi,tz) does not change the value of avi,tk 
for k < 1, nor does it change the value of aVj ,t" for any j < i and any 1 :s; z :s; 2k. 0 

Proof of Theorem 1.1: Let T {Vl,V2,"',Vk} U {Wl,W2"",Wk} be as in 
Axiom k. By Lemma 3.1 for n sufficiently large there is a T-independent sequence 
of length at least 

L c 

Let this sequence be :VI, •• ,:Vr, r L. Note that the top generating string for 
a generalized Steinhaus graph of type s with fixed diagonal generators for which 
Axiom k fails for :VI, ••. , :Vj-l can be partitioned into subsets each of size 22k by 
putting two strings in the same subset if the strings agree in each entry except 
for positions (1, i) where i E HT(:Vj). By Lemma 3.2 in each subset there is a 
sequence whose generalized uniform Steinhaus graph of type s with fixed diagonal 
generators satisfies Axiom k T and :Vj. Therefore the probability that a 
generalized uniform Steinhaus graph of type s with fixed diagonal generators does 
satisfy Axiom k T and any :Vi with i < j is at least m;: Consequently the 
probability of failure \I:Vi, 1 ::; iris at most (1 - Thus the probability of 
failure of Axiom k is at most Pn G) (nik) (1 

We complete the proof by verifying that Pn aproaches 0 as n approaches 00. 

Clearly Pn < n 2k (1 so the requirement Pn approaches 0 will be met pro-
vided 2klogn + Llog(l - approaches -00. Equivalently, it is sufficient to show 
2k log n - -00. Let fl (log log slog s -log f) - ,. Then 

2k log n 
C < 2k log n - ---------;---n 

JIog n COE; a ) 

C 2k log n - ---------;---- -2k (2k(2k+l) logs (log log a-log a-log E)-El) 
y10g n CoE; a) 

2k logn 

Note that the probability estimates used are independent of how the values of 
the diagonal generators are fixed. This implies there is a function 9 as stated in the 
theorem. 0 

Note that Corollary 1.1 follows from Theorem 1.1 since the probability esti-
mates given in the proof are independent of how the values of the diagonal generators 
are fixed. 
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