























opposite signs. It is easy to see that for points on the boundary of A, a vector v into A gives
Dp(v) <0 and so there are no critical points of this type. The key situation is where one

coordinate is positive, one is negative and the third is zero, as in Figure 5.

60\ 1-t Now Lt =min{t, 1 —t} +V3t2 — 3t + 1.
Differentiating, we obtain at most three critical
i =1 =14l
points, namely t=3 andt=3 £ V6.
' _l.. .
FIGURE 5. Fort= 7 itis rather easy to see directly that

for any nearby configuration, Lt < 1.
We illustrate this in Figure 6. Hence p > landasp=1latt= %, this is a local minimum.

1

Fort= Ei é—\fg we know that

Dp(v) = 0 for v as in Figure 5.

Hence Vp1, Vpg, Vp3 must lie in

~
-~
N

N the orthogonal directions to v. One
Lr<Llg=1 easily checks then that Y is a saddle
FIGURE 6. of index one for both values of t.

We summarize the results in Figure 7, where the octahedron has been projected onto the
plane. The conclusion is that p has 8 minima, 12 saddles and 6 maxima. As expected by the

Poincare-Hopf theorem the alternating sum is 2, the Euler characteristic of the 2-sphere.
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§3 Critical points for n = 4.

By Melzak's algorithm, it is not difficult to check that p < 1 for S a full Steiner tree, even
though S may not be a minimal Steiner ree for the configuration Y of 4 points. To show that Y is

not a critical point, it suffices to find a vector v so that I...T <0and Ls/LT > p by Corollary 1. We

will in fact usually show that I:s/f;r 21

As in [8], the union of all minimal spanning trees forms an embedded graph I'. Also T is

either a quadrilateral or two triangles which are isosceles or equilateral.

Case 1 TI'is a quadrilareral.

In Figure 8 we draw various possibilities for the equal (long) sides of I" and indicate the variation
vector v. In all cases, we leave it to the reader to verify that I:s/i:r 2 1. Note that T always

consists of I" with a longest edge removed.
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+ denotes long sides of equal length.

FIGURE 8.

The square and the remaining quadrilateral configuration with 3 equal long sides will be

discussed later, as these give critical points (saddles) of index 1 and 2 respectively.

Case 2. T consists of two triangles.
Various situations for the equal long sides of I', with appropriate variation vectors v are

given in Figure 9.

FIGURE 9.

Again, since LSILT 2 1 in all cases, it follows that there are no critical points in the

pictures as in Figure 9.

Case3 The square
We parametrize the edges of I and S for the square as in Figure 10. There are clearly 4

minimal spanning trees Tj = I' — a;, for 1 <1< 4. So we have 4 ratios pj = Ls/LTi to consider. We

choose a square of side length V3.
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FIGURE 10.

To summarize the calculations, p = (W3 +1)/3, VLs = (1, 1, 1, 1, 1) and homothety is
in the direction (1, 1, ¥3 - 1, 1, 1). To compute VLt , for example
dLt,/By; = cos 60° +cos 30° = (1 +V3)/2. We calculate
6LT Vpy = (2-243,3-V3,4-2V3,3 3,2~ 2V3)
6LT Vpo = (53, 5-V3,2 - 4V3,2 - 2v3,2 - 2V3)
6LT Vps = (33,2 -2v3,4- 23,2 - 23,3 -43)
6LT Vps = (2-2V3,2-2v3,2 - 4J3,5-3,5-3)
These vectors span a subspace C of dimension 3 and in fact,
(Vp1 + Vpa)(2 —3) + (Vp2 + Vpa)/(2¥3 — 1) = 0. Since all coefficients are positive, the
square is a critical point. Also as all vectors are orthogonal to v = (-1, 1, 0,~1, 1), we see that cl
is the line along this vector.
Choose yj=ysa=1-t,y2=ys=1+1ty3 =+/3 - 1. Then clearly Lg = V3 + 3 and
Ig=1g =0. Since Dp(v) = 0, by Corollary 2, D2p(v) = —pL1/LT. To determine the sign of
sz(v) we need to calculate iT. By the cosine rule, as = a4 = W Alsoaj=a3 = m

Hence L1 =2V3 + t2 + V312 + 3, since a3 < aj for t > 0. It follows that

L1 =6(12 + 3)3/2 + {3 (12 + 1)-32, Consequently L1> 0, D2p(v) < 0 and the square is a critical
point (saddle) of index 1.

Case4 The rhombus.
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Applying Melzak's algorithm, we see that Lg =7, Lt = 3 and so p=+7/3.

A B Q

FIGURE 11.

