On Packing Designs with Block Size 5 and Indices 3 and 5

Ahmad M. Assaf
Department of Mathematics
Central Michigan University
Mt. Pleasant, MI 48859, USA

Abstract Let V be finite set of order v. $A\left(v_{i} \kappa_{i} \lambda\right)$ packing deaign of index λ and block size k is a collection of kelement subsets, called blocks, such that every 2-subset of V occurs in at most λ blocks. The packing problem is to determine the maximum number of blocks, $\sigma(v, k, \lambda)$, in a packing deaign. It is well known that $\sigma(v, k, \lambda) \leq\left[\frac{v}{x}\left[\frac{v-1}{x-1} \lambda\right]\right]=(v, k, \lambda)$, where $[x]$ is the largeat integer satisfying $x \geq[x]$. It is shown here that $\sigma(v, 5,3)=\psi(v, 5,3)$ for all $v \equiv 3(\bmod 4)$ and $\sigma(v, 5,5)=\psi(v, 5,5)$ for all positive integers $v \geq 5$ with the possible exceptions of $v=28,32,34$.

1. Introduction

A (v, k, λ) packing design (or respectively covering design) of order v, block size k and index λ is a collection β of k-element subsets, called blocks, of a v-set V such that every 2 -subset of V occurs in at most (at least) λ blocks.

Let $\sigma(v, k, \lambda)$ denote the maximum number of blocks in a $\left(v, x_{i} \lambda\right)$ packing design; and $\alpha(v, k, \lambda)$ denote the minimum number of blocks in a (v, k, λ) covering design. A (v, k, λ) packing design with $|\beta|=\sigma(v, k, \lambda)$ will be called maximum packing design. Similarly, a (u, x, λ) covexing deaign with. $|\beta|=\alpha(u, k, \lambda)$ is called a minimum covering design. It is well known [23] that

$$
\sigma(v, k, \lambda) \leq\left[\frac{v}{x}\left[\frac{v-1}{k-1} \lambda\right]\right]=\psi(v, x, \lambda) \text { and } \alpha(v, x, \lambda) \geq\left\lceil\frac{v}{x}\left\lceil\frac{v-1}{k-1}\right\rceil\right]=\phi(v, k, \lambda)
$$

where $[x]$ is the largest integer satisfying $[x] \leq x$ and $\lceil x\rceil$ is the smallest integer satisfying $x \leq\lceil x\rceil$. When $\sigma(v, k, \lambda)=\psi(v, k, \lambda)$ the (v, k, λ) packing deaign is called optimal packing design. Similarly when $\alpha\left(v, x_{p} \lambda\right)=\phi\left(v_{p} k_{p} \lambda\right)$ the ($v, k_{p} \lambda$) covering design is called minimal covering design.

Many researchers have been involved in determining the packing number
$\sigma(v, k, \lambda)$ known up to date. The following theorem sumarizes what is known about packing pairs by quintuples.

Theorem 1.1 Let $v \geq 5$ be a positive integer. Then

1) $\quad \sigma(v, 5,1)=\psi(v, 5,1)$ for $v \equiv 3(\bmod 20)$ and $v \equiv 0(\bmod 4) v \neq 12,16$ with the possible exception of $v=32,48,52,72,132,152,172,232,243$, 252, 272, 332, 352, $432[16][18][26]$, and $\sigma(12,5,1)=\psi(12,5,1)-1$, $\sigma(16,5,1)=\psi(16,5,1)-1$ [16].
2) $\sigma(v, 5,2)=\psi(v, 5,2)$ for all positive even integers $v,[5]$ and $o(v, 5,2)=$ $\psi(v, 5,2)-$ where $=1$ if $v \equiv 7$ or $9(\bmod 10)$ or $v=13$ with the possible exception of $v=15,19,27$ and $e=0$ if $v=1,3$ or $5(\bmod 10)$ $v \neq 13,15[6,7]$.
3) (a) $o(v, 5,3)=\psi(v, 5,3)$ for all positive integers v, v (mod 4) with the possible exception of $v=17,19,29,33,38,49[8,13]$.
(b) $\sigma(v, 5,3)=\psi(v, 5,3)$ for all positive integers $v \equiv 0(\bmod 4) v \leq 96$ with the possible exception of $v=20,28,32,36,56, ~[9]$.
4) $\sigma(v, 5,4)=\psi(v, 5,4)$ for all positive integers $v, v \neq 7$ and $\sigma(7,5,4)=$ $\psi(7,5,4)-1$ [12].
5) $\sigma(0,5,6)=\psi(v, 5,6)$ for all positive integers v with the possible exception of $v=43$ [13].
6) $\sigma(v, 5, \lambda)=\psi(v, 5, \lambda)$ - e for all positive integers v and $\lambda=8,12,16$ [11] with few possible exceptions where $e=1$ if $\lambda(v-1) \equiv 0(\bmod 4)$ and $\frac{\lambda v(v-1)}{4} \equiv 1(\bmod 5)$ and $e=0$ otherwise.

Furthermore, these few possible exceptions were removed later, in an unpublished paper, by Shalaby [24].

Our interest here is in the case $k=5$ and $\lambda=3$, 5. Our goal is to prove the following:

Theorem 1.2 Let $v \geq 5$ be a positive integer. Then $\sigma(v, 5,3)=\psi(v, 5,3)$ for all $v \equiv 3(\bmod 4)$ and $\sigma(v, 5,5)=\psi(v, 5,5)$ for all positive integers $v \geq 5$ with the possible exception of $v=28,32,34$.

