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Abstract. 

We find the critical points for the Steiner ratio function on the configuration spaces for 3 

and 4 points. 

§ 0 Introduction. 

The Steiner problem is to determine a network S of shortest total length called a minimal 

Steiner tree which connects a given set of points x 1. X2, ... , Xn in the Euclidean plane This 

has been shown to be an NP- complete problem [1]. There is an algorithm of Melzak: [5] for 

finding S, but the number of steps increases exponentially with n. 

Let T be a minimal spanning tree for the points, i.e. T is a shortest tree with vertices 

precisely at xl. X2, ... , Xn. (A Steiner tree is allowed to have additional vertices). IfLs, LT 

denote the lengths of S, T respectively, then the Steiner ratio p = LsILT. The Steiner ratio 

conjecture was introduced by Gilbert and Pollak: [2] and asked if p::::: "';3/2 for all sets of points. 

We were able to give new proofs of the cases 3 ~ n ~ 5 in [8] and also established the conjecture 

for n:::: 6 [9] and for cocircular points [10]. We used the technique of Variational Calculus, the 

key idea being to perturb the position of the points Xl, x2, ... , Xn. The conjecture was recently 

proved by Du and Hwang using the variational approach as a motivation. 

As the Steiner problem is NP-complete many algorithms have been developed to find 

approximate solutions to the shortest network problem. One approach is to decompose the large 

problem into smaller problems consisting of subsets containing only a few points. An example 

of this approach is the Tl-network problem where full components (where the given points are 
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all of degree one) consist of only one Steiner point. Another approach is to use an annealing 

algorithm where a shortest network is sought by allowing small increases in length in an 

intennediate approximation in order to move away from a possible locally minimal situation. 

Recently AA Tuzhilin and AO. Ivanov [11] have tackled the problem of classifying all 

the locally minimal networks with convex boundaries. They have solved the problem of 

describing the full (non degenerate) Steiner networks with convex boundaries in tenus of 

polygonal triangulations. 

In this paper the ratio function p is studied on the configuration spaces for n and 

n = 4. In particular all critical points for p are found, not just minima. As in classical theory 

one studies level to understand the nature of the function p prul1cularly the minimal 

for critical corltlg;UTIttlc1ns. Where p has critical points the nature of the level sets This 

knc:1wie£1Ip'f': will be useful for the various approaches to the Steiner problem. If the ratio is close 

then T 1 networks approximate the solution well. If the ratio is close to 1 a spanning tree 

is a good approximation. Note how close the ratio for the rhombus, (.8819) is to the ratio 

for the equilateral triangle, -J~ (.866). Yet the rhombus is a local minimum whereas the 

equilaternl triangle is the absolute minimum. 

§ 1 Index of critical points of the ratio function. 

Definition S is called afull Steiner tree if it has 2n-2 vertices. Equivalently n of the vertices are 

Xl, x2, ... , Xn and the other n-2 vertices have three edges meeting at 1200 angles. The latter 

points are called Steiner vertices (c.f. [2]). 

A choice of S is called a topology. We parametrize the configuration Xl, x2 •... , Xn by 

the vector Y = (n, n, ... , Y2n-3) of lengths of the 2n-3 edges of S. By a homothery, we can 

assume if necessary that the sum of the coordinates of Y is one. 
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Definition The configuration space 

2n-3 

b. = (Y = (YI, n, ... , nn-3): I. Yi=l, Yi 2: 0 for all i}. 
i=l 

Then b. is a (2n-4)-dimensional simplex. 

Let TI, T2, ... , Tk be all possible spanning trees for Xl, X2 •... , Xn. Define p = Ls/min LTj" 

Note we are abusing notation by calling p the Steiner ratio, since we intend to keep the topology of S 

fixed. However if it can be shown that p 2: .f3/2 on b. for every choice of topology, then obviously 

the ratio conjecture will be established. 

Clearly p is continuous and Gflteaux differentiable. In fact the directional derivative or 

differential of p in the direction of a vector v at Y in b. is given by 

Dp(v) = lim -hI (LS(Y + hv)ILT- (Y + hv) - Ls(Y)ILTj.(Y», 
h-+O J 

where j is chosen so that LTj = min {LTl' LT2' ... , LTk} for all points Y + hv, for h sufficiently 

smalL So Tj is the spanning tree which remains minimal along the line Y + hv. Clearly Dp(v) is 

continuous in Y and v; we do not specifically refer to Y as it is usually clear from the context. 

Definition A critical point Y for p satisfies Dp(v) 2: 0 for all v. 

Lemma 1. Dp(v) == LTILT cLsiT - p), where T = Tj is given as above and LT == DLT(V), Ls = 

DLs(v). 

Corollary 1. If LT < 0 (LT > 0) then Dp(v) 2: 0 is equivalent to LsiT :s; p (LsiT 2: P 

respecti vel y ). 

