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Abstract Let V be a finite set of order v. A (v,%,A) packing design of index
N\ and block size x is a collection of xk~element subsets, called blocks, such that
every 2-subset of V occurs in at most A blocks. The packing problem is to

determine the maximum number of blocks, o(v,k,A\), in a packing design. It is

well known that o(v,k,A) = [l[v°1 1]]=t(v,|:,l.), where ([x] is the largest

® | ®x-1
integer satisfying x 2 [x]. It is shown here that o(v,5,3) = Y(v,5,3) for all
v = 3 (mod 4) and o(v,5,5) = Y(v,5,5) for all positive integers v = 5 with the

possible exceptions of v = 28, 32, 34.

1. Introduction

A (v,x,A) packing design (or respectively covering design} of order v,
block size x and index A is a collection § of x-element subsets, called blocks,
of a v-set V such that every 2-subset of V occurs in at most (at least) A\ blocks.

Let o(v,x,\) denote the maximum number of blocks in a (v,x,A\) packing
design; and a(v,x,\) denote the minimum number of blocks in a (v,&,A) covering
design. A (v,k,A\) packing design with ‘B| = o(v,&,A) will be called a maximum
packing design. Similarly, a (v,%x,A) covering design with. ]Bl = a({v,k,A) is

‘called a minimum covering design. It is well known [23] that

o(v,k,A) < [-% [—}E-% ).]] =¢y(v,k,A) and a{v,x,A) 2 Pi [-‘é{—%" =¢(v,x,A)

where [x] is the largest integer satisfying [x] s x and [x| is the smallest
integer satisfying x < [x|. When o(v,x,A\) = ¥(v,&x,A\) the (v,x,\) packing design
is called optimal packing design. Similarly when a(v,x,A) = ¢{v,x,A) the (v,x,\)
covering design is called minimal covering design.

Many researchers have been involved in determining the packing number
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o(v,&,A\) known up to date. The following theorem summarizes what is known

about packing pairs by gquintuples.

Theorem 1.1 Let v 2 5 be a positive integer. Then

1) a(v,5,1) = ¢(v,5,1) for v = 3 (mod 20) and v = 0 (mod 4) v # 12, 16 with
the possible exception of v = 32, 48, 52, 72, 132, 152, 172, 232, 243,
252, 272, 332, 352, 432 [16) [18] [26}, and o(12,5,1) = ¥(12,5,1) - 1,
0(16,5,1) = ¥(16,5,1) - 1 [16].

2) o(v,5,2) = Y(v,5,2) for all positive even integers v, (5] and o(v,5,2) =
Y(v,5,2) - @ where e = 1 if v = 7 or 9 (mod 10) or v = 13 with the
poesible exception of v = 15, 19, 27 and e = 0 if v = 1, 3 or § (mod 10)

v 13,15 (6,7].

3) (a) o(v,5,3) = ¢¥(v,5,3) for all positive integers v, v # 0 (mod 4) with
the possible exception of v = 17, 19, 29, 33, 38, 49 (8,13].

(b) o(v,5,3) = Y(v,5,3) for all positive integers v = 0 (mod 4) v < 96
with the possible exception of v = 20, 28, 32, 36, 56, {9].

4) o(v,5,4) = Y(v,5,4) for all positive integers v, v # 7 and o(7,5,4) =
Y(7,5,4) - 1 [12].

5) o(v,5,6) = yY(v,5,6) for all positive integers v, with the possible

exception of v = 43 [13].

6) o(v,5,\) = Y(v,5,\) ~ e for all positive integers v and A\ = 8, 12, 16 [11]
with few possible exceptions where e = 1 if A(v=1) = 0 (mod 4) and
1_v%__:;__)_ = 1 (mod 5) and e = 0 otherwise.

Furthermore, these few possible exceptions were removed later, in an
unpublished paper, by Shalaby [24].
Our interest here is in the case x = 5 and A = 3, 5. Our goal is to prove

the following:

Theorem 1.2 Let v 2 5 be a positive integer. Then o(v,5,3) = ¥(v,5,3) for all
v = 3 (mod 4) and o(v,5,5) = ¥(v,5,5) for all positive integers v 2 5 with the

possible exception of v = 28, 32, 34.

2. Recursive Constructions
In order to describe our recursive constructions we require several other

types of combinatorial design. A balanced incomplete block design, B[v,x,A]}, is



a (v,x,A) packing design where every 2-subset of points is contained in precisely
X blocks. If a B(v,k,A\] exists then it is clear that o(v,k,A) = Av{v-1)/k(x-1)
= Y(v,k,A) and Hanani [16] has proved the following existence theorem for

B{v,5,\].

Lemma 2.1 Necessary and sufficient conditions for the existence of a B[v,5,\]
are that A(v-1) = 0 (mod 4) and Av(v-1) = 0 (mod 20) and (v,A) = (15, 2).

Corollary o(v,5,5) = ¥(v,5,5) for all positive integers v where v = 1 (mod 4).
A (v,x,A) packing design with a hole of size h is a triple (V,H,B) where
V is a v-set, H is a subset of V of cardinality h, and § is a collection of x-

element subsets, called blocks, of V such that

1) no 2-subset of H appears in any block;
2) every other 2-subset of V appears in at most A blocks;
3y Iﬂl = Y(u,k, A} = ¢Y(h,&,N\).

It is clear that if there exists a (v,x,A) packing design with a hole of size h
and o(h,k,A) = Y(h,x,A) then o(v,k,A) = Y(u,k,A}.

Let «, A and v be positive integers and M be a set of positive integers.
A group divisible design GD[«,A,M,v] is a triple (V,B,y) where V is a set of
points with |V| = v, and ¥ = {G,,..., G,} is a partition of V into n sets called
groups. The cgllection B consists of x~subsets of V, called blocks, with the

following properties

1) |[Bneg| s 1 for all B €8 and G, €v;
2) |G,] €M for all G, €v;
3) every 2-subset {x,y} of V such that x and y belong to distinct groups is

contained in exactly A\ blocks.

If M = {m} then the group divisible design is denoted by GD[&,\,m,v].

A GD(x,A,m,xm] is called a transversal design and denoted by T{x,A,m]. It
is well known that a T{«x,1,m] is eguivalent to x~2 mutually orthogonal Latin
squares of side m.

In the sequel we shall use the following existence theorem for transversal
designs. The proof of this result may be found in (1}, [2]), ([14], [15), [18],
[22], [24).



Theorem 2.1 There exists a T[6,1,m] for all positive integers m with the
exception of m € {2,3,4,6) and the possible exception of m € (10, 14, 18, 22, 26,

34, 423.

Theorem 2.2 If there exists a GD[6,A,5,5n] and a (20+h,5,A) packing design with
a hole of size h then there exists a (20(n-1)+4u+h,5,A) packing design with a

hole of size 4u + h where 0 s u < 5.

Proof Take a GD[6,A\,5,5n] and delete 5-u points from the last group. Inflate
this design by a factor of 4. on the blocks of size 5 and 6 construct a
GD(5,1,4,20] and a GD[5,1,4,24) respectively, lemma 2.1. Add h points to the
groups and on the first n-1 groups construct a (20+h,5,\) packing design with a
hole of size h, and take the h points with the last group to be the hole of size
4u+h.