2. Recursive Constructions

In order to describe our recursive constructions we require several other types of combinatorial design. A balanced incomplete block design, $B[v, k, \lambda]$, is
a ($0, k, \lambda$) packing design where every 2-subset of points is contained in precisely λ blocks. If a $\mathrm{B}[v, \kappa, \lambda]$ exists then it is clear that $\sigma(v, \kappa, \lambda)=\lambda v(v-1) / \kappa(\kappa-1)$ $=\psi(U, k, \lambda)$ and Hanani [16] has proved the following existence theorem for $\mathrm{B}[v, 5, \lambda]$.

Lemma 2.1 Necessary and sufficient conditions for the existence of a $B[v, 5, \lambda]$ axe that $\lambda(v-1) \equiv 0(\bmod 4)$ and $\lambda v(v-1) \equiv 0(\bmod 20)$ and $(v, \lambda) \neq(15,2)$.

Corollary $\sigma(v, 5,5)=\psi(v, 5,5)$ for all positive integers v where $v \equiv 1$ (mod 4). A (v, k, λ) packing design with a hole of size h is a triple (V, H, β) where V is a v-set, H is a subset of V of cardinality h, and β is a collection of $k-$ element subsets, called blocks, of V such that

1) no 2 -subset of H appears in any block;
2) every other 2-subset of V appears in at most λ blocks;
3) $\quad|\beta|=\psi(v, k, \lambda)-\psi(h, k, \lambda)$.

It is clear that if there exists a (ν, k, λ) packing design with a hole of size h and $\sigma(h, k, \lambda)=\psi(h, k, \lambda)$ then $\sigma(v, k, \lambda)=\psi(v, k, \lambda)$.

Let x, λ and v be positive integers and M be a set of positive integers. A group divisible design $G D[\kappa, \lambda, M, v]$ is a triple (V, β, γ) where V is a set of points with $|V|=v$, and $\gamma=\left\{G_{1}, \ldots, G_{n}\right\}$ is a partition of V into n sets called groups. The collection β consists of k-subsets of V, called blocks, with the following properties

1) $\left|B \cap G_{1}\right| \leq 1$ for all $B \in \beta$ and $G_{i} \in \gamma$;
2) $\left|G_{1}\right| \in M$ for all $G_{1} \in \gamma$;
3) every 2 -subset $\{\pi, y\}$ of V such that x and y belong to distinct groups is contained in exactly λ blocks.

If $M=\{m\}$ then the group divisible design is denoted by $G D[\kappa, \lambda, m, v\}$.
$A G D[\alpha, \lambda, m, \alpha m]$ is called a transversal design and denoted by $T[\alpha, \lambda, m]$. It is well known that a $x[\kappa, 1, m]$ is equivalent to $\kappa-2$ mutually orthogonal Latin aquares of side m.

In the sequel we shall use the following existence theorem for transversal designs. The proof of this result may be found in [1], [2], [14], [15], [18], [22]. [24].

Theorem 2.1 There exists a $T[6,1, m]$ for all positive integers m with the exception of $m \in\{2,3,4,6\}$ and the possible exception of $m \in\{10,14,18,22,26$, 34, 42\}.

Theorem 2.2 If there exists a $G D[6, \lambda, 5,5 n]$ and a $(20+h, 5, \lambda)$ packing design with a hole of size h then there exists a $(20(n-1)+4 u+h, 5, \lambda)$ packing design with a hole of size $4 u+h$ where $0 \leq u \leq 5$.

Proof Take a $\operatorname{GD}[6, \lambda, 5,5 n]$ and delete $5-\mathrm{u}$ points from the last group. Inflate this deaign by a factor of 4 . On the blocks of size 5 and 6 construct a $G D[5,1,4,20]$ and a $G D[5,1,4,24]$ respectively, lemma 2.1. Add h points to the groups and on the first $n-1$ groups construct a ($20+h, 5, \lambda$) packing design with a hole of size h, and take the h points with the last group to be the hole of size $4 u+h$.

It is clear to apply the above theorem we require the existence of a $\operatorname{GD}[6, \lambda, 5,5 n]$. Our authority for that is the following lemma of Hanani [18, p. 286].

Lemma 2.2 There exists a $\operatorname{GD}[6, \lambda, 5,35]$ for $\lambda=3,5$.
If in the definition of $G D[k, \lambda, m, v]$ (similarly $T[x, \lambda, m]$) condition (3) is changed to be read as (3) every 2 -subset $\{x, y\}$ of V such that x and y are neither in the same group (column) nor in the same row is contained in exactly λ blocks of β and no block contains more than one point from the same row. Then the resultant design is called a modified group divisible design (modified transversal design) and is denoted by $\operatorname{MGD}[k, \lambda, m, v]$ ($M T[k, \lambda, m]$). (We may look at the points of $\operatorname{MGD}[x, \lambda, m, v]$ as the points of a matrix and then the groups of $\operatorname{MGD}[k, \lambda, m, v]$ are precisely the columns of the matrix).

A resolvable modified group divisible design, $R M G D[\kappa, \lambda, m, v]$, is a modified group divisible design the blocks of which can be partitioned into parallel classes.