Define Pj == LslLTj ,for 1 :S;j :s; k. Then each pj is smooth and so we can compute its gradient 

V' pJ' = lILT- (V'LS - P V' LT')' 
J J 

Assume Tl, T2, ... , Tm are the minimal spanning trees for the configuration Y. We now give 

an analogous defmition to that in Gromov [4]. 

Definition If V'Pl, V'P2, ... V'pm lie in an open half-space ofR2n-4 then Y is called a regular 

point of p. 
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Note Since IJ.. is a (2n - 4)-simplex, its tangent space is of dimension 2n-4. An open half-space 

is a component of the complement of a hyperplane. 

Lemma 2. The critical points of P are precisely the non regular points. 

Proof If Y is a regular point, choose a vector v orthogonal to the hyperplane and on the 

opposite side to the vectors VPl, ... 'Vprn. Then the inner product < v, Vpj> <0 for aUj. 

Hence Y is not a critical point, Dp(v) < O. Conversely suppose is not a critical point. 

Consequently there is a vector v so that Dp(v) < O. But then PI, P2, ... , Pm are all decreasing 

in the direction of v, ie v, 'V Pj > 0 for all j. So Y is a regular point, as all the gradients lie in 

a half-space with v as outward normal . 

Remark In practice, it is often convenient to consider p as defmed on the positive part of R 20-3, 

i.e. to not divide out by homotheties. In this case it is obvious that since each Pj is constant along 

rays through the origin, 'Vpj lies orthogonal to the ray through Y. 

Next we construct a smooth vector field on the set R of regular points in IJ.., following 

[4]. As in lemma 2, if Y is regular point then we can choose a vector v so that <v, 'Vpj> <0 for 

1 ~ j sm. By continuity, the open set R can be covered by small balls Bex so that v can be 

extended to a (parallel) vector field Va with Dp(va.) < 0 on Va. Choose a smooth partition of 

unity <Pa on R subordinate to the cover Ba. Hence 0 S <Pa s 1, <Pa = 0 outside Ba and L <l>a = 1 

for all regular points. The desired vector field is given by w = L <l>a Va. It is easy to ~e that 
a 

Dp(w) < 0 for all regular points and so p decreases along the integral curves of w. 

Definition The cone C spanned by 'VPl, ... , 'Vprn is defined by 

Then Y is a regular point exactly when C is contained in an open half space and Y is a critical 

point is equivalent to C being a subspace of R2n-4. So we obtain 

Lemma 3. Y is a critical point if and only if there are Aj ~ 0 for 1 s j ~ m with not all Aj = 0 

and Al 'VPl + ... + Am VPrn = O. 
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If Y is a critical point let Col denote the orthogonal complement of C in R2n-4, i.e. C.l 

is the subspace of vectors perpendicular to C. Clearly Dp(v) > 0 for v in C and Dp(v) = 0 for v 

in C.l. 

Let D2p( v) be the second derivative of LsfLT in the direction v, where T = Tj is 

chosen so that LTj = min {LTl' ... , LTk) for Y + hv, with h small. 

Corollary 2. If v is in 

Definition The Hessian of Pj is the bilinear form (v,w) -4 D2 Pj(v,w). Let Hess(pj) denote the 

restriction of this form to C.l at some critical point Y. 

If an inner product is chosen on Col, then Hess(pj) can be naturally identified with a self 

adjoint linear operator on C.l. Consequently, ifEj (respectively Ef) is the subspace spanned by the 

eigenvectors corresponding to the non-negative (resp. positive) eigenvalues, then Col == Ej EB Ef and 

Ej is orthogonal to 

k 
Let E be the subspace of ~ spanned by the union c f the Ej and let E' = (1 EJ~' Clearly 

'1c J=1 

Col == E EB E' and E is orthogonal to E'. Also D2p(v) ~ 0 if v is in E and D2p(v) < 0 if v is in 

E'. 

Definition The index of a critical point Y is the dimension of the subspace E'. 

Also Y is called a non-degenerate critical point if D2p(v) > 0 for v in E. 

Remark We find for n = 3 and n = 4, all the critical points are non degenerate. (See §2 and §3). We 

conjecture that this is true for arbitrary n. 

The Poincare-Hopf theorem states that if w is a smooth vector field on a closed manifold M 

with zeros Y}, Y 2, ... YN having indices ilt h, ... , iN then 

N 

2:: (_l)ij = X(M), 
j=l 
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the Euler characteristic of M. Suppose Y is a non-degenerate critical point for p. Then it is not 

difficult to check that the index of Y as a zero of the vector field w constructed previously, is exactly 

as required in this fonnula (see e.g. Milnor [6]). If M is not a closed manifold, then there is a 

boundary tenn in the formula. In the next section, we extend the configuration space /::,., for n = 3, to 

a 2-sphere to avoid this problem. 