It is clear to apply the above theorem we require the existence of a
GD[6,A,5,5n]. Cur authority for that is the following lemma of Hanani [18,

p.286].

Lemma 2.2 There exists a GD[6,\,5,35] for A = 3, 5.

If in the definition of GD[«x,A,m,v] (similarly T{x,A,m]) condition (3) is
changed to be read as (3) every 2-subset {x,y} of V such that x and y are neither
in the same group (column) nor in the same row is contained in exactly A blocks
of  and no block contains more than one point from the same row. Then the
resultant design is called a modified group divisible design (modified
transversal design) and is denoted by MGD[«,A,m,v] (MT{x,A,m]). (We may look at
the points of MGD{«,A,m,v] as the points of a matrix and then the groups of
MGD[x,A,m,v]) are precisely the columns of the matrix).

A resolvable modified group divisible design, RMGD[x,A,m,v], is a modified
group divisible design the blocks of which can be partitioned into parallel
classes.

It is clear that a RMGD[5,1,5,5m] is the same as RT[5,1,m} with one
parallel class of blocks singled out, and since RT[5,1,m) is equivalent to

T[G,l,m]‘we have the following

Theorem 2.3 There exists a RMGD[5,1,5,5m] for all positive integers m with the

exception of n € {2,3,4,6) and the possible exception of m € {10, 14, 18, 22,



26,34, 42}).

The next two theorems are in the form most useful to us.

Theorem 2.4 [3] If there exists a RMGD[5,1,5,5m] and a GD[5,A,{4,8%}, 4m+s],
where * means there is exactly one group of size s, and there exists a (20+h,5,})
packing design with a hole of size h then there exists a (20m+4u+h+s,5,\) packing

design with a hole of size 4u+h+s where 0 £ u £ m-1.
Theorem 2.5 If there exists (1) a RMGD({5,1,5,5m) (2) a GD[5,5,4,4m] (3) a
(24,5,5) packing design with a hole of size 4 (4) o©(24,5,5) = ¥(24,5,5). ‘Then

‘o(20m+4,5,5) = Y (20m+4,5,5).

Proof Inflate a RMGD[5,1,5,5m] by a factor of 4, that is, replace the blocks of

size 5 by the blocks of GD[5,5,4,20). On the rows (which are blocks of size m)
congtruct a GD[5,5,4,4m). Finally add 4 points to the groups and on the first
(m~1) groups construct a (24,5,5) packing design with a hole of size 4 and on the
last group construct a (24,5,5) optimal packing design.

It is clear that the application of the above theorem requires the
existence of a GD([5,1,{4,8*}), 4m+s]. The following theorem is most useful to us.
For the proof of the first part see [3) and for the proof of the second part see

[17].

Theorem 2.6 (i) There exists a GD[5,1,{4,8*},4m+8) where 8 = 0 if m = 1 (mod §),

8 =4 ifm=0 or 4 (mod 5) ands=ii’%'ilifme1(md3).

(ii) There exists a GD[5,1,{4,8*}, 4m+8] wherem = 0 or 2 (mod 5), m 2 7 with the

possible exception of m = 10.
In the cagse m = 7, 8, 13 the following lemma is most useful to us.
Lemma 2.3 There exists a GD(5,5,4,v] where v = 28, 32, 52
Proof For v = 28 let X = Z5. The groups are < 0 7 14 21 > + &, i € %, and the

blocks are the following:

<0139 13> (mod 28), <0 4 9 15 20 > (mod 28), < 01 2 3 4 > ( mod 28)
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<0 3 9 13 19 > (mod 28), < 0 2 8 13 18 > (mod 28), < 0 3 11 15 20 > (mod 28).

For a GD[5,5,4,32] let X = Zy. The groups are < 08 16 24 > + i, 1 €124

Blocks:
<02 7 11 20 > (mod 32) < 012411 > (mod 32) < 0 37 17 22 > (mod 32)
<05 11 17 23 > (mod 32) < 012413 > (mod 32) <0 1511 18 > (mod 32)

<0 36 13 18 > (mod 32)

For a GD[5,5,4,52), since there exists a B[13,5,5] and a GD[5,1,4,20] it
follows, [16 lemma 2.16), that there exists a GD([5,5,4,52] .

The set of blocks <x x+m x+n x+j £(x)> (mod v) for x = 0,..., v-1 where
f(k) = a if ¢ is even and f(x) = b if x is odd will be denoted by <0 m n j> U
{a,b}, and the set of blocks <k «+m x+n x+j f(x)> (mod v) for x = 0,.0., v=-1
where f(x) =h, if ¢« = i (mod 4) is denoted by <O mn j> U {hs}%.,- Similarly, the
set of blocks <(0,x) (O,«+tm) (1,x4n) (1,x+j) £(x)> mod (~,v) for x=0,..., v-1
where f£(x) = a if x is even and f(x) = b if « is odd is denoted by <(0,0) (0,m)

(1,n) (1,3)> U {a,b}.
3. The Structure of Packing and Covering Designs

Let (V,f) be a (v,&,A) packing design, and for each 2-subset e = {x,y} of
V define m(e) to be the number of blocks in 8 which contain e. Note that by the
definition of a packing design we have m(e)} = A for all e.

The complement of (V,f), denoted by C(V,f) is defined to be the graph with

vertex set V and edges e occurring with multiplicity A-m(e) for all e. The
number of edges (counting multiplicities) in c(v,B8) is given byl(;) - |81 (;)

The degree of the vertex x in C(V,f) is A(v=1) = r, (x-1) where r, is the number
of blocks containing x.

In a similar way we define the excess graph of a (V,f) covering design
denoted by E(V,8), to be the graph with vertex set V and edges e occurring with

multiplicity m(e) - A for all e. The number of edges in BE(V,B) is given by

181 (;) - ).(;); and the degree of each vertex is r,(x~1) - MA(v-1) where r, is as
before.
Lemma 3.1 Let (V,8) be a (v,5,4) covering design with |8] = #(v,x,\) then the

degree of each vertex of E(V,f) is divieible by 4 and the number of edges in the

graph is 0, 6, 8 when v mod 5 € {0,1}, {2,4}, {3) respectively.
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In the case v = 3 (mod 5) a particularly useful graph with 8 edges and each
vertex of degree divisible by 4 is the one that consists of v-4 isolated vertices

and the following graph on the remaining 4 vertices.

To define the complement graph of a packing design with a hole H of size
h let e = {x,y} where at least one of x or y does not lie in H and let m(e) be
the number of blocks in f which contain e. Then the complement graph of the
packing design with a hole H of size h, denoted by C(V\H,f), is the graph with
vertex set V and edges e occuring with multiplicity A~m(e). In a similar way the
excess graph, E(V\H,8), of a (v,x,A) covering design with a hole of gize h is

defined.

4. Packing Designs with Index 3 and Order v E 3 (mod 4)

Lemma 4.1 For all v = 3 (mod 20) we have o(v,5,3) = ¥(v,5,3). Furthermore,

there exists a (23,5,3) packing design with a hole of size 3.