In Figure 11, ABDC denotes the rhombus, so that ABC and BCD are equilateral. If
IABI = 1, then IQRI = v3/2, [PRI = 5/2 so IPQl = Lg = V7, by Melzak. Let 8, ¢, \ be the angles as

in Figure 11. Clearly ¢ = 60 — 6, y = 60 + 6. Also the angle QPR = 0, since the circle through A

P, Calso contains T and hence the segment TC subtends equal angles at A and P. Consequently
cosf = 5/237, sin® = V3/2/7. It then follows that cosQ = 27, cos W= 1/27.

Let a denote cos6, b =cos ¢ , c = cos . Then it can be readily checked that there are 8§
minimal spanning trees for ABDC. We list VLTi, 1<i< 8 as follows:
(b,a,a+b,a,a+b+c) Ti=ABUBCUBD
(b,a+c,2a+b,b,a+c) To=ABUBCUCD
(a+b,b,a,b+c,a) T3=ACUABUBD
(a,b+c,a,b,a+b) T4=ACUCDUBD
(a,a+b+c,a+b,ba) Ts=ACUBCUCD
(a,a+Db,b,a a+b) Te=ACUBCUBD
(b,c,2a,a+b,b+c) T7=ABUBDUCD
(a+b,b+c,2a,b,c) Tg=ABUACUCD.

Now pa = 5/6, pb =2/3, pc = 1/6 and VLg = (1, 1, 1, 1,1). So we compute
Lt Vpi = VLg — p VL7, and multiply all entries by 6.
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2 01 3 1 4
2 08 2 0
3 02 1 1 1
11 13 2
M= 1 4 3 2 1
13 2 13
2 05 -4 3 1
3 1 -4 25

Nore that since we have computed sin® and sing , the sine rule in the triangle ATC gives
IAT! =277, ICTI = 1/J7. Hence the homothety is given by (2, 1, 1, 2, 1)/N7 .This is

obviously orthogonal to all the rows in the above matrix M.

A row echelon form of M has non-zero rows given by:

1 0 -4 1 0.
0 1 5 -1 -4
o 0 -7 2 3
0 0 o0 1 -2
Consequently the gradients span the whole tangent space R#4 of the configuration space A.

Finally the reduced row echelon form of MT is:

1 0 0 0 -1 0 1 -1
0 2 0 0 1 -1 1 2
o 0 1 0 -1 -1 1 1
6o 0o 0o 1 -1 -1 2 O

8
Let Aj, 1 £1 <8, denote the coefficients of Vpj in the equation Z AiVpi=0. Then
i=1
clearly A3 =Ag = Ag = 1, Ag = 1/2 and A1 = ks = A7 = Ag = 0 is a solution which is
non-negative. We conclude that C = R# and so the thombus is a critical point of index 0, i.e. a

local minimum.

Case5 InFigures 8 and 9, there is one remaining case in 2ach which turns out to give a
critical point. One must resort to numerical calculations as there is only restricted symmetry.

We consider Figure 9 first, as this case is easier than Figure 8.
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FIGURE 12

In Figure 12, ABC is equilateral and ACD is isosceles, with ABCD as the
configuration. The idea is that as 6 = angle CAD varies from 0 to 60, ABCD changes from a
single equilateral triangle to a thombus. Since both the latter figures are local minima, there

should be an index one saddle between them by the “mountain pass” lemma.

Now Q is on the line through A at angle 6/2 with AC. Clearly
A =|AQ| = cos8/2 + V3 sin6/2, since ICDI = 2sin 6/2. Hence A = 2cos(6/2 — 60). By
Melzak, Lg = IPQI2 = (Acos 8/2 + 1/2)2 + (Asin6/2 + V3/2)2 = 222 + 1 = 8cos2(6/2 — 60) + 1
= 4c0s(8 ~ 120) + 5 = 4sin(6 —~ 30) + 5.

Also LT =2 + 2sin 6/2.
Next we solve for p = (Ls)LT) = 0. This easily gives

4cos(6-30) (1 + sin 6/2) —cos 6/2 (5 +4sin (6 -30)) =0

So 4cos (8 — 30) — 5cos 6/2 + 4sin (30 — 8/2) =0. Hence 4(sin (8 + 60) + sin(30 — 6/2)) =
5sin(90 + 6/2) and 8 cos (36/4 + 15) sin (6/4 + 45) = 10 sin (6/4 + 45) cos (6/4 + 45).
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We conclude that
4c0s(36/4 + 15) = Scos (8/4 + 45).

Calculating numerically, the solution is

6 = 37.89°.