§ 2 Critical points in the case n = 3. 

First, by the argument in § 1 of [8], it follows that the only critical point in int 11 is the 

equilateral triangle, for the three point case. In fact it is shown there that for each configuration 

Y there is a direction v so that Dp(v) < 0, except for Y 1/3, 1/3). 

We can include the 2-simplex 11 in a 2-sphere where 

S2 = {(Yl, Y2, Y3) . IYll + 1Y21 + IY31 = 1 J. Therefore S2 is an octahedron in Euclidean 3-space. 

A point (YIY2, Y3) with say Yl < 0, Y2 > 0, Y3 > ° is interpreted as a configuration as shown in 

Figure 1 (b). Note that edges meet at 60° angles, unlike the usual Steiner networks. 

Yl 

Yl, Y2, Y3 > 0 

(a) 

FIGURE 1. 

Yl 0, Y2, Y3 > O. 

(b) 

The other possibilities for the signs of Yl. Y2, Y3 give diagrams as in Figure 1, with 

different labels on the edges. For example, Yl, Y2, Y3 < ° corresponds to Figure l(a). 

Let us look for critical points Y in the interior of a 2-simplex /::,.' in S2 as in Figure 1(b), 

where Yl < 0, Y2, Y3 > O. Note that p > 1 occurs here. Suppose first that the points Xl, x2 x3 are 

vertices of a non-isosceles triangle. There are 3 cases for T to consider, as shown in Figure 2. 
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(a) (b) (c) 

FIGURE 2 

A variation is chosen as in Figure 2, with the properties that LS = 0 and LT > O. Hence Dp (v) < 0 

and Y is not a critical point. Note in Figure 2(a), we are using the fact that the lengths 

IXl X21;<: IXI X31, so the angles at X2 and X3 are unequal. Similarly in Figure 2(b) it is easy to see 

the designated angles at Xl and X2 cant be the same. Finally in Figure 2(c), if the angles at Xl and 

X3 are equal, then angle (X3 x2 Xl) = 60°. But then Xl x3 is not longest in the triangle Xl X2 x3 so 

the tree Xl x2 U X2 X3 is not a minimal spanning tree. 

There are 2 cases where Xl x2 X3 is an isosceles triangle, as indicated in Figure 3. 

(a) (b) 

FIGURE 3. 
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In Figure 3(b), the cosine rule plus Ix 1 X21 ::: Ix 1 X31 shows that Iy 11 ::: 1/2, Y2 + Y3 ::: 1/2 

and hence the triangle Xl x2 x3 is equilateral. So we are reduced to Figure 3(a). Assume first that 

where Y2 ::: Y3 ::: t and IYll ::: 1 - 2L Differentiating 

with respect to t, we obtain a critical point when t = 5/14. Moreover p achieves its maximum value 

of Also the index of this critical point is 2, since T::;:.: Xl x2 U Xl x3 is the unique minimal 

spanning tree for all configurations near Y = (-4/14,5/14,5/14). Note that V'p ::: (0.0,0) at this 

point, so Y is a standard (locally) smooth critical point for p. 

If IXI X21 > iX2 X31, then we perform a variation as shown in Figure 3(a). We compute that 

LT==-cos150-cos(60+S)-cosS. This can berewrittenas~ (±- cos(S + 30»)>0, sinceS 

> 30. Hence Dp(v) < 0 and the configuration is not a critical point. 

It remains to consider the equilateral triangle, as shown in Figure 4. 

FIGURE 4. 

In this case P 2/~. Let Tl ::: X2 U Xl x3, 

is easy to that "V PI::;:': V' P2 (0, 0, 0), 

whilst V'P3 == (I, -1, 1). One might be tempted 

to conclude this is not a critical point, since the 

cone C spanned by these gradients is clearly a 

single ray, so lies in an open half-space. 

However the analysis in §1 depended on knowing that V'Pi is non-zero, which can easily be 

checked as correct for configurations where all the lengths are positive (standard Steiner trees). 

Here we must measure second variation of PI and P2 in the direction v::: -V'P3. It is easy to check 

that ifD2P1(v) < 0, then the configuration should not be regarded as a critical point, since the 

vector field w can be extended smoothly near Y. One can compute directly that D2p1(v) < 0 and 

so there is a single critical point in the interior of !:::. 

To complete the discussion, we investigate configurations lying on the edges of the 

octahedral 2-sphere. There are two types, where the non-zero coordinates have the same or 
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opposite signs. It is easy to see that for points on the boundary of 1:::., a vector v into I:::. gives 

Dp(v) < 0 and so there are no critical points of this type. The key situation is where one 

coordinate is positive, one is negative and the third is zero, as in Figure 5. 

FIGURE 5. 