Proof For all v = 3 (mod 20) a (v,5,3) packing design with ¥(v,5,3) blocks can

be constructed as follows

1) take a (v-1,5,2) optimal packing design; such design exists by [5].

2) take a B[v+2,5,1], lemma 2.1, and assume in this design we have the block
< p=2 v=1 v v+l v+2 >; drop this block and in all other blocks change both
v+2 and v+l to v; which proves the first part of the lemma.

Since the (22,5,2) optimal packing design has a hole of size 2 [5, p.49])

and since we .droped the block < 21 22 23 24 25 > it follows that the (23,5,3)

packing has a hole of size 3.

The following lemma is very useful to us.
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Lemma 4.2 Let v = 6 (mod 20) be a positive integer. Then there exists a (v,5,2)

packing design with a hole of size 6.

Proof For v = 6, 26, 46 see (5, p.51]).

For v = 66 let X = Zg U {~,}§.1. Then take the following blocks under the

action of the group Zg. < 01 3 511 >, <0 4 10 19 38 > <018 21 35 >,

<0 31527 43 >, <05 23 36> U{m, @}, <0 7 16 37 > U=y, x4,

< 0 11 25 42 > U {w, =}. For v = B6 let X = Zy U {=}i.,,. On Zgx construct an

(80,5,1) minimal covering design [21], in this design each pair appears once
except the pairs {i, i+40}, i = 0,..., 3% which appear twice. Furthermore, take
the following blocks under the action of the group Zg.
<013715 > <010 21 38 84 >, < 0 § 27 50 » U {w, =&}, < 0 9 29 48 >
U {®;, ®), < 0 13 31 56 > U {5, =5}.

For v = 106 v 126, 146 simple calculations show that v can be written in

the form 20m+4u+h+s where m, u, h and s are chosen so that

1) There exists a RMGD[5,1,5,5m}), theorem 2.3.

2) There exists a GD[5,2,{4,8*},4m+s8], theorem 2.5.
3) 4u+h+s = 6, 26, 46, 66, 86.

4) 0O<u=<ml, 88 0 (mod 4) and h = 6.

Now apply theorem 2.4 with A = 2 to get that a (v,5,2) packing design with
a hole of size 6, 26, 46, 66, or 86 exists and hence a (v,5,2) packing design

with a hole of size 6 exists.

For v = 126, 146 apply theorem 2.2 withn =7, A= 2, h=6 and u = 0, §

respectively.
Lemma 4.3 Let v = 7 (mod 20) be a positive integer. Then o(v,5,3) = ¥(v,5,3).

Proof For v = 7, 27, 47 the constructions are given in the next table. In
general, the construction in this table and other tables to come is as follows.

Let X = %, UH, or X =2, X Zv-a UH, where H, = {h;, ..., h) is the hole. The
2

blocks are constructed by taking the orbits of the tabulated base blocks mod

{(v-n) or mod (-, _v;_n ) respectively unless it is otherwise specified.
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For all other values of v let X = 2., UH, U {(®, o, =)}, then the
construction is as follows.

1) On Z,, UH,; construct a (v-1,5,2) packing design with a hole of size 6, say,
{hy; ..., hg}, lemma 4.2.

2) on %, UH, U {®, =, o} construct a (v+2,5,1) packing design with a hole
of size 9, say, {h, ..., h} U{®, o, =) [17]. Furthermore, replace the
points ®, and ®; by ®,.

3) To the blocks obtained in (1) and (2) adjoin the following blocks

<h, h, hy h, =>, <h; h; h hy hy>, <hy; h, hy hg >, <h, h, hy hg ®>, <h, h; hy hg @>.
It is readily checked that the above three steps give a (v,5,3) optimal

packing design.

v Point Set Base Blocks

7| 25 UR, <0124>U{h, h}

27| 2, x 2y UH, < (0,0) (0,6) (1,0) (1,6) > + (~,i), i €24

<(0,0) (0,2) (0,6} (0,9} (1,11)», <(0,0) (1,0) (1,1) (1,4) (1,6)>
<(0,0) (0,1) (O0,5) (0,10) (1,8)>, <(0,0) (1,3) (1,4) (1,8) (1,11)>
< {0,0} (0,1) (1,1) (1,3} h, >, < (0,0) (0,4) (1,5) (1,8) hy >

< (0,0) (0,2) (1,7) (1,9) hy >

< (0,0} (0,1) (1,10) (1,11) > U {h;, hy}.

47 Zo UH, on Z4 U {h}%., construct a B(45,5,1], lemma 2.1; drop the block

< h; h, hy he hy > and take the following blocks

< 0481216 >+ 4, L €2; twice, <012 4 14 >,
< 04919 > U{h, h}, <05 11 28 > U (hy, hg},

<0 6 13 31 > U{hs, he}, < 0 3 14 21 > U {hg hy hy By} >

Lemma 4.4 Let v = 11 (mod 20) be a positive integer. Then o(v,5,3) = ¥(v,5,3).

Proof For v = 11, 51, 91 see the table below.
For v = 31 take the blocks of a (31,5,1) optimal packing design [20]

together with the blocks of a B[31,5,2), lemma 2.1.
For v = 71 take a T[5,3,14] [18] and add a new point to the groups and on

each group construct a (15,5,3) optimal packing design, (see lemma 4.6).
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For v z 111, v # 131 simple calculations show that v can be written in the
form 20m+4u+h+s where m, u, h and s are chosen so that
1) There exists a RMGD([5,1,5,5m}, theorem 2.3.
2) There exists a GD[5,3,{4,8*},4m+8], theorem 2.5.
3) 4u+h+s = 11, 31, 51, 71, 91.
4) O=gus<sml, 8 0 (mod 4) and h = 3.
Apply theorem 2.4 with A = 3 to get the result.

For v = 131 apply theorem 2.2 with n =7, h = 3 and u = 2,

v Point Set Base Blocks

11 Z2x%s UH, < (0,0) (0,1) (1,0) (1,1) (1,3) > < (0,0) (0,2) (1,0} (1,3) (1,4)
< (0,0) (0,2) (0,3) (1,4) h >

51 | 2, x zZ, UH, | < (0,0) (0,4) (0,8) (0,12) (0,16} > + (-,i), i €2, twice

< (1,0) (1,4) (1,8) (1,12) (1,16) > + (-,1), i €2,

< (0,0) (0,10) (1,0) (1,10) hy > + &, i €2y

< (0,0)(0,10)(1,1)(1,71(1,17) >, < (0,0)(0,3)(0,5)(0,16) > U {h;,hy}
<(1,0)(1,3)(1,5)(1,12)> U {h,,h}, <{0,0)(0,9)(0,15)(1,1)> U {hy, he}
<(0,0)(1,0)(1,1)(1,4)> U {h;, hy}, <(0,0)(0,1)(0,15)(1,0)> U {hyhe}
<(0,0)(1,2)(1,5)(1,7)> U {hg, hg}, <(0,0)(0,l)(0,3)(1,13)‘> U {h,, he}
<(0,0y(1,9)(1,16)(1,18)> U {h, h}, <(0,0)(0,1)(1,6)(1,15)> U {h,h}
<(0,0)(0,3)(1,18)(1,19)> U {hy,hy}, <(0,0)(0,7)(1,9)(1,10)> U {hy, he}
<(0,0)(0,7)(1,11)(1,18)> U {h, he}, <(0,0)(0,9) (1,8)(1,13)> U {he, hy}

< (0,0)(0,8)(1,2)(1,16) hy >, < (0,0)(0,2)(1,8)(1,14) by >

<(0,0)(0,6)(1,3)(1,15) h, >.