To complete this case, we need to show that the gradients corresponding to the 5
minimal spanning trees generate a 3-dimensional subspace C and that a non-negative linear
combination of the gradients is zero. Then clearly CL will be in the direction v of 6 varying and

it is straight forward to check that D2p(v) <0.

First of all, since-Lg = /5 + 4sin(§ — 30) and L7 = 2 + 2sin 8/2, as 6 = 37.89° we
find p = Ls/LT = 0.8891. Next the angles between the edges of S and T at the vertices need to

be computed.

p=(-3%) B R

Q =A(cosB /2, — sinB/2)

FIGURE 13.

As in Figure 13, since P, B, E, A lie on a circle centred at the barycentre of ABP, the
angles BPE and BAE subtended by BE are equal. We denote these angles by a, similarly angle
APE = angle ABE =b = 60 — a. Consequently,

tana = IQRVIPRI = (A sin 6/2 + V3/2)/(Acos 6/2 + 1/2).
Because A = cos 8/2 + 3 sin 6/2, it follows that a = 35.13° and b = 24.87°. Note that angle
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EAC=b= angle ACF. Since ACD is isosceles, angle ACD = 90 — 6/2 and hence angle
DCF =90 - b~ 6/2. Also then angle FDC = b + 6/2 ~ 30 and all the angles needed for the

calculation of the 5 gradient vectors are determined.

LetT;=CDWUABUAD, T, =CDUABUBC,
Tz3=CDUBCUAC, T4=CDUABUAC, Ts=CDuwAD U BC.
Then

Lt Vp1 =(0.1933, -0.5338, 0.2729, -0.4222, 0.1366)

Lt Vpa = (-0.5338, 0.2729, 0.1933, 0.3049, 0.1366)

LT Vp3 = (0.2729, 0.1933, -0.5338, -0.5018, 0.1366)

L Vpa = (0.1933, -0.1341, 0.1120, 0.3845, -0.3445)

LT Vps = (0.2729, 0.5930, -0.6947, 0.3049, -0.3445)

These vectors span a 3 dimensional subspace of R5. In fact a row echelon form is

0 -1.2012 0.9469 -0.8610 0.5138

0.1933 —0.5338 0.2729 -0.4222 0.1366
( 0 0 —0.1726 -0.5845 0.3488)

plus two rows of zeros, up to round-off error. To complete the argument that this configuration

is critical, we can show that if A = (A1, A2,A3, A4, As5) = (0.6024, 1.0369, 0.8933, 1, 0), then

5
Z Ai Lt Vpi =0, up to round-off error. Note that the exact solution with A5 = 0 will clearly
i=1

satisfy A; > 0, for 1 £i<4.

Finally, since Lg = \/ 5+4sin(6-30) and Lt = 2 + 2sin 6/2, we can readily compute p
in the direction of 6 varying. As usual, p = (Ls - pL1)/L;. Also Ls = —0.4168, Lt = -0.1624
and p = 0.8891. Consequently p =~ 0.1027. This establishes that the configuration has index

1 as claimed.
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Case 6.

FIGURE 14.

In Figure 14, the configuration satisfies IABl = x < 1, IAD! = IDCl = [BCI = 1, for suitable
choice of scale. This is the final case corresponding to Figure 8. We call this configuration
symmerric if o = P. It is easy to see then thaty= 8 and & + 8 = B + v = 180. The first problem

1s to eliminate the non-symmetric case.
Step 1 If ABCD is not symmetric then the configuration is not a critical point.

Without loss of generality, it can be assumed that & > in Figure 14. We choose a variation v
which fixes A, B and rotates DA about A and CB about B at speeds Ivyl and Ivol respectively.
To achieve IDCI constant, vi and vo are chosen so that ivyl €ind = Ivol siny. Note then that

tvil < Ival, supposing that & +y < 180. The latter holds since x < 1.

We wish to compute the derivatives of all the angles a to §, with respect to v. First, it

is obvious that & = - lvil and [3 = lvpl. Consequently, (a;B) >0 and o + B is increasing. It is
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not difficult to see that the same variation v can be achieved by fixing DC and rotating DA and
CB upwards (in Figure 14) at appropriate speeds. Hence §>0and ¥ < 0. We can choose v;
and v, without loss of generality so that & = 1. To find ¥, the equation linking v and & can be
found. Introduce co-ordinates with C at the origin and D = (1, 0). Then B = (cosy, siny),

A = (1 —cos8, sind) and

x2 = |ABI2 = (1 — cosd — cosy)? + (siny — sin)2
=3 + 2¢0s (Y + &) — 2cosy — 2c0s0.