Now LT = min {t, 1 - t J + 

Differentiating, we obtain at most three critical 

. 1 -l d -l+ lfL6 pomts, name y t - 2 an t - 2 - 2 ,,0. 

For t = tit is rather easy to see directly that 

for any nearby configuration, LT < 1. 

We illustrate this inFigure 6. Bence p > 1 and as p = 1 at t = t. this is a local minimum. 

LT < LS == 1 

FIGURE 6. 

1 1 r;; 
For t = 2"± 2"" 6, we know that 

Dp(v) ::: 0 for v as in Figure 5. 

Hence V' PI, V' P2, V' P3 must lie in 

the orthogonal directions to v. One 

easily checks then that Y is a saddle 

of index one for both values of t. 

We summarize the results in Figure 7, where the octahedron has been projected onto the 

plane. The conclusion is that P has 8 minima, 12 saddles and 6 maxima. As expected by the 

Poincare-Hopf theorem the alternating sum is 2, the Euler characteristic of the 2-sphere. 
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• Min 
1 

(- 3, -i) 

11ax 

S 

Min -Max 

S 

S 
Min 

• Max S 

S = Saddle 

FIGURE 7. 

§ 3 Critical points for n = 4. 

By Melzak's algorithm, it is not difficult to check that p < 1 for S a full Steiner tree, even 

though S may not be a minimal Steiner tree for the configuration Y of 4 points. To show that Y is 

not a critical point, it suffices to find a vector v so that LT 0 and LslLT > p by Corollary 1. We 

will in fact usually show that LsrLT ~ 1. 

As in [8], the union of all minimal spanning trees forms an embedded graph r. Also r is 

either a quadrilateral or two triangles which are isosceles or equilateral. 

Case 1 Tis a quadrilateral. 

In Figure 8 we draw various possibilities for the equal (long) sides of r and indicate the variation 

vector v. In all cases, we leave it to the reader to verify that LsrLT ~ 1. Note that T always 

consists ofr with a longest edge removed. 
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+ denotes long sides of equal length. 

FIGURE 8. 

The square and the remaining quadrilateral configuration with 3 equal long sides will be 

discussed later, as these give critical points (saddles) of index 1 and 2 respectively. 

Case 2. r consists of two triangles. 

Various situations for the equal long sides of r, with appropriate variation vectors v are 

given in Figure 9. 

FIGURE 9. 

Again, since LsiLT ;::: 1 in all cases, it follows that there are no critical points in the 

pictures as in Figure 9. 

Case 3 The square 

We parametrize the edges ofr and S for the square as in Figure 10. There are clearly 4 

minimal spanning trees Ti = r - ai, for 1 :$; i:$; 4. So we have 4 ratios Pi = LsILTi to consider. We 

choose a square of side length -{3. 

269 



FIGURE 10. 

To summarize the calculations, p = (-[3 + 1)/3, \7Ls =: (1, 1, 1, 1, 1) and homothety is 

in the direction (1, 1, - 1, 1, 1). To compute \7LTi ' for example 

aLTiJdY1 cos 60° + cos 30° =: (1 + -{3)!2. We calculate 

6LT \7 PI=: (2 -2-{3, 3 - -[3, 4 - 2-[3, 3 

6LT \7P2:::: (5 5 -[3,2- 4-[3,2-

6LT \7 P3 (3 --{3, 2 2-[3, 4 2-{3, 

6LT \7 P4 (2 -2-[3, 2 - 2-{3, 2 - 4-{3, 5 

-{3, 2 - 2-{3) 

2 - 2-{3) 

3 -[3) 

5 {3) 

These vectors span a subspace C of dimension 3 and in fact, 

+ (\7 P2 + \7 P4)!(2-{3 - 1) =: O. Since all coefficients are positive, the 

square is a critical point Also as all vectors are orthogonal to v =: (-1, 1, 0, -1, 1), we see that C.l 

is the line along this vector. 

Choose Yl =: Y4 ::;::: 1 - t, Y2 = Y5 = 1 + t, Y3 = -f3 - 1. Then clearly LS = -[3 + 3 and 

Ls = Ls = O. Since Dp(v) = 0, by Corollary 2, D2p(v) -pLTILT' To determine the sign of 

D2p(v) we need to calculate LT. By the cosine rule, a2:::: ~ = ~ Also al = a3 = ";3t2 + 3. 

Hence LT = 2~+ .,; 3t2 + 3 , since a2 < al for t > O. It follows that 

LT =6(t2 + 3)-3/2 + -f3 (t2 + 1)-312. Consequently LT> 0, D2p(v) < ° and the square is a critical 

point (saddle) of index l. 

Case 4 The rhombus. 
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Applying Melzak's algorithm, we see that LS ..[7, LT = 3 and so p = {7/3. 