91 Zg UH, On Zg U{h,} construct a B{81,5,1], lemma 2.1, and take the following
blocks

<04 122840 > <05 14 32 34 > <017 37 61 >
<0 21327 > U{h}, <0 318 41 > U {h)',

< 0 10 21 43 > U {hy, hy, hy, hy}, <0 1 4 9 > U{h, hy}
< 0 6 25 41 > U{h, h), <0 7 29 42 > U {hy, h¢}

< 0 10 31 57 > U {hy, hg} < 0 15 32 49 > U {hy, hy}.




Lemma 4.5 There exists a (v,5,2) packing design with a heole of size 4 for
v = 34, 54, 74, %94.

Proof For a (34,5,2) packing design with a hole of size 4 see [5, p.51]. For
a (74,5,2) packing design with a hole of size 4 take a T[5,2,14] (18, p.278] and
add four new points to the groups and on each group construct an (18,5,4) packing
design with a hole of size 4 [5, p.49). For a (54,5,2) and a (94,5,2) packing
design with a hole of size 4 take a T[6,1,m] where m = 5, 9 respectively, theorem
2.1. Delete all but one point of the last group and inflate the design by a
factor of two. Replace the blocks of this design by the blocks of GD[5,2,2,10]
and GD[5,2,2,12} [18, p.284)}. Finally add two new points to the groups and on
the first five groups construct a (12,5,2) and (20,5,2) packing design with a
hole of size 2 [5, p.49] and take these two points with the last group to be the

hole of size 4.

Lemma 4.6 Let v = 15 (mod 20) be a positive integer. Then o(v,5,3) = Y(v,5,3).

Proof For v = 15 let X = 2,5 then the required blocks are

<0137 10> (mod 15) < 01 2 5 7 > (mod 15)

For v = 35, 55, 75, 95 let X = 2, U {®, x} U {h, ..., h} then the
construction is as follows

1) on Z,, U{®, =) U{h, ..., h} construct a (v-1,5,2) packing design with
a hole of size 4, say, {h, ..., hJ) and assume that the pair (o, ®)
appears at most once, lemma 4.5.

2) on 2, U {=®, =} U{h, ..., h} construct a (v+2,5,1) packing design with
a hole of size 9 [17] where the hole is {®, @} U {h, ..., h}. In this
design replace the points hg and h, by hs.

3) To the blocks obtained in (1) and (2) add the blocks
<h, hy, hy hy hy > twice, < @ @ h hy, hy >, <® @ hy hy hy >.

For v = 115, v # 135, write v = 20m+4u+h+s where m, u, h and 8 are chosen
ag in lemma 4.4 with the difference that 4u+h+s = 15, 35, 55, 75, 95. Now apply
theorem 2.4 with A = 3 to get the result.

For v = 135 apply theorem 2.2 with n =7, h = 3 and u = 3.
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Lemma 4.7 Let v = 19 (mod 20) be a positive integer. Then o(v,5,3) = ¢(v,5,3).

PgOO:

For v = 19 let X = {1, ..., 19} then the blocks are

<12 46514 > <356 1316 > <2 415 17 19>, <12 5 8 15 >

< 3561011 > <5 91014 18 >, <13 4818 >, <35 10 16 19 >

1)

2)

3)

[N

W oW NN A

5 11 17 18 >, < 1 3 13 14 15 >, < 3 7 9 14 15 >, < 6 7 14 18 19 >

4 689> <3815 17 18 », < 2 6 8 10 19 », <1 5 9 12 19 >

9 12 17 19 >, < 6 12 13 15 19 >, < 1 6 11 14 17 >, < 4 5 12 13 17 >
6 9 16 18 >, < 1 6 12 16 17 >, < 4 8 9 11 12 >, < 7 8 § 13 16 >

79 10 17 », < 4 9 10 15 16 >, < 2 7 10 11 12 >, < 1 7 11 18 1% >

10 13 14 17 >, < 8 10 11 13 19 >, « 1 7 11 15 16 >, < 4 11 15 16 19 >
9 11 13 14 », < 1 12 13 16 18 >, < 4 14 16 18 19 >, < 8 10 12 14 16 >
3716 17 », <« 56 9 11 15 », < 2 10 12 15 18 », < 2 3 8 12 14 >

7 813 18 >, < 8 11 14 16 17 >, < 2 3 9 1319 >, < 5 7 8 17 19 >
46710 > <246 713 > <5712 14 15 >, < 10 13 15 17 18 >

4 11 12 18>.

For all other values of v, v # 239, the construction is as follows.

Take two copies of a (v-2,5,1) packing design with a hole of size 9, [17],
and on the hole conmstruct a (9,5,2) packing design with ¥(9,5,2)-1 blocks
[6]. Close observation of this design shows that the complement graph of

this design consists of the following graph
1

4
5 6
Take a (v+4,5,1) optimal packing design, v+4 3 243, [20]. Again, close

observation of these designs show that the complement graph of these
designs contains a subgraph on n z 23 vertices which is one cycle. So we
may assume that the pairs (1,4}, {2,4}, {2,5}, {3,5}, {v=1, v+l} and {v-1,
v+2} appear in zero blocks. Furthermore, assume we have the block < v v+l
v+2 v+3 v+4 >. Delete this block and in all other blocks change v+4, v+3
to v and v+2, v+l to v-1.

To the blocks obtained in (1) and (2) add the block < 1 2 3 4 6 >,

For v = 239 apply theorem 2.4 withm = 11, u =4, h = 3, 8 = 0 and A\ = 3.



Conclusion In this section we have shown that for all positive integers v = 3

(mod 4) v z 7 we have o(v,5,3) = ¥(v,5,3).

5,

Packing Designs With Index 5

cking of Orde = 3 (mod 4

Theorem 5.1 For all v = 3 (mod 20), v # 3, we have o(v,5,5) = Y(v,5,5).

Furthermore there exists a (23,5,5) packing design with a hole of size 3.

Proof A (v,5,5) packing design with ¢(v,5,5) blocks may be constructed as
follows.
1) Take a B[v+2,5,1}, lemma 2.1, and assume we have the following two blocks

2)

3)

4)

< 1 2 3 vove2 >, < 4 5 6 v-1 v+l >

In the first block change v+2 to 7 and in the second block change v+l to

8 where 1,2, ...,7,8 are all arbitrary numbers. In all other blocks change

v+¢2 to v and v+l to v=-1.

Take a B{v-2,5,1), lemma 2.1, v-2 # 21, and assume we have the following

two blocks

< 1 2 3 9 7 > < 4 5 610 8 >

In the first block change 7 to v and in the second block change 8 to v=1.
The above two steps give us a sort of a design such that {7,9} and

{8,10} each appears exactly once; {7,v} {(8,v-1} {9,v} {10,v-1} each appears

exactly 3 times; {v-1,v} appears exactly four times, and each other pair

appears exactly twice.