Differentiating relative to v, we obtain
~2sin(y + 8) (1 + ¥) + 2¥siny + 2sind = 0.

Therefore ¥ = (siny - sin(y + 8)/(sin(y + 8) ~ sinf). Note that if we start at the symmetric
configuration where y = §, then ¥ = —1. Obviously ¥ < 0 remains true until siny = sin(y + &).
Then 2y + & = 180 so a parallelogram can be constructed with all sides of length 1 and angles &
and 2y, as in Figure 15. The appropriate diagonal gives two isosceles triangles with edges of
length 1, 1, 1 + x and we conclude that B = 180!

FIGURE 15.

We postpone till later the discussion when B = 18C. So assume till further notice that
B <180 and ¥ <0, § = 1. Note that (y + 8) = (siny~ sin8)/(sin(y + 8) - sind) < 0, ie y+ 8 is

decreasing. Of course o + B + v+ 8 = 360, so this is to be expected.

Next the behaviour of &, b, &, d is described.
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FIGURE 16.

Applying Melzak's algorithm gives Figure 16. As in Case 5, angle APQ = b etc. The vector v3
gives the velocity of Q with respect to the variation v. To compute v3, note that DQI=1QCI=1
are constant. Hence
(+) Ivzl cos® = Ival cos(y —30) and

Ivsl cos (120 — 8) = vl cos(d - 30).
Combining these equations, we obtain

vl cos® cos(6 — 30) = ival cos(120 — 6) cos(y— 30).

From before, lvq!l sind = tvol siny and so

) siny cos8 cos(8 — 30) = sind-cos(120 — 8) cos(y- 30).

The initial equation (+) implies that 8 < 90 since vy is acute. Therefore PQ is turning
"downwards" in Figure 16, ie b >0 and & < 0. Similarly, by rewriting the variation so that A,
B move and C, D are fixed, we see that d> 0 and ¢ < 0. This completes the discussion of the

variation of the angles in Figure 14.

Finally, since Lg = [PQ!l and I:T =0 with respect to v, a necessary and sufficient
condition for p =0 is Ls =0, ie v3 is orthogonal to PQ. In other words, if the configuration is
critical then 6 + d = 90. Note that iff,g > 0 reladve to v, then f,s < 0 with respect to —v. So if

Lg =0 then the configuration is not critical.
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Initially, ¢ = d= 30 in the symmetric case and d is increasing. Consequently d > 30 and so
6 < 601if 8 + d = 90 is to occur. But then equation (*) yields siny cos (8 - 30) > sind cos(y - 30).
This implies cotd > coty, contradicting & > v. So it follows that there are no non-symmetric critical

points, in the range where B < 180.

If B = 180, then we claim that S is not a full Steiner tree, so this case doesn't occur.

A D (0,1)

S
r !ﬁ
NP
p—a

= (~sin¥,cos?)

C©0
FIGURE 17.

It suffices to show in Figure 17 that angle PBQ > 180, ie slope PB > slope BQ. Now

slope BQ = (cosy— 1/2)/(-siny— V3/2).
Also slope PB > —cot(y + 60), since B = 180. If we set —cot(y + 60) = (cosy — 1/2)(~siny —- N3/2),
the inequality easily reduces to

cos(y + 30) < V3/2, which is trivially true. This completes step 1.

Step 2. Determination of critical configurations if ABCD is symmetric.

There is a one-parameter family of symmetric configurations, since & = 8, Y= & and
o +v = 180. Either x or y serves as the parameter. From Figure 14, cosy = (1 —x)/2 or
x =1 -2 cosy. Applying Melzak,

Ls = siny + V3/2(1 + x) = siny + V3/2 (2 - 2cos)

=2 sin(y— 60) + 3.

AlsoLt=2 +x =3 - 2cosy. We can rcadily solve p = 0 with respect to 7y varying. The result is
sin(y + 60) = 1/v3 and so y = 84.74°. (Note there are really two possible critical configurations,
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by taking IABl = IAD| = [BCl = 1 and ICD! = x. This case will be discussed at the summary).

There is a one-parameter family of symmerric configurations, since & =3, y= 8 and
o + ¥ = 180. In this case, cos ¥ = (1 ~x)/2, so equivalently x = 1 — 2cosy. Applying Melzak, we
obtain Lg = siny + V3/2(1 + x) = siny + ¥3/2(2 — 2cosy) = 2sin(y — 60) + V3. Also
Lt =2+ x = 3 - 2cosy. The equation p =0 can be easily solved, differentiating relative toy. The

result is sin (Y + 60) = 1//3 and therefore y = 84.74.