A B Q 

P C D R 

FIGURE 11. 

In Figure II, ABDC denotes the rhombus, so that ABC and BCD are equilateral. If 

lAB I 1, then IQRI ::: {3/2, IPRI = 5/2 so IPQI = LS =..[7, by Melzak. Let 8, <P, 'If be the angles as 

in Figure 11. Clearly <p = 60 - 8, 'If = 60 + 8. Also the angle QPR = e, since the circle through A, 

P, C also contains T and hence the segment TC subtends equal angles at A and P. Consequently 

cos8 5/2{7, sine::: {3/2{7. It then follows that cos<p = 2/{7, cos 'If::: 1/2-.J7. 

Let a denote cos8, b = cos <P , c = cos 'If. Then it can be readily checked that there are 8 

minimal spanning trees for ABDC. We list VLTi' 1 ~ i ~ 8 as follows: 

(b, a, a + b, a, a + b + c) Tl::: AB u BC u BD 

(b, a + c, 2a + b, b, a + c) T2::: AB u BC u CD 

(a + b, b, a, b + c, a ) T3 = AC u AB u BD 

(a, b + c, a, b, a + b) T4=ACuCDuBD 

(a, a + b + c, a + b, b, a) TS::: AC u BC u CD 

(a, a + b, b, a, a + b). T6 = AC u BC u BD 

(b, c, 2a, a + b, b + c) T7 = AB u BD u CD 

(a + b, b + c, 2a, b, c) T8 = AB u AC u CD. 

Now pa::: 5/6, pb = 2/3, pc = 1/6 and VLS = (1, 1, 1, 1,1). So we compute 

LT 'V Pi = VLS P VLTj and multiply all entries by 6. 
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1 -3 1 -4 
2 0 -8 2 0 

-3 2 1 1 1 

M= 
1 1 1 -3 2 
1 -4 -3 2 1 
1 -3 2 1 -3 
2 5 -4 -3 1 

1 -4 2 5 

Note that since we have computed sinS and simp, the sine rule in the triangle ATC gives 

IA TI = 2/...f'I, ICTI l/...f'I. Hence the homothety is given by (2, 1, 1, 2, 1 )I...f'I .This is 

obviously orthogonal to all the rows in the above matrix M. 

A row echelon form of M has non-zero rows given by: 

[ ~ 
o 
1 
o 
o 

-4 
5 

-7 
o 

1 
-1 
2 
1 

o oJ -4 
3 

-2 

Consequently the gradients span the whole tangent space R4 of the configuration space /)". 

Finally the reduced row echelon form of MT is: 

[ ~ 
o 
2 
o 
o 

o 
o 
1 
o 

o 
o 
o 
1 

-1 
1 

-1 
-1 

o 
-1 
-1 
-1 2 

8 

Let Ai, 1 :$; i :$; 8, denote the coefficients of V' Pi in the equation L Ai'VPi = O. Then 
i=l 

clearly A3 = A4 == Ao == 1, A2:= 1/2 and Al = AS = A7 == A8 = 0 is a solution which is 

non-negative. We conclude that C = R4 and so the rhombus is a critical point of index 0, i.e. a 

local minimum. 

Case 5 In Figures 8 and 9, there is one remaining case in each which turns out to give a 

critical point One must resort to numerical calculations as there is only restricted symmetry. 

We consider Figure 9 first, as this case is easier than Figure 8. 
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p 

(0,0) == A 

D == (cos 8, sin 8 ) 

FIGURE 12 

In Figure 12, ABC is equilateral and ACD is isosceles, with ABCD as the 

configuration. The idea is that as 8 angle CAD varies from 0 to 60, ABeD changes from a 

single equilateral triangle to a rhombus. Since both the latter figures are local minima, there 

should be an index one saddle between them by the "mountain pass" lemma. 

Now Q is on the line through A at angle 8/2 with AC. Clearly 

A == IAQI == cos8/2 + -[3sin8/2,sinceICDI==2sin8/2. Hence A== 2cos(8/2-60). By 

Melzak, L~ = IPQI2 == (Acos 8/2 + 1/2)2 + (Asin 8/2 + -.J3/2)2 == 2A 2 + 1 = 8cos2(8/2 - 60) + 1 

== 4cos(8 - 120) + S = 4sin(8 - 30) + S. 

Also LT == 2 + 2sin 8!2. 

Next we solve for p == (LsiLT) = O. This easily gives 

4cos(8-30) (l + sin 8/2) - cos 8/2 (S + 4sin (8 - 30» = 0 

So 4cos (8 - 30) - Scos 8/2 + 4sin (30 - 8/2) =0. Hence 4(sin (8 + 60) + sin(30 - 8/2» = 
5sin(90 + 812) and 8 cos (38/4 + lS) sin (8/4 + 4S) = 10 sin (8/4 + 4S) cos (8/4 + 45). 
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We conclude that 

4cos(38/4 + 15) = Scos (8/4 + 45). 