Take a (v,5,2) optimal packing with a hole of size 3, [5], such that the
hole is {v-2, v-1, v}

Take a (v,5,1) optimal packing, [20], which exists for all v = 3 (mod 20),
v #243. The complement graph of this design contains a subgraph that is
the circuit graph C, where n 2 23, we may assume that (7,v}, {8,v~1} {9,v}
and {10,v-1} are missing from the (v,5,1) optimal packing design.

It is ;eadily checked that the above four steps yield the blocks of a

(v,5,5) optimal packing design for all positive integers v = 3 (mod 20) v #23,

243.
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For v = 23 the construction is as follows:

1) take a (23,5,2) minimal covering design [19). 1In this design each pair
appears in precisely two blocks except one pair, say, {22,23} that appears
in 6 blocks.

2) take a (23,5,2) optimal packing design with a hole of size 3, say,
{5,22,23} [6].

3) take a (23,5,1) optimal packing desing. The complement graph of this
design is the circuit graph C,, [20), so we may assume that the pairs
{22,23) and {4,23) appear in zero blocks.

The above three steps give a design such that (22,23} appears in six blocks
and each other pair in at most 5 blocks. To reduce this to five, assume in the
(23,5,2) minimal covering design we have the block < 1 2 3 22 23 ». 1In this
block change 23 to 5. Furthermore, assume in_.the (23,5,2) optimal packing design
we have the block <1 2 3 4 5 >. 1In thie block change 5 to 23.

Now it is easy to check that the above construction yields a (23,5,5)

optimal packing design.
For v = 243 apply theorem 2.4 with m = 11, A =5, h = 3, 8 = 0 and u = 5.
For a (23,5,5) packing design with a hole of size 3 let X = 2, UH,. Then
the required blocks are:
on Z, U {h;} construct a B{21,5,1), lemma 2.1, and take the following blocks:
< 0481216 >+ i, i €2, 3 times < 0 3 10 13 h, > half orbit
<012365> (mod 20), <01 7 12 hy, > (mod 20), < 0 2 7 13 h, > (mod 20)

< & k+3 x+9 «x+14 f(x) > x = 0,..., 19 where £(x) = h, if x = 0 or 1 (mod 4),

£(xk) = hy if « = 2 (mod 4) and f(x) = hy if x E 3 (mod 4).
In the following lemma we give direct constructions for small values of v.

Lemma 5.1 o(v,5,5) = ¢¥(v,5,5) for v=7, 27, 47, 67, 87.

2;_99_1’_ For v = 7, 47, 67, 87 the constructions are given in the following table.
For v = 27 the construction is as follows:
1) take a B[26,5,4], lemma 2.1;

2) take a (31,5,1) optimal packing design ([20), lemma 3.6 with s = 8).
Assume in this design we have the block < 27 28 29 30 31 >. Delete this

block and in all other blocks change 28, 29, 30 and 31 to 27.
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Point Set

Base Blocks

47

67

87

2, x 2, UH,

Zy UH,

Zg UH,

ZgyU H,

< (0,0)(0,1)(1,0)(1,2) h >, < (0,0)(0,1)(1,0)(1,1) hy >
< (0,0)(0,1)(1,0)(1,1)(1,2) >

On Z4 UHg construct a B(45,5,1)}, lemma 2.1. Assume <h,, ..., ho>
are in one block. Delete this block and take the following
blocks

<0 8 16 24 32> + i, i €12, <0 13 20 33> U {h,, hy}, half orbit
<0 12 4 10>, <0 3 10 24 28>, <0 5 14 20 27>, <0 5 17 28 h>
<0 1 6 15 h,», <0 2 19 30 hy», <0 3 4 22 h>», <0 3 10 14 hg

< 02817 hy> <05 13 24 h, >.

on Zg4 UH; construct a B(65,5,1), lemma 2.1. Assume <h,, ..., hg
are in one block. Delete this block and take the following
blocks

<0 12 24 36 48> + i, i €137, <0 21 30 51> U {h,, hy}, half orbit
<0 1 385 11>, <0 7 14 26 42>, <0 1 3 7 23>, <0 & 14 27 45>

<0 6 17 32 42>, <0 1 3 7 15>, <0 10 20 31 44>, <0 9 22 45 hy>
<0 8 25 41 h,>, <0 8 27 39 hy», <0 17 20 46 h>, <0 1 5 28 h>
<0 518 43 hg>, <0 9 28 39 hy >.

On Zg UH; construct a B(85,5,1], lemma 2.1. Assume <h,, ..., hg
are in one block. Delete this block. On Zg construct an
(80,5,1) covering, [21]. In this design each pair appears
exactly once except the pairs (i, i+40}; i € Z,, each appears
exactly twice. Take the following blocks

<0 16 32 48 64> + i, i €3, <0 11 40 51> U {hg, hy}, half orbit
<0 5 28 38 50>, <0 1 3 7 17>, <0 11 26 50 62>, <0 1 3 7 21>

<0 1 3 7 25>, <0 5 14 22 53>, <0G 10 30 43 59>, <0 8 27 42 hy>
<0 9 34 53 h>, <0 13 37 54 hy>, <0 5 28 37 h>, <0 12 25 45 hg>
<0 8 3152 hg >, <0 11 26 45 h, >.

Theorem 5.2 Let v

= 7 (mod 20) be a positive integer. Then o(v,5,5) = ¢(v,5,5).

Proof For 7 £ v = 87, the result follows from lemma 5.1

For v

= 107, v # 127, simple calculations show that v can be written in the form

v = 20m + 4u + h + B where m, u, h and 8 are chosen sc that the following 4

conditions hold

1)
2)
3)
4)

there exists
4u + h + 8 =
0 2usml,

there exists

a RMGD([5,1,5,5m], theorem 2.3,
7 (mod 20) and 7 = 4u + h + 8 5 87,
8 0 (mod 4) and h = 3

a GD[5,5,{4,8*},4m+s8], theorem 2.5,

Now apply theorem 2.4 with A = 5 and the result follows.

For v = 127,

Theorem 5.3

¥(v,5,5).

apply theorem 2.2 with u =1, h= 3 and n = 7.

Let v = 11 or 15 (mod 20) be a positive integer. Then o(v,5,5) =




Proof A (v,5,5) packing design with precisely ¥(v,5,5) blocks for allbv = 11 or
15 (mod 20) can be constructed by simply taking the blocks of a B{v,5,2] and a
(v,5,3) optimal packing designs, lemma 2.1 and lemmas 4.4 and 4.6 respectively.
Since a B[15,5,2) does not exist, lemma 2.1, we need to construct a (15,5,5)
optimal packing design.

For this purpose let X = %,; then the required blocks are
< 036912>+1i, i €2, twice

<01237>(mod15),<012510>(modlS),<024711>(mod15).

Lemma 5.2 Let v = 19 (mod 20) be a positive integer and assume the following

conditions are satisfied

1) o(v+4,5,1) = ¥(v+4,5,1) 2) a(v-1,5,4) = ¢(v-1,5,4)

3) the excess graph E(V,f) of the (v-1,5,4) covering design consists of v-4
isolated vertices and one of the following graphs on the remaining 4

vertices, say, {1,2,3,4}.