It is clear that a $\operatorname{RMGD}[5,1,5,5 \mathrm{~m}]$ is the same as $\operatorname{RT}[5,1, m]$ with one parallel class of blocks singled out, and since $\operatorname{RT}[5,1, m]$ is equivalent to $T[6,1, m]$ we have the following

Theorem 2.3 There exists a RMGD $5,1,5,5 \mathrm{~m}]$ for all positive integers m with the exception of $m \in\{2,3,4,6\}$ and the posaible exception of $m \in\{10,14,18,22$,

The next two theorems are in the form most useful to us.

Theorem 2.4 [3] If there exists a $\operatorname{RMGD}[5,1,5,5 \mathrm{~m}]$ and $\mathrm{a} \operatorname{GD}\left[5, \lambda,\left\{4, \mathrm{~s}^{*}\right\}\right.$, $\left.4 \mathrm{~m}+\mathrm{s}\right]$, where means there is exactly one group of size s, and there exiats a $(20+h, 5, \lambda)$ packing design with a hole of size h then there exists a ($20 m+4 u+h+s, 5, \lambda$) packing design with a hole of gize $4 u+h+s$ where $0 \leq u \leq m-1$.

Theorem 2.5 If there exists (1) a $\operatorname{RMGD}[5,1,5,5 \mathrm{~m}]$ (2) a $\operatorname{GD}[5,5,4,4 \mathrm{~m}]$ (3) a $(24,5,5)$ packing design with a hole of size 4 (4) $\sigma(24,5,5)=\psi(24,5,5)$. Then $\sigma(20 m+4,5,5)=\psi(20 m+4,5,5)$.

Proof Inflate a RMGD $[5,1,5,5 \mathrm{~m}]$ by a factor of 4 , that is, replace the blocks of size 5 by the blocks of $G D[5,5,4,20]$. On the rows (which are blocks of size m) construct a $G D[5,5,4,4 m]$. Finally add 4 points to the groups and on the first ($\mathrm{m}-1$) groups construct a $(24,5,5)$ packing design with a hole of size 4 and on the last group construct a $(24,5,5)$ optimal packing design.

It is clear that the application of the above theorem requires the existence of a $\operatorname{GD}\left[5,1,\left\{4, s^{*}\right\}, 4 m+s\right]$. The following theorem is most useful to ug. For the proof of the first part see [3] and for the proof of the second part see [17].

Theorem 2.6 (i) There exista $\operatorname{GD}\left(5,1,\left\{4,3^{*}\right\}, 4 m+8\right]$ where $=0$ if $m \equiv 1$ (mod 5), $s=4$ if $m \equiv 0$ or $4(\bmod 5)$ and $s=\frac{4(m-1)}{3}$ if $m \equiv 1(\bmod 3)$.
(ii) There exists $\operatorname{GD}\{5,1 ;\{4,8 *\}, 4 m+8]$ where $m \equiv 0$ or $2(\bmod 5), m \geq 7$ with the possible exception of $m=10$.

In the case $m=7,8,13$ the following lemma is most ugeful to us.

Lemma 2.3 There exists a $\operatorname{GD}[5,5,4, v]$ where $v=28,32,52$

Proof For $v=28$ let $X=Z_{z}$. The groups are $<071421>+i, i \in Z_{7}$ and the blocks are the following:
$<013913>(\bmod 28),<0491520\rangle(\bmod 28),<01234>(\bmod 28)$
$<0391319>(\bmod 28),<0281318>(\bmod 28),<03111520>(\bmod 28)$. For a $\operatorname{GD}[5,5,4,32]$ let $X=z_{32}$. The groups are $<081624>+i$, $i \in z_{8}$ Blocks:
$<0271120>(\bmod 32)<012411>(\bmod 32)<0371722>(\bmod 32)$ $<05111723\rangle(\bmod 32)<012413\rangle(\bmod 32)<0151118\rangle(\bmod 32)$ $<\begin{array}{llll}0 & 3 & 61318\end{array}>(\bmod 32)$

For a $\operatorname{GD}[5,5,4,52]$, since there exiats $a \operatorname{B}[13,5,5]$ and $a \operatorname{GD}[5,1,4,20]$ it follows, [16 lemma 2.16], that there exists a GD $[5,5,4,52]$.

The set of blocka $<\alpha \kappa+m k+n k+j f(\kappa)>(\bmod v)$ for $\kappa=0, \ldots, v-1$ where $f(x)=a$ if κ is even and $f(k)=b$ if k is odd will be denoted by $\langle 0 \mathrm{~m} n j>U$ $\{a, b\}$, and the set of blocks $<x \kappa+m k+n k+j f(\kappa)>(\bmod v)$ for $k=0, \ldots, v-1$ where $f(k)=h_{i}$ if $k \equiv i(\bmod 4)$ is denoted by $<0 m n j>U\left\{h_{i}\right\}_{i=1}^{4}$. similarly, the set of blocks $<(0, k)(0, k+m)(1, k+n)(1, k+j) f(k)>\bmod (-, v)$ for $k=0, \ldots, v-1$ where $f(\kappa)=a$ if κ is even and $f(\kappa)=b$ if κ is odd is denoted by $<(0,0)(0, m)$ $(1, n) \quad(1, j)>U\{a, b\}$.

3. The Structure of Packing and Covering Dasigns

Let (V, β) be a (v, k, λ) packing design, and for each 2 -subset $e=\{x, y\}$ of V define $m(e)$ to be the number of blocks in β which contain e. Note that by the definition of a packing design we have $m(e) \leq \lambda$ for all e.