To show this is a critical point, we need to compute the 3 gradient vectors corresponding to
T1=AB UBCuUCD, T2= ABUAD UBC, T3 = AB U AD U CD. Now

VT = (N3/2, V3/2 - cos(y + 30), siny, V3/2 + cos(y — 30), ¥v3/2)

VTs = (N3/2-cos(y+30), V3/2 — cos(y+30), 2sinY, cos(y-30) cos(y—30))

Vo = (N3/2-cos(y+30), V3/2, siny, V3/2,N3/2+ cos(y - 30))
It is easy to check that A1 Vpy + ApVpg + A3 Vp3 =0, where A1 = A3 = 2sin(y+ 30) - 1,
Ay =2 — 2sin (y + 30), using sin(y + 60) = 1//3. Evaluating, we obtain A1 = A3 = 0.8164,

A2 = 0.1836. Hence the configuration is critical and C is 2-dimensional.

Finally it remains to calculate the index. We observe first that C- is spanned by the
vectors v as in step 1 (c.f. Figure 14) and w corresponding to y varying. So it suffices to show
D2p(v) < 0 and D2p(w) < 0. Relative to y varying, we obtain D2p(w) = (Lg — pﬂT)/LP where
g =-2sin(y— 60), L = 2cosy, Ls = 2sin(y— 60) + V3, Ly = 3 — 2cosy and ¥ = 84.74 at the
critical configuration. The result is D2p(w) =-0.3553 < 0.’

For the variaton v in Step 1, LT remains constant $0 I:T = iT = (. Therefore
D2p(v) = LS/I,r We introduce convenient co-ordinates into Figure 16 as follows. Let the origin
be at the midpoint of the edge AB and assume PQ lies on the x-axis and AB on the y-axis. Then
A = (0, x/2), B = (0, =x/2), P = (3x/2, 0), C = (siny, ~1/2), D = (siny, 1/2), Q = (V3/2 + siny, 0).
Also the angle of slope of AD is 90 —yand of BCis ¥ 90. We perturb C to C” and D to D* by
choosing slopes of AD” to be 90—y~ t and of BC” to be ¥~ 90 — t. Consequently D= (sin(y + t),
cos(y+ t) + x/2) and C” = (sin(y - t), —cos(y — t) — x/2). In particular the midpoint of C'D"is

siny(cost, sint) as expected.
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We wish to find Q and it suffices to use Taylor expansions of second order, since the
aim is to find Lg, where Lg = IPQ’l . The vector from C” to D" is (cosysint, 1 + 2 cosy(cost - 1))
= (tcosy, 1 — 12 cosy). Hence the orthogonal vector from the midpoint of C'D” to Q” is in direction
(2 cosy + 1, —t cosY). The length of this vector is 1 — t2 cosy + (12 cos2y)/2, up to second order.
Therefore the co-ordinates of Q” to second order terms in t2 are given by adding
372 (1 + t2(cosy — (cos2y)/2) (1 — 12 cosy, ~tcosy) to the midpoint siny(cost, sint) of C" D",
Simplifying and neglecting higher order expressions, we obtain

Q" = (V3/2 + siny — 2 (V3 cos2y)/2 + siny)/2, t(siny— (/3 cosy)/2).
Finally, since P = (3 (1 — cosY), 0), PQ”" = (V3 + 2sin(y~ 60) — 2 (v3 cos2y)/2 + siny)/2,
t(siny - (V3 cosy)/2).
Consequently Lg = IPQ"l = V3 + 2 sin(y— 60) + £2((siny ~ (V3 cosy)/2)2 — (V3 cosy)/2 - siny).
The coefficient of t2in 2Lg = siny(siny - 1) + (V3 cos2y)/2) (¥3/2 ~ 1) — /3 sin 7y cosy which

is clearly negative. Hence the critical configuration has index 2.

SUMMARY
The interior of the 4-simplex, which is the configuration space in the case of 4 points, has the

following critical points.

Number Critical points Index
1 Square 1
2 Rhombus 0
2 Equilateral and Isosceles 1
2 Symmetrical quadrilateral 2

The first column gives the number of such configurations. Note the action of the symmetry

A<D, B« C

It is interesting to observe that the Euler characteristic is one, which equals the sum

Z (—1)index

Critical points
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Hence on the boundary of the configuration space, the negative gradient-like vector field w for

p behaves as if it was everywhere inward-pointing, exactly as for the 3 point case. Of course

this is only a statement about the average behaviour of w; near an equilateral triangle

configuration w will be pointing outward towards it.
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