1 2
Then o(v,5,5) = ¥{(v,5,5).
Proof 1If the excess graph of the (v-1,5,4) minimal
]
3 4

covering design consists of v-4 isolated vertices

and the graph on the bottom on the remaining four vertices, then a (v,5,5)

optimal packing design can be constructed as follows:

1) take the blocks of a (v-1,5,4) minimal covering design and assume we have
the block < 1 2 3 4 a > where a is an arbitrary number different from
{1,2,3,4}. Delete this block.

2) take a (v+4,5,1) optimal packing design. The complement graph of this

> 23 [20], so we may assume that

design contains a circuit graph C, where n

the pairs {1,3) and {2,4)} are missing from this design. Furthermore,

assume we have the block < v v+l v+2 v+3 v+4 >. Delete this block and in

all the remaining blocks of the (v+4,5,1) optimal packing design change

v+l, v+2, v+3, and v+4 to v. )

If the excess graph of the (v-1,5,4) minimal covering design consists of
v-4 isolated vertices and the top graph of the two graphs, on the remaining four
vertices, then a (v,5,5) optimal packing design can be constructed as follows
1) take a (v-1,5,4) minimal covering design. Assume in this design we have

the block < 1 2 3 4 5 > where 5 is an arbitrary number. Delete this block.



Furthermore, assume in this design we have the block < 6 7 8 1 4 > where
{6,7,8} are arbitrary numbers. In this block change 4 to 5.

2y take a (v+4,5,1) optimal packing design. The complement graph of this
design contains a circuit graph C, where n > 23 (20}, so we may assume that
the pairs {1,2}, (2,3} {3,4} and {4,9) appear in zero blocks. Assume in
this design we have the block < 6 7 8 § 5 >. In this block change 5 to 4.
Furthermore , assume in this design we have the block < v v+l v+2 v+3

v+4 >. Delete this block and in all other blocks change v+l, v+2, v+3 and v+4

to v.

Theorem 5.4 Let v = 19 (mod 20) be a positive integer. Then o(v,5,5) = ¥(v,5,5).

Proof 1In [10) we have shown that for all v-1 = 18 (mod 20) v #% 98 (mod 100), v
# 78 there exists a (v-1,5,4) covering design with a hole of size 8, 13 or 18.
But for n = 8, 13, 18 there exists a (n,5,4) minimal covering design such that
their excess graphs is one of graphs described in lemma 5.2. We now show that
for the other values there exists a (v-1,5,4) covering design with a hole of size
8, 13, or 18.

For v = 78 see [4].

For v = 98 (mod 100) take a T(6,1,m] where m = 17 (mod 20), theorem 2.1.
Delete all but 11 points from last group and replace the blocks of the resultant
design by the blocks of a B[6,5,4] and B{S5,5,4), lemma 2.1. Add two points to
the groups and on the first five groups construct a (m+2,5,4) packing design with
a hole of size 2 [12]. Finally, take these two points with the last group to be
the hole of size 13. Now it is clear that for all v-1 = 18 (mod 20) the excess
graph of the (v~1,5,4) minimal covering design is one of the graphs described in

lemma 5.2.

On the other side a (v+4,5,1) optimal packing design exists for all v+4
3 (mod 20), v+4 243, [20]. Now apply lemma 5.2 to get the result for all v =
19 (mod 20) v # 239.

For a (239,5,5) optimal packing design apply theorem 2.4 with A=5, m=11,
s8=0, u=4 and h=3.

5.2 Packing of order v £ 2 (mod &)

We start this section with the following simple but important observation
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Lemma 5.3 (a) If there exists

1) a (v,5,\) covering design with ¢(v,5,A) blocks;

2) a (v,5,\') packing design with y(v,5,\') blocks;

3) (U, 5,0) + ¥(u,5,N) = $(u, 5, A\ );

4) the excess graph E(V,f8) of the covering design is isomorphic to a subgraph
G of the complement graph, C(V,f), of the packing design.
Then there exists a (v,5,A+\') packing design with ¥(v,5,AX') blocks

‘(b) Similarly if there exists

1) a (v,5,\) covering design with a hole of size h;

2) a (v,5,\') packing design with a hole of size h;

3) the total number of blocks in these two designs is Vv, 5, A+X) =
Y(h,5, M\ ;

4) the excess graph, E(V\H,8), of the covering design with a hole of size h
is isomorphic to a subgraph G of the complement graph, C(V\H,B), of the
packing design with a hole of size h.

Then there exists a (v,5,A+A') packing design with a hole of size h.

Lemma 5.4 o(v,5,5) = ¥(v,5,5) for v = 22, 42, 62, B2. Furthermore, these

packing designs have a hole of size 2.

Proof For v = 22 let X = Z, U {a,b)} then the required blocks a';:e

<0 481216 >+ i, i €2,, <0 3 10 13 > U {a,b} half orbit

< 01235> (mod 20), <0 1 6 8 13 > (mod 20), < 0 2 8 11 14 > (mod 20),

< 049 13 a > (mod 20), <015 11 b > (mod 20).

For v = 42, 62, 82 the construction is as follows

1) Take a B(v-1,5,2)}, lemma 2.1.

2) Take a (v+1,5,2) optimal packing design [6]. It has a hole of size 3, say
{v~-1, v, wv+l}. Now in all the blocks of the (uv+1,5,2) optimal packing
design change v+l to v.

3 Take a (v,5,1) optimal packing design, v = 42, 62, 82, [9].
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It is clear that the above three steps yield a (v,5,5) optimal packing

design for v = 42, 62, 82.

Theorem 5.5 o(v,5,5) = ¥(v,5,5) for all positive integer v = 2 (mod 20), v 2 22.

Proof For v = 22, 42, 62, 82 the result follows from lemma 5.4. For v 2z 102

simple calculations show that v can be written in the form v = 20m + 4u + h + 8
where m, u, h and s are chosen so that

1) there exists a RMGD[5,1,5,5m), theorem 2.3;

2) 4u + h + 8 = 2 (mod 20) and 22 < 4u + h + & 5 82;

3) 0susgsmn-l, 80 (mod 4) and h = 2;

4) there exists a GD([5,5,{4,8*),4m+8]), theorem 2.5.

Now apply theorem 2.4 with A = 5 and the result follows.

Lemma 5.5 o(v,5,5) = ¥(v,5,5) for v = 6, 26, 46, 66, 86.

Proof For v = 6 take a B{6,5,4), lemma 2.1, with an optimal (6,5,1) packing,
which has one block.

For v = 26 let X = Zy UH,. On 25 UH, construct a B(25,5,1], lemma 2.1,
such that < h, h, hy h, hy > is a block, which we delete. Furthermore, take the
following base blocks under the action of the group Zx:
<0 5 10 15 he> orbit length 5. < 01 2 3 h>, <0 1 3 8 hy>, <0 2 7 13 hy>,

<0 3 9 12 hy>, <0 4 8 13 hy>», <0 4 8 14 hg».