The complement of (V, β), denoted by $C(V, \beta)$ is defined to be the graph with vertex set v and edges occursing with multiplicity $\lambda-m(e)$ for all e. The number of edges (counting multiplicities) in $C(V, \beta)$ is given by $\binom{v}{2}-|\beta|\binom{\mathbb{x}}{2}$. The degree of the vertex x in $C(V, \beta)$ is $\lambda(v-1)-r_{x}(x-1)$ where r_{x} is the number of blocks containing x.

In a similar way we define the excess graph of a (V, β) covering design denoted by $E(V, \beta)$, to be the graph with vertex set V and edges e occursing with multiplicity m(e) - λ for all e. The number of edges in $E(V, \beta)$ is given by $|\beta|\binom{k}{2}-\lambda\binom{v}{2}$; and the degree of each vertex is $r_{x}(k-1)-\lambda(v-1)$ where r_{x} is as before.

Lemma 3.1 Let (V, β) be a $(v, 5,4)$ covering design with $|\beta|=\phi(v, \kappa, \lambda)$ then the degree of each vertex of $E(V, \beta)$ is diviaible by 4 and the number of edges in the graph is $0,6,8$ when $v \bmod 5 \in\{0,1\},\{2,4\},\{3\}$ respectively.

In the case $v \equiv 3(\bmod 5)$ a particularly useful graph with 8 edges and each vertex of degree divisible by 4 is the one that consists of $v-4$ isolated vertices and the following graph on the remaining 4 vertices.

To define the complement graph of a packing design with a hole H of size h let $\mathrm{e}=\{x, y\}$ where at least one of x or y does not lie in H and let m(e) be the number of blocks in β which contain e. Then the complement graph of the packing design with a hole H of size h, denoted by $C(V \backslash H, \beta)$, is the graph with vertex set V and edges e occuring with multiplicity $\lambda-m(e)$. In a similar way the excess graph, $E(V \backslash H, \beta)$, of a (v, K, λ) covering design with a hole of gize h is defined.
4. Packing Designs with Inday 3 and orier $v=3$ (mod 4)

Lemma 4.1 For all $v \equiv 3(\bmod 20)$ we have $\sigma(v, 5,3)=\psi(v, 5,3)$. Furthermore, there exists a $(23,5,3)$ packing design with a hole of size 3 .

Proof For all $v \equiv 3(\bmod 20)$ a $(v, 5,3)$ packing deaign with $\psi(v, 5,3)$ blocks can be constructed as follows

1) take a $(v-1,5,2)$ optimal packing design; such design exists by [5].
2) take $\mathrm{B}[v+2,5,1]$, lemma 2.1, and assume in this deaign we have the block $<v-2 v-1 \quad v v+1 v+2>$; drop this block and in all other blocks change both $v+2$ and $v+1$ to $v ;$ which proves the first part of the lemma.

Since the $(22,5,2)$ optimal packing design has a hole of size 2 [5, p.49] and since we droped the block $<2122232425>$ it follows that the $(23,5,3)$ packing has hole of aize 3 .

The following lemma is very useful to us.

Lemma 4.2 Let $v \equiv 6(\bmod 20)$ be a positive integex. Then there exists a $(v, 5,2)$ packing design with a hole of size 6 .

Proof For $v=6,26,46$ see $[5, \mathrm{p} .51]$.
For $v=66$ let $X=Z_{60} \cup\left\{\infty_{i}\right\}_{i=1}^{6}$. Then take the following blocks under the
 $<03152743>,<052336>U\left\{\infty_{1}, \infty_{2}\right\}$, $<071637>U\left\{\infty_{3}, \infty_{4}\right\}$, $<0112542>\cup\left\{\infty_{9}, \infty_{6}\right\}$. For $v=86$ let $X=Z_{80} \cup\left\{\infty_{1}\right\}_{i=1}^{6}$. On Z_{30} construct an ($80,5,1$) minimal covering degign $[21]$, in this design each pair appears once except the pairs $\{i, i+40\}, i=0, \ldots, 39$ which appear twice. Furthemore, take the following blocks under the action of the group z_{80}.
$\langle 013715\rangle$, < 010213854\rangle, < 052750$\rangle \cup\left\{\infty_{1}, \infty_{2}\right\},\langle 092948\rangle$
$\cup\left\{\infty_{3}, \infty_{4}\right\},<0133156>\cup\left\{\infty_{5}, \infty_{6}\right\}$.
For $v \geq 106 v \neq 126,146$ simple calculations show that v can be written in the form $20 m+4 u+h+s$ where m, u, h and s are chosen so that

1) There exists a $\operatorname{RMGD}[5,1,5,5 \mathrm{~m}]$, theorem 2.3.
2) There exists a $\operatorname{GD}\left[5,2,\left\{4, s^{*}\right\}, 4 m+s\right]$, theorem 2.5 .
3) $4 u+h+s=6,26,46,66,86$.
4) $\quad 0 \leq u \leq m-1, E \leq 0(\bmod 4)$ and $h=6$.

Now apply theorem 2.4 with $\lambda=2$ to get that a $(0,5,2)$ packing deaign with a hole of size $6,26,46,66$, or 86 exigts and hence a $(0,5,2)$ packing design with a hole of size 6 exists.

For $v=126,146$ apply theorem 2.2 with $n=7, \lambda=2, h=6$ and $u=0,5$ respectively.