Calculating numerically, the solution is 

8 = 37.89°. 

To complete this case, we need to show that the gradients corresponding to the 5 

minimal spanning trees generate a 3-dimensional subspace C and that a non-negative linear 

combination of the gradients is zero. Then clearly C..L will be in the direction v of 8 varying and 

it is straight forward to check that D2p(v) < O. 

First of all, since-Ls = ~ 5 + 4sin(8 - 30) and LT = 2 + 2sin 8/2, as 8 = 37.89° we 

fmd p = LslLT == 0.8891. Next the angles between the edges of Sand T at the vertices need to 

be computed. 

p:= (-~,~) B 
~---------__ - - - - - - - - -c.:; R 

D 
Q =A(cos8 /2, - sin 8 12) 

FIGURE 13. 

As in Figure 13, since P, B, E, A lie on a circle centred at the barycentre of ABP, the 

angles BPE and BAE subtended by BE are equal. We deno~e these angles by a, similarly angle 

APE = angle ABE = b = 60 - a. Consequently, 

tana = IQRI/IPRI == (A sin 8/2 + {3/2)/(ACOS 8/2 + 1/2). 

Because A:= cos 8/2 + {3 sin 8/2, it follows that a = 35.13° and b := 24.87°. Note that angle 
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EAC = b = angle ACE Since ACD is isosceles, angle ACD = 90 - 8(2 and hence angle 

DCF = 90 - b - 9/2. Also then angle FDC b + 9/2 30 and all the angles needed for the 

calculation of the 5 gradient vectors are determined. 

Then 

LetTl ==CD uAB uAD, T2=CDuAB uBC, 

T3 = CD u BC u AC. T4 == CD u AB u AC, TS = CD u AD u BC. 

LT VPl = (0.1933, -D.5338, 0.2729, -D.4222, 0.1366) 

LT VP2 (-0.5338,0.2729,0.1933,0.3049,0.1366) 

LT VP3 = (0.2729, 0.1933, -0.5338, -D.5018, 0.1366) 

LT VP4 == (0.1933, -D.1341, 0.1120, 0.3845, -D.3445) 

LT VP5 = (0.2729,0.5930, -0.6947, 0.3049, -D.3445) 

These vectors span a 3 dimensional subspace of R5. In fact a row echelon fonn is 

(

0.1933 -D.5338 0.2729 -0.4222 0.1366) 
o -1.2012 0.9469 -0.8610 0.5138 
o 0 -0.1726 -0.5845 0.3488 

plus two rows of zeros, up to round-off error. To complete the argument that this configuration 

is critical, we can show that if A = (AI, 1...2,1..3, 1..4, AS) = (0.6024, 1.0369, 0.8933, 1 , 0), then 
5 

2:. Ai LT V Pi = 0, up to round-off error. Note that the exact solution with 1..5 = 0 will clearly 
i=l 

satisfy Ai > 0, for 1 S; i S; 4. 

Finally, since LS = ~ 5+4sin(9-30) and LT == 2 + 2sin 9/2, we can readily compute is 
in the direction of 9 varying. As usual, is = <Ls pLT)/Lr. Also Ls = -0.4168, LT = -0.1624 

and p = 0.8891. Consequently is = - 0.1027. This establishes that the configuration has index 

1 as claimed. 
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Case 6. 
o 

FIGURE 14. 

In Figure 14, the configuration satisfies IABI = x < 1, lAD I lOCI = IBCI = 1, for suitable 

choice of scale. This is the final case corresponding to Figure 8. We call this configuration 

symmetric if a = ~. It is easy to see then that y == 0 and a + 0 == ~ + "! == 180. The first problem 

is to eliminate the non-symmetric case. 

Step 1 If ABCD is not symmetric then the configuration is not a critical point. 

Without loss of generality, it can be assumed that 0 > y in Figure 14. We choose a variation v 

which fixes A, B and rotates DA about A and CB about B at speeds IVil and IV21 respectively. 

To achieve lOCI constant, VI and V2 are chosen so that Iv!1 sino = IV21 sin,,!. Note then that 

IVII < 1V21, supposing that 0 + "! < 180. The latter holds since x < 1. 

We wish to compute the derivatives of all the angles a to 0, with respect to v. First, it 

is obvious that &. = - IVII and ~ = IV21. Consequently, (a~~) > 0 and a + r.3 is increasing. It is 
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not difficult to see that the same variation v can be achieved by fixing DC and rotating DA and 

CB upwards (in Figure 14) at appropriate speeds. Hence 6 > 0 and y < O. We can choose VI 

and V2 without loss of generality so that 6 1. To find y, the equation linking yand 0 can be 

found. Introduce co-ordinates with C at the origin and D = (1, 0). Then B (cosy, siny), 

A = (1 coso, sino) and 

x2 = IABI2 = (1- coso - cosy)2 + (siny- sino)2 

3 + 2cos (y + 0) - 2cosy - 2coso. 