For v = 46, 66, 86 a (v,5,5) optimal packing design may be constructed as

follows:

1. take a (v,5,3) minimal covering design, [9]. Careful inspections show that
the excess graph E(V,f) of this covering design consists of a 1- factor on

v-6 vertices and the following graph on the remaining 6 vertices
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2. take a (v,5,2) optimal packing design such that its complement graph C(V,f)
contains a subgraph G that is isomorphic to E(V,f), the excess graph of
(v,5,3) minimal covering design, lemma 4.2. Now apply lemma 5.3 and the

result follows.

Theorem 5.6 o(v,5,5) = ¥(v,5,5) for all positive integers v = 6 (mod 20)

Proof For 6 < v < 86 the result follows from lemma 5.5. For v 2 106 the proof
of this theorem is the same as theorem 5.2 with the difference that 4u + h + 8

= 6 (mod 20), h = 6, and 6 < 4u + h + 8 = 86.

Lemma 5.6 Let m, u and h =z 0 be positive even integers. If there exists (1) a

GD[5,2,{m,u*}, Sm+u ) (2) a (u+h,5,2) optimal packing design with

2.
2 lu+h) 2("“2%) * curh) * d pyocks where ¢ and d are integers determined by u

and h (3) a (m+h,5,2) packing design with a hole of size h with total number of

2 -
blocks equal 2% “”;o* €m - 2M  ppen o(Smeuth,S,2) = ¥ (Smeu+h,5,2)

Proof We need to show that the total number of blocks obtained by this

construction is equal to ¥ (Sm+u+h,5,2). But a GD[5,2,{m,u*}, S5m+u] has the

following number of blocks 2(m(m-u) + -;-mu) (1)

A (u+h,5,2) optimal packing design has the following number of blocks

2 (ush)? - 2lush) + c(urh) +d 1)

where ¢ and d are integers deterimed by u and h, and a (m+h,5,2) packing design
with a hole of size h has the following number of blocks (we are assuming that
this number is an integer)

2m? + 41111;04» cm - 2m (111)
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where ¢ is as above.

2 .
On the other hand, (Sm+u+h,5,2) = 2 (5m+u+h) 2(51174»21.104-12) + c(Sm+u+h) +d (1)

where ¢ and d are the same integers as in (II) since 5Sm+u+h and u+h are the same
congruency modulo 10.

Now it is easily checked that the total number of blocks in (I), (II) and
5 times the number of blocks in (III) is equal to the total number of blocks in
‘( Iv).

Lemma 5.7 Let v = 10 or 14 (mod 20), v # 34 be a positive integer less than 100.
Then there exists a (v,5,2) optimal packing design such that the complement graph

of these designs contains a subgraph that is a 1l-factor.

Proof For v = 10, 14, 30, 90 see [5, p.51].

For v = 70 let X = 24 U {a,b}, then take the following base blocks under
the action of the group Zg.
<0 1 3 8 22>, <0 4 17 35 44>, <0 10 25 36 48>, <0 1 3 7 18>, <0 5 24 30 40>
<0 9 22 36 48>, <0 8 29 45> U {a,b}.

For v = 50, 54, 74 and 94 take a GD{5,2,{m,u*}, 5m+u} where m, u and h are
choosen as prescribed in the table below (see lemma 2.1 of [5, p. 46] for the
existence of a GD{5,2, {m,u*}, Sm+u}). Adjoin a set H of h points to the groups
and on the first five groups construct a (m+h,5,2) packing design with a hole of
size h {5, p. 48] and take these h points with the last group as a block which
we delete since the total number of points is less than five. Now apply lemma

5.6 to get the result.

v m u h Lemma v m u h Lemma
50 10 0 0 5.6 74 14 o] 4 5.6
54 10 2 2 5.6 94 18 2 2 5.6

Note that our constructions are correct provided that: the (10,5,2)
optimal packing design; the (12,5,2) packing design with a hole of size 2; the
(18,5,2) packing deeign with a hole of size 4, and the (20,5,2) packing design

with a hole of size 2, their complement graph has a complement subgraph that is



i-factor. This can easily be checked. For the (18,5,2) packing design with a
hole of size 4, the l-factor on {5,...,18} is {{5,17) (6,12} (7,9} {8,11} {10,186}

{13,18} {14,15}}.

Le.ma 5.8 o(v,5,5) = ¢(v,5,5) for all v = 10 or 14 (mod 20) and 10 s v s 94,

v # 34.

Proof A (v,5,5) optimal packing design for v = 10 or 14 (mod 20) and v = 94 can

be constructed as follows.

1) take a (v,5,3) minimal covering design [9]. The excess graph, E(V,B), of
each of these designs is a 1- factor.

2) take a (v,5,2) optimal packing design such that the compliment graph of
these designs contains a subgraph which is l-factor (lemma 5.7). Since
a(v,5,3) = ¢(v,5,3) and o(v,5,2) = Y(v,5,2) for such v; and a(v,5,3) +
VY(v,5,2) = ¥(v,5,5) it follows that o(v,5,5) = ¥(v,5,5).

Theorem 5.7 o(v,5,5) = y¥(v,5,5) for all positive integers v = 10 or 14 (mod 20)

with the possible exception of v = 34.

Proof For 14 < v = 94, v = 10 or 14 (mod 20) the result follows from lemma 5.8.

For v 2 110, v # 130, 134, 214, the proof of the theorem is the same as theorem
5.5 with the difference that 4u + h + 8 = 10, 30, 50, 70, 90 if v = 10 (mod 20)
and 4u + h + 8 = 14, 54, 74, 94 if v = 14 (mod 20). For v = 130, 134 apply
theorem 2.2 with h = 2, n = 7 and u = 2 and 3 respectively.

For v = 214 take a T[6,5,10]}, [18, p.278], and delete 7 points from the
last group. . Inflate this design by a factor of 4, that is, replace each block
of size 5 and 6 by the blocks of a GD[5,1,4,20] and GD[5,1,4,24] respectively,
lemma 2.1. Add two points to the groups and on the first 5 groups construct a
(42,5,5) packing design with a hole of size 2 (This design exists by lemma 5.4);

and on the last group construct a (14,5,5) optimal packing design.