Lemma 4.3 Let $v \equiv 7(\bmod 20)$ be a positive integer. Then $\sigma(v, 5,3)=\psi(v, 5,3)$.

Proof For $v=7,27,47$ the constructions are given in the next table. In general, the construction in this table and other tables to come is as follows. Let $X=Z_{m} \cup H_{n}$ or $X=Z_{2} \times Z_{\frac{y-n}{z}} \cup H_{n}$ where $H_{n}=\left\{h_{1}, \ldots, h_{n}\right\}$ is the hole. The blocks axe constructed by taking the orbits of the tabulated base blocks mod $(v-n)$ or $\bmod \left(-, \frac{v-n}{2}\right)$ respectively unleas it is otherwise specified.

For all other values of v let $X=Z_{w-7} \cup H_{6} \cup\left\{\infty_{1}, \infty_{2}\right.$, $\left.\infty_{3}\right\}$, then the construction is as follows.

1) On $Z_{m} \cup H_{6}$ construct a $(v-1,5,2)$ packing design with a hole of aize 6 , say, $\left\{h_{1}, \ldots, h_{\phi}\right\}$, lemma 4.2.
2) On $Z_{w-1} \cup H_{6} \cup\left\{\infty_{1}, \infty_{2}, \infty_{3}\right\}$ construct a $(v+2,5,1)$ packing design with a hole of size 9, say, $\left\{h_{1}, \ldots, h_{6}\right\} \cup\left\{\infty_{1}, \infty_{2}, m_{3}\right\}\{17]$. Furthermore, replace the points ∞_{2} and ∞_{3} by ∞_{1}.
3) To the blocks obtained in (1) and (2) adjoin the following blocks $\left\langle h_{1} h_{2} h_{3} h_{4} \infty_{1}>,<h_{1} h_{2} h_{3} h_{4} h_{5}\right\rangle_{1}\left\langle h_{3} h_{4} h_{5} h_{6} \infty_{1}>,<h_{1} h_{4} h_{5} h_{6} \infty_{1}>,<h_{1} h_{2} h_{5} h_{6} \infty_{1}>\right.$. It is readily checked that the above three steps give a $(0,5,3)$ optimal packing design.

v	Point set	Base Blocks
7	$\mathrm{z}_{\mathrm{s}} \cup \mathrm{H}_{2}$	$<0124\rangle U\left\{h_{1}, h_{2}\right\}$
27	$\mathrm{Z}_{2} \times \mathrm{Z}_{12} \cup \mathrm{H}_{3}$	$\left\langle(0,0)(0,6)(1,0)(1,6)>+(-i), i \in z_{6}\right.$
		$\langle(0,0)(0,2)(0,6)(0,9)(1,11)>,\langle(0,0)(1,0)(1,1)(1,4)(1,6)\rangle$
		$\langle(0,0)(0,1)(0,5)(0,10)(1,8)\rangle,\langle(0,0)(1,3)(1,4)(1,8)(1,11)\rangle$
		$\left.\left.<(0,0)(0,1)(2,1)(2,3) h_{4}\right\rangle \ll(0,0)(0,4)(1,5)(1,8) h_{3}\right\rangle$
		$\left\langle(0,0)(0,2)(1,7)(1,9) h_{2}\right\rangle$
		$<(0,0)(0,1)(1,10)(1,11)>\cup\left\{h_{1}, h_{2}\right\}$.
47	$\mathrm{Z}_{40} \cup \mathrm{H}_{7}$	On $\mathbb{Z}_{\infty} \cup\left\{h_{4}\right\}_{i=1}^{s}$ construct $B(45,5,1]$, leman 2.1; drop the block
		< $h_{1} h_{2} h_{3} h_{4} h_{5}$ > and take the following blocks
		$\langle 0481216\rangle+i, i \in g_{8}$ twice, $\langle 012414\rangle$,
		$\left.\langle 04919\rangle U\left\{h_{1}, h_{2}\right\},<051128\right\rangle U\left\{h_{3}, h_{4}\right\}$,
		$\left.<061331>\cup\left\{h_{5}, h_{6}\right\},<031421>U\left\{h_{6}, h_{70} h_{7}, h_{7}\right\}\right\rangle$

Lemma 4.4 Let $v \equiv 11(\bmod 20)$ be positive integer. Then $\sigma(v, 5,3)=\psi(v, 5,3)$.

Proof For $v=11,51,91$ see the table below.
For $v=31$ take the blocks of a $(31,5,1)$ optimal packing design [20] together with the blocks of a $B[31,5,2]$, lemma 2.1.

For $v=71$ take $a[5,3,14][18]$ and add a new point to the groups and on aach group conatruct a $(15,5,3)$ optimal packing design, (see lemma 4.6).

For $v \geq 111, v \neq 131$ simple calculations show that v can be written in the form $20 \mathrm{~m}+4 \mathrm{u}+\mathrm{h}+\mathrm{s}$ where $\mathrm{m}, \mathrm{u}, \mathrm{h}$ and s are chosen so that

1) There exists a $\operatorname{RMGD}[5,1,5,5 \mathrm{~m}]$, theorem 2.3.
2) There exists a $\operatorname{GD}\left[5,3,\left\{4, \mathrm{~s}^{*}\right\}, 4 \mathrm{~m}+\mathrm{B}\right]$, theorem 2.5 .
3) $4 u+h+g=11,31,51,71,91$.
4) $0 \leq u \leq m-1, s \equiv 0(\bmod 4)$ and $h=3$.