Differentiating relative to v, we obtain 

-2sin(y + 0) (1 + y) + 2ysiny + 2sino O. 

Therefore y = (siny - sin(y + o)/(sin(y + 0) sino). Note that if we start at the symmetric 

configuration where "I = 0, then y = -1. Obviously o remains true until siny = sin ("I + 0). 
Then 2"1 + 0 = 180 so a parallelogram can be constructed with all sides of length 1 and angles 0 
and 2y, as in Figure 15. The appropriate diagonal gives two isosceles triangles with edges of 

length 1, 1, 1 + x and we conclude that P = 1801 

FIGURE 15. 

We postpone till later the discussion when P ~ 180. So assume till further notice that 

[3 < 180 and y < 0, 8 = 1. Note that ("I + 0) = (siny- sino)/(sin(y+ 0) - sino) < 0, ie "1+ 0 is 

decreasing. Of course a + [3 + "I + 0 = 360, so this is to be expected. 

Next the behaviour of:3., b, c, d is described. 
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D 

P~---+--~~-----------4~--~------------~Q 

FIGURE 16. 

Applying Melzak's algorithm gives Figure 16. As in Case 5, angle APQ b etc. The vector V3 

gives the velocity of Q with respect to the variation v. To compute v3, note that IDQI :::: IQCI == 1 

are constant Hence 

(+) IV31 cos8 IV21 cos(y - 30) and 

IV31 cos (120 - 8) == IVII casCo - 30). 

Combining these equations, we obtain 

IVII case casCo - 30) == IV21 cose120 - e) cosey - 30). 

From before, IVII sino == IV21 siny and so 

(*) siny case casCo - 30) sino cos(120 - e) cos(y - 30). 

The initial equation C +) implies that 8 < 90 since y is acute. Therefore PQ is turning 

"downwards" in Figure 16, ie b > 0 and a < O. Similarly, by rewriting the variation so that A, 

B move and C, D are flxed, we see that d > 0 and c < O. This completes the discussion of the 

variation of the angles in Figure 14. 

Finally, since LS ::: IPQI and LT == 0 with respect to v, a necessary and sufficient 

condition for p = 0 is LS = 0, ie V3 is orthogonal to PQ. In other words, if the configuration is 

critical then 8 + d = 90. Note that if LS > 0 relative to v, then Ls < 0 with respect to -v. So if 

Ls :;z!: 0 then the configuration is not critical. 
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Initially, C = d= 30 in the symmetric case and d is increasing. Consequently d > 30 and so 

e < 60 if e + d 90 is to occur. But then equation (*) yields siny cos (0 30) > sino cos(y - 30). 

This implies coto > coty, contradicting 0 > y. So it follows that there are no non-symmetric critical 

points, in the range where ~ < 180. 

If ~ ~ 180, then we claim that S is not a full Steiner tree, so this case doesn't occur. 

P 

C (0, 0) 

FIGURE 17. 

It suffices to show in Figure 17 that angle PBQ > 180, ie slope PB slope BQ. Now 

slope BQ = (cosy-1/2)/(-siny--.J3/2). 

Also slope PB > -cot(y + 60), since ~ ~ 180. If we set -cot(y + 60) ~ (cosy - 1/2) (-siny - -.J3/2), 

the inequality easily reduces to 

cos(y + 30) < -.J3/2, which is trivially true. This completes step 1. 

Step 2. Determination of critical configurations if ABeD is symmetric. 

There is a one-parameter family of symmetric configurations, since (X == ~, y = 0 and 

(X + Y = 180. Either x or y serves as the parameter. From Figure 14, cos y = (1 - x)/2 or 

x = 1 - 2 cosy. Applying Melzak, 

LS = siny + -.J3/2(1 + x) = siny + -.J3/2 (2 2coS')') 

2 sin(y - 60) + -.J3. 

Also LT = 2 + x = 3 - 2eoS')'. We ean readily solve p = 0 with respect to y varying. The result is 

sin(y + 60) = 1/{3 and so I' = 84.74°. (Note there are really two possible critical configurations, 
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by taking IABI ::::: IADI IBCI 1 and ICDI:= x. This case will be discussed the summary). 

There is a one-parameter famiJy of symmeuic configurations, since ex 13, 1':::::: 0 and 

ex + 1'::::: 180. In this case, cos I' == (l x)/2, so equivalently x 1 2cosy. Applying Melzak, we 

obtain LS siny + + x) ::::: siny + {3/2(2 - 2cosy) ::::: 2sin(y - 60) +...J3. Also 

LT = 2 + x 3 2cosy. The equation p = a can be easily solved, differentiating relative to y. The 

result is sin (I' + 60) ::::: 1/{3 and therefore 1'::::: 84.74. 