. Lemma 5.9 o(v,5,5) = ¥(v,5,5) for v = 18, 38, 58, 78, 98.
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For v = 18 let X = {(1,2,...,18)} then the required blocks are

2 3 4 10 >, <4 5131516 >, <1 2 8 14 18 >, < 4 5 15 16 18 >
2 8 14 15 >, <4 810 1117 >, <1 2 8 12 15 >, < 4 9 10 14 15 >
2 11 15 16 >, <4 911 12143 <1 3 5 9 14 >, < 4 10 13 14 18 >
3 85 & 7>, < & 611 13 16 >, <1 310 13 18 >, <5 7 8 10 15 >
311 14 16 >, <5 812 1718 > <1 4 6 8 18 >, <5 9 10 11 18 >
4 716 18 », <5 111314 15>, <1 4 712 13 >, <6 7 & 9 10 >
4 9 11 17 >, <6 7 81114 > <1 5 6 915 >, < 6 7 10 13 18 >
s 7 11 16 >, <6 8 91113 >, <1 5 812 17 >, < 6 10 15 16 17 >
6 9 13 17 >, < 6 13 14 16 18 >, <1 6 10 11 17 >, <7 8 914 16 >
7 12 13 17 >, < 7 10 12 14 16 >, < 1 9 10 12 15 >, < 7 11 1% 17 18 >
0 14 16 18 >, <8 912 1316 >, <2 3 5 6 10 >, < 8 10 13 15 17 >
3 8 10 11 >, <9 11 12 15 16 », <2 3 9 13 16 >, <10 12 13 14 17 >
3 9 13 17 >, <2 4 5 713 >, <2 4 6 12 14 >, < 2 4 7 10 11 >
4 11 12 13 >, <2 5 81314 >, < 2 510 12 16 >, < 2 51117 18 >
6 7 9 18 >, <2 614 1517 >, <2 7 916 17 >, <2 7 915 18 >
2 16 17 18 >, <3 4 61215 >» <3 4 6 8 16 >, <3 4 715 17 >
4 8 16 17 >, <3 5 71417 >, <3 &5 9 10 12 >, < 3 6 12 15 18 >
7 8 13 15 >, <3 711 12 14 >, < 3 8 11 12 18 >, <3 914 17 18 >
113 15 18 >, <4 5 61417 >, <4 5 8 9 18 >.

For v = 38, 58, 78 the construction is as follows

1)
2)

For
1)
2)

3)

take a (v-1,5,4) optimal packing design, [12};

take a (v+4,5,1) optimal packing design, [9]. Assume we have the block
< v v+l v+2 v+3 v+4 >. Delete this block and in all other blocks change
the points v+l, v+2, v+3, vé4 to v.

= 98 let X = 24 UHg. Then the construction is as follows:

On Zyg UH, construct an (89,5,1) packing design with a hole of size 9,{17].
on ZgVU {h}®.,construct an (89,5,1) packing design with a hole of size 9.

Take the following base blocks under the action of the group Zg

<0 2 11 30 59>, <0 1 4 14 h>, <0 5 12 37 hy>, <0 & 29 53 h,», <0 8 34 52 hy>

<0

15 31 50 hs>, <0 17 38 58 he>, <0 1 3 7 h,>, <0 § 13 23 hy>, <0 9 35 47 hy>

<0 11 27 55 hyg>, <0 14 31 51 h,>, <0 15 34 56 hp>, <0 1 3 7 hy>, <0 5 13 30 h,>

<0 9 21 48 hy>, <0 10 36 47 hy>, <0 14 34 49 h,>, <0 16 38 56 hy>.

Theorem 5.8 o(v,5,5) = ¥(v,5,5) for all positive integers v = 18 (mod 20).

Procf For 18 s v s 98 see lemma 5.9. For v = 118, v # 138 the proof of this

theorem is the same as theorem 5.5 with the difference that

4u+h+ 8= 18 (mod 20), 18 < 4u + h + 8 < 98,

For v = 138 apply theorem 2.2 with n = 7, h = 2 and u = 4.

5.3 Packing of orxder v £ 0 (mod &)

Thecrem 5.9 Let v 2 16 (mod 20) be a positive integer. Then o(v,5,5) =

¥(v,5,5).



Proof The blocks of a (v,5,5) optimal packing design for all positive integers

v = 16 (mod 20), may be constructed as follows.

1) take a B[v~1,5,4), lemma 2.1;

2) take a (v+4,5,1) optimal packing design which is constructed by taking a
B[v+5,5,1] and deleting the point v+5 and all the blocks containing this
point. Assume in the (v+4,5,1) optimal packing design we have the block
< v v+l v+2 v+3 v+4 >. Delete this block and in all the remaining blocks

change v+1, v+2, v+3 and v+4 to v.

Lemma 5.10 There exists a (24,5,5) packing design with a hole of size 4.

Proof Let X = Z, UH, then take the following base blocks under the action of
the group 2z,
<0 4 8 12 16> orbit of length 4, three times <0 2 3 § 9>, <0 1 2 4 hp>,

<0 1613 h;> <0 27 13 hy>, <0 3 9 12 h>, <0 1 6 11> U {h}4.,.

Theorem 5.10 Let v = 4 (mod 20) be a positive integer greater than 4. Then
o(v,5,5) = Y(v,5,5).

Proof For v = 24, 44, 64, 84 the construction is as follows:

1) take a (v-1,5,1) optimal packing design, [20].

2) take a B[v+1,5,1], lemma 2.1. Assume we have the block <1 2 3 v v+1>. 1In
this block change v+1 to 5, where {1,2,3,5} are arbitrary numbers, and in
all other blocks change v+l to v.

3) take a (v,5,3) optimal packing design [9) and assume that the pairs {4,v}
and {5,v} each appears at most twice (close observation of these designs
show that we may assume this). Furthermore, assume in this design we have
the block <1 2 3 4 5>. 1In this block change 5 to v. Now it is easily
checked that the above three steps yield a (v,5,5) optimal packing design
for v = 24, 44, 64, B4.

For v 2 124, v # 144, 224 simple calculations show that v can be written
in the form v = 20m+4u+h+s where m, u, h and 8 are chosen as in theorem 5.5 with
the difference that 4u+h+s = 24, 44, 64, 84 and h = 4.

Now apply theorem 2.4 with A = 5 and the result follows.

For v = 104, 144, 224 apply theorem 2.5 with m = 5, 7, 11 respectively.



Theorem 5.11 Let v = 0, 8 or 12 (mod 20) be a positive integer greater than

zero. Then o(v,5,5) = ¢¥(v,5,5) with the possible exception of v = 28, 32.

Proof We first prove the theorem for 8 s v < 100, v #28, 32. For 8 =v = 100,
v #20, 28, 32 a (v,5,5) optimal packing design can be constructed by taking the
blocks of a (v,5,3) and a (v,5,2) optimal packing design [9}, [5]}.

For v = 20 let X = %45 then the blocks are
<0 4 8 12 16> + i, i €2,, 3 times <0 1 4 10 15> (mod 20), <0 2 7 10 13>
{mod 20), <0 1 2 3 5> (mod 20), <0 1 7 9 14> (mod 20).

For v 2 100 v $ 128, 132, 208, 212, simple calculations show that v can be
written in the form v = 20m+4u+h+s where m, u, h and s are chosen as in theorem
§.10 with the difference 4u+h+s = 0, 8 or 12 (mod 20), 8 < 4ut+h+s s 92, 4u+thts

# 28, 32. Now apply theorem 2.4 with A=5 and the result follows.

For v = 128, 132 apply thgorem 2.2 with n = 7, h = 0 and u = 2, 3
respectively.

For v = 208, 212 take a T[6,5,10), [18, p.278], and delete all but u points
from last group where u = 2, 3, respectively. Inflate this design by a factor
of 4, that is, replace all blocks of size 5 and 6 by the blocks of a GD[5,1,4,20]
and GD[5,1,4,24) respectively, lemma 2.1. Finally on the groups construct a

(n,5,5) optimal packing design where n = 40, 8, 12.

7. Conclusion
We have shown that o(v,5,5) = y¥(v,5,5) for all positive integers v, v 2 §

with the possible exception of v = 28, 32, 34.
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