Apply theorem 2.4 with $\lambda=3$ to get the result.
For $v=131$ apply theorem 2.2 with $n=7, h=3$ and $u=2$.

v	Point set	Base Blocks
11	$\mathrm{Z}_{2} \times \mathrm{Z}_{5} \cup \mathrm{H}_{1}$	$\begin{aligned} & <(0,0)(0,1)(1,0)(1,1)(1,3)>,<(0,0)(0,2)(1,0)(1,3)(1,4) \\ & \left.<(0,0)(0,2)(0,3)(1,4) h_{1}\right\rangle \end{aligned}$
51	$\mathrm{z}_{2} \times \mathrm{z}_{30} \cup \mathrm{H}_{11}$	
91	$\mathrm{z}_{80} \cup \mathrm{H}_{41}$	on $z_{80} \cup\left\{h_{11}\right\}$ construct a $B[81,5,1)$, lemma 2.1 , and take the following blocks

Lemma 4.5 There exists a $(0,5,2)$ packing design with a hole of size for $v=34,54,74,94$.

Proof For a $(34,5,2)$ packing design with a hole of size 4 see [5, p.51]. For a (74,5,2) packing design with a hole of size 4 take a $T[5,2,14]$ [18, p.278] and add foux new points to the groups and on each group construct an $(18,5,4)$ packing design with a hole of size 4 [5, p.49]. For a $(54,5,2)$ and a $(94,5,2)$ packing design with a hole of size 4 take a $T[6,1, m]$ where $m=5$, 9 respectively, theorem 2.1. Delete all but one point of the last group and inflate the design by a factor of two. Replace the blocks of this design by the blocks of $G D[5,2,2,10]$ and $\operatorname{GD}[5,2,2,12][18, p .284]$. Finally add two new points to the groups and on the first five groups construct a $(12,5,2)$ and $(20,5,2)$ packing design with a hole of aize 2 [5, p.49] and take these two points with the last group to be the hole of size 4 .

Lemma 4.6 Let $v \equiv 15(\bmod 20)$ be a positive integer. Then $\sigma(v, 5,3)=\psi(v, 5,3)$.

Proof For $v=15$ let $X=Z_{1 s}$ then the required blocks are
$\langle 013710\rangle(\bmod 15)<01257\rangle(\bmod 15)$
For $v=35,55,75,95$ let $x=Z_{\infty}, U\left\{\infty_{1}, \infty_{2}\right\} U\left\{h_{1}, \ldots, h_{7}\right\}$ then the construction is as follows

1) On $z_{m, 7} \cup\left\{\infty_{1}, \infty_{2}\right\} \cup\left\{h_{1}, \ldots, h_{4}\right\}$ construct a $(v-1,5,2)$ packing design with a hole of size 4, say, $\left\{h_{1}, \ldots, h_{4}\right\}$ and aswume that the pair $\left\{\infty_{1}, \infty_{2}\right\}$ appears at most once, lemma 4.5 .
2) On $Z_{w-1} \cup\left\{\infty_{1}, \infty_{2}\right\} \cup\left\{h_{1}, \ldots, h_{7}\right\}$ construct $a(v+2,5,1\}$ packing design with a hole of gize 9 [17] where the hole $i s\left\{\infty_{1}, \infty_{2}\right\} U\left\{h_{1}, \ldots, h_{7}\right\}$. In this design replace the points h_{6} and h_{7} by h_{9}.
3) To the blocks obtained in (1) and (2) add the blocks
$<h_{1} h_{2} h_{3} h_{f} h_{5}>$ twice, $\left.<\infty_{1} \infty_{2} h_{1} h_{2} h_{5}\right\rangle_{0}<\infty_{1} \infty_{2} h_{3} h_{4} h_{5}>$.
For $v \geq 115, v \neq 135$, write $v=20 m+4 u+h+s$ where m, u, h and s are chosen as in lemaa 4.4 with the difference that $4 u+h+s=15,35,55,75,95$. Now apply theorem 2.4 with $\lambda=3$ to get the result.

FOF $v=135$ apply theorem 2.2 with $n=7, h=3$ and $u=3$.

Lemma 4.7 Let $v \equiv 19(\bmod 20)$ be a positive integer. Then $\sigma(v, 5,3)=\psi(v, 5,3)$.

Proof For $v=19$ let $X=\{1, \ldots, 19\}$ then the blocks are

```
<124 5 14>,< < 3 5 6 13 16 >, < 2 4 15 17 19 >, < 1 2 5 8 15 >
< < 5 6 1011 >, < 5 9 1014 18>, < 1 3 4 8 18>, < 3 5 1016 19 >
```



```
<14 6 8 9 >, < < 3 8 15 17 18 >, < 2 6 % 10 19 >, < < 1 5 9 12 19 < <
< 3 9 12 17 19>,<< 6 12 13 15 19 >, < 1 6 6 11 14 17>, < < 4 5 12 13 17 >
<26 916 18>, < 1 6 12 16 17>, < 4 8 9 111 12>, < < % 8 9 13 16 >
< 1 7 9 10 17>, < 4 9 10 15 16 >, < 2 7 10 11 12 >, < < 1 7 11 18 19 >
```



```
<2 3 7 16 17>, < 5 6 9 11 15 >, < 2 10 12 15 18 >, < < 2 3 8 12 14 >
< 5 7 8 13 18 >, < 8 11 14 16 17 >, < 2 3 9 13 19 >, < 5 5 7 8 17 19 >
< 346 7 10>, < 2 4 6 7 13 >, < 5 5 7 12 14 15 >, < 10 13 15 17 18 < <
< 3 4 11 12 18>.
```

For all other values of $v_{p} v \neq 239$, the construction is as follows.