To show this is a critical point, we need to compute the 3 gradient vectors corresponding to 

Tl ::::: AB u BC u CD, T2::::: AB u AD u BC, T3::::: AB u AD u CD. Now 

cos(y + 30), siny, + cos(y 30), 13/2) 

VT2::::: c13/2-cos(y+30), {3/2 - cos(y+30), 2siny, cos(y-30) cos(y-30» 

VT2 (13/2-cos(y+30), {3/2, siny, {3/2,13/2+ cos(y- 30) 

It is easy to check that A 1 ::::: 0, where Iq A3 2sin(y + 30) - 1, 

A2 = 2 - 2sin (I' + 30), using sin(y + 60) = Evaluating, we obtain "-1 A3 = 0.8164, 

A2 == 0.1836. Hence the configuration is critical and C is 2-dimensionaL 

Finally it remains to calculate the index. We observe first that C.L is spanned by the 

vectors v as in step 1 (c.f. Figure 14) and w corresponding to I' varying. So it suffices to show 

D2p(v) < a and D2p(w) < O. Relative to I' varying, we obtain D2p(w) == cLs - pLT)4 where 

Ls == -2sin(y- 60), LT 2cosy, LS ::::: 2sin(y- 60) + {3, LT 3 - 2cosy and 1'= 84.74 at the 

critical configuration. The result is D2p(w) ::::: -0.3553 < O. ' 

For the variation v in Step 1, LT remains constant ~o LT = LT = O. Therefore 

D2p(v) = Ls/Ly. We introduce convenient co-ordinates into Figure 16 as follows. Let the origin 

be at the midpoint of the edge AB and assume PQ lies on the x-axis and AB on the y-axis. Then 

A == (0, x/2), B == (0, -x/2), P == (--[3x/2, 0), C == (siny, -1/2), D == (siny, 1/2), Q == ({3/2 + siny, 0). 

Also the angle of slope of AD is 90 - I' and of BC is I' - 90. We perturb C to C' and D to D' by 

choosing slopes of AD' to be 90 -1'- t and ofBC' to be 1'- 90 - t. Consequently D'= (sin(y+ t), 

cos(y + t) + x/2) and C' = (sin (I' - t), -cos(y - t) - xfl). In particular the midpoint of CD' is 

sinyCcost, sint) as expected. 
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We wish to find Q'and it suffices to use Taylor expansions of second order, since the 

aim is to find [s, where LS IPQ'I The vector from C' to D' is (cosy sint, 1 + 2 cosy(cost - 1» 

= (tcosy, 1 - t 2 cosy). Hence the orthogonal vector from the midpoint of cn' to Q' is in direction 

cosy + 1, -t cosy). The length of this vector is 1- t2 cosy + (t2 cos2r.r)/2, up to second order. 

Therefore the co-ordinates of Q' to second order terms in t2 are given by adding 

-!3/2 (1 + t2(cosy- (cos2r.r)I2) (1- t2 cosy, -tcosy) to the midpoint siny(cost, sint) of C' D'. 

Simplifying and neglecting higher order expressions, we obtain 

Q' == (-!3/2 + siny- t2 «-[3 cos2r.r)!2 + siny)/2, t(siny- (-[3 cosy)/2). 

Finally, since P (1 cosy), 0), PQ' = (-[3 + 2sin(y- 60) - t2 «-[3 cos2r.r)!2 + sinY)I2, 

t(siny- (-[3 cosy)/2). 

Consequently LS = IPQ'I 

The coefficient of t2 in 

+ 2 sin(y - 60) + t2«siny - (-[3 cosY)/2)2 - (-[3 cos2r.r)!2 - siny). 

siny(siny- 1) + «-[3 cosry)/2) ({3/2 - 1) - sin y cosy which 

is clearly negative. Hence the critical configuration has index 2. 

SUMMARY 

The interior of the 4-simplex, which is the configuration spa.ce in the case of 4 points, has the 

follo\\ring critical points. 

Number Critical points Index 

1 Square 1 

2 Rhombus 0 

2 Equilateral and Isosceles 1 

2 Symmetrical quadrilateral 2 

The first column gives the number of such configurations. Note the action of the symmetry 

AHD,B H C. 

It is interesting to observe that the Euler characteristic is one, which equals the sum 

L (_l)index 
Critical points 

281 



Hence on the boundary of the configuration space, the negative gradient-like vector field w for 

p behaves as if it was everywhere inward-pointing, exactly as for the 3 point case. Of course 

this is only a statement about the average behaviour of w; near an equilateral triangle 

configuration w will be pointing outward towards it. 
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