1) Take two copies of a (v-2,5,1) packing design with a hole of size 9, [17], and on the hole construct $a(9,5,2)$ packing degign with $\psi(9,5,2)-1$ blocks [6]. Close observation of this design shows that the complement graph of this design consists of the following graph

2) Take a $(v+4,5,1)$ optimal packing design, $v+4 \neq 243,[20]$. Again, close observation of these designs show that the complement graph of these designs contains a subgraph on $n \geq 23$ vertices which is one cycle. So we may asaume that the pairs $\{1,4\},\{2,4\},\{2,5\},\{3,5\},\{v-1, v+1\}$ and $\{v-1$, $v+2\}$ appear in zexo blocks. Furthermore, assume we have the block $<v v+1$ $v+2 v+3 v+4>$. Delete this block and in all other blocks change $v+4, v+3$ to v and $v+2$, $v+1$ to $v-1$.
3) To the blocks obtained in (1) and (2) add the block < $12346>$. For $v=239$ apply theorem 2.4 with $m=11, u=4, h=3, s=0$ and $\lambda=3$.

Conclugion In this section we have shown that for all positive integers $v \equiv 3$ $(\bmod 4) v \geq 7$ we have $\sigma(v, 5,3)=\psi(v, 5,3)$.

5. Packing Dasigns With Index 5

5.1 Packing of order $v \equiv 3(\bmod 4)$

Theorem 5.1 For all $v \equiv 3(\bmod 20), v \neq 3$, we have $\sigma(v, 5,5)=\psi(v, 5,5)$. Furthermore there exists a $(23,5,5)$ packing design with a hole of aize 3 .

Proof A $(v, 5,5)$ packing design with $\psi(v, 5,5)$ blocks may be constructed as follows.

1) Take $\mathrm{B}[v+2,5,1]$, lemma 2.1, and assume we have the following two blocks $<123 v v+2>,<456 v-1 \quad v+1>$
In the fixgt block change $v+2$ to 7 and in the second block change $v+1$ to 8 where $1,2, \ldots, 7,8$ are all arbitrary numbers. In all other blocks change $v+2$ to v and $v+1$ to $v-1$.
2) Take a $B[v-2,5,1]$, lemma $2.1, v-2 \neq 21$, and assume we have the following two blocks

In the Eirat block change 7 to v and in the aecond block change 8 to $v-1$.
The above two steps give us a sort of a design such that $\{7,9\}$ and $\{8,10\}$ each appears exactly once: $\{7, v\}\{8, v-1\}\{9, v\}\{10, v-1\}$ each appears exactly 3 times; $\{v-1, v\}$ appears exactly four times, and each other pair appears exactly twice.
3) Take a $(0,5,2)$ optimal packing with a hole of size 3, [5]. such that the hole is $\{v-2, v-1, v\}$
4) Take $(v, 5,1)$ optimal packing, [20], which exists for all $v \equiv 3$ (mod 20), $v \neq 243$. The complement graph of this design contains a subgraph that is the circuit graph C_{n} where $n \geq 23$, we may assume that $\{7, v\},\{8, v=1\}\{9, v\}$ and $\{10, v-1\}$ are missing from the $(v, 5,1)$ optimal packing design.

It is readily checked that the above four steps yield the blocks of a $(v, 5,5)$ optimal packing design for all positive integers $v \equiv 3(\bmod 20) v \geqslant 23$, 243.

For $v=23$ the construction is as follows:
take a $(23,5,2)$ minimal covering design $[19]$. In this design each pair appears in precisely two blocks except one pair, say, $\{22,23\}$ that appears in 6 blocks.
2) take a $(23,5,2)$ optimal packing design with a hole of size 3, gay, $\{5,22,23\}[6]$.
3) take a $(23,5,1)$ optimal packing deaing. The complement graph of this design is the circuit graph C_{23} [20$]$, so we may assume that the pairs $\{22,23\}$ and $\{4,23\}$ appear in zero blocks.

The above three steps give a design such that $\{22,23\}$ appears in six blocks and each other pair in at most 5 blocks. To reduce this to five, assume in the $(23,5,2)$ minimal covering design we have the block $<1232223>$. In this block change 23 to 5. Furthermore, assume in the $(23,5,2)$ optimal packing deaign we have the block $<12345>$. In this block change 5 to 23 .

Now it is easy to check that the above construction yields a $(23,5,5)$ optimal packing design.

For $v=243$ apply theorem 2.4 with $m=11, \lambda=5, h=3, g=0$ and $u=5$.
For a $(23,5,5)$ packing design with a hole of size 3 let $\mathbb{X}=Z_{20} \cup H_{3}$. Then the required blocks are:

On $z_{x_{0}} \cup\left\{h_{1}\right\}$ construct a $B\{21,5,1]$, lemma 2.1, and take the following blocks: $<0481216\rangle+i, i \in \mathrm{z}_{4} 3$ times $\left\langle 031013 h_{1}>\right.$ half orbit $<01235>(\bmod 20),<01712 \mathrm{~h}_{2}>(\bmod 20),<02713 \mathrm{~h}_{3}>(\bmod 20)$ $<\kappa \kappa+3 k+9 k+14 f(k)>x=0, \ldots, 19$ where $f(k)=h_{1}$ if $k=0$ or $1(\bmod 4)$, $f(\kappa)=h_{2}$ if $k \equiv 2(\bmod 4)$ and $£(k)=h_{3}$ if $k \equiv 3(\bmod 4)$.

In the following lemma we give direct constructions for small values of v.

Lemma 5.1 $\sigma(v, 5,5)=\psi(v, 5,5)$ for $v=7,27,47,67,87$.

Proof For $v=7,47,67,87$ the constructions are given in the following table. For $v=27$ the construction is as follows:

1) take a $B[26,5,4]$, lemma 2.1;
2) take a $(31,5,1)$ optimal packing design ([20], lemma 3.6 with $s=8)$. Assume in this design we have the block < $2728293031>$. Delete this block and in all other blocke change 28, 29, 30 and 31 to 27.

0	Point set	Base Blocks
7	$\mathrm{Z}_{2} \times \mathrm{Z}_{3} \cup \mathrm{H}_{1}$	$\begin{aligned} & \left\langle(0,0)(0,1)(1,0)(1,2) h_{1}\right\rangle,\left\langle(0,0)(0,1)(1,0)(1,1) h_{1}\right\rangle \\ & \langle(0,0)(0,1)(1,0)(1,1)(1,2)\rangle \end{aligned}$
47	$\mathrm{Z}_{40} \cup \mathrm{H}_{7}$	on $z_{40} \cup H_{s}$ construct a $B[45,5,1]$, lemma 2.1. Assume $<h_{1}, \ldots, h_{5}>$ are in one block. Delete this block and take the following blocks $\left.\left.\left.\left.\begin{array}{l} \left.<08162432\rangle+i, i \in z_{8},<0132033\right\rangle \cup\left\{h_{6}, h_{7}\right\} \text {, half orbit } \\ \left.<012410\rangle,<03102428>,<05142027\rangle,<051728 h_{1}\right\rangle \\ <0 \end{array} 1615 h_{2}\right\rangle,<021930 h_{3}\right\rangle,<03422 h_{4}\right\rangle,<031014 h_{5}\right\rangle$
67	$\mathrm{Z}_{\infty} \cup \mathrm{H}_{7}$	on $z_{50} \cup H_{5}$ construct a $B[65,5,1]$, lemma 2.1. Assume $\left\langle h_{1}, \ldots, h_{5}\right\rangle$ are in one block. Delete this block and take the following blocks $<012243648>+i$, $i \in Z_{12}<0213051>U\left\{h_{6} h_{7}\right\}$, half orbit $<013511\rangle,\langle 07142642\rangle,\langle 013723\rangle,<05142745\rangle$ $<06173242>,<013715>,<010203144>,<092245 h_{1}>$ <0 8 $2541 h_{7}>,<082739 h_{3}>$, <0 $\left.172046 h_{4}>,<01528 h_{8}\right\rangle$
87	$\mathrm{z}_{80} \cup \mathrm{H}_{7}$	On $z_{80} \cup \mathrm{H}_{5}$ construct a $\mathrm{B}[85,5,1]$, lemma 2.1. Assume $\left\langle h_{1}, \ldots, h_{5}\right\rangle$ are in one block. Delete this block. On z_{80} construct an ($80,5,1$) covering, [21]. In this design each pair appears exactly once except the paixs $\{i, i+40\} ; i \in \mathcal{Z}_{\infty}$, each appears exactly twice. Take the following blocks $\begin{aligned} & \left.<016324864>+i, i \in \mathrm{q}_{16}<0114051\right\rangle \cup\left\{h_{6}, h_{7}\right\}, \text { half orbit } \\ & <05283850>,<013717>,<011265062>,<013721> \\ & \left.<013725>,<05142253>,<010304359>,<082742 h_{1}\right\rangle \\ & <0 \end{aligned}$

Theorem 5.2 Let $v \equiv 7(\bmod 20)$ be a positive integer. Then $\sigma(v, 5,5)=\psi(v, 5,5)$.

Proof For $7 \leq v \leq 87$, the result follows from lemma 5.1
For $v \geq 107, v \neq 127$, simple calculations show that v can be written in the form $v=20 m+4 u+h+s$ where m, u, h and s are chosen so that the following 4 conditions hold

1) there exists a $\operatorname{RMGD}[5,1,5,5 \mathrm{~m}]$, theorem 2.3,
2) $4 u+h+s \equiv 7(\bmod 20)$ and $7 \leq 4 u+h+s \leq 87$,
3) $\quad 0 \leq u \leq m-1, G \equiv 0(\bmod 4)$ and $h=3$
4) there exists a $\operatorname{GD}\left[5,5,\left\{4, s^{*}\right\}, 4 m+s\right]$, theorem 2.5, Now apply theorem 2.4 with $\lambda=5$ and the result follows.

For $v=127$, apply theorem 2.2 with $u=1, h=3$ and $n=9$.

Theorem 5.3 Let $v \equiv 11$ or $15(\bmod 20)$ be a positive integer. Then $\sigma(v, 5,5)=$ $\psi(v, 5,5)$.

Proof A $(v, 5,5)$ packing design with precisely $\psi(v, 5,5)$ blocks for all $v \equiv 11$ ox 15 (mod 20) can be constructed by simply taking the blocks of a $B[0,5,2]$ and a $(0,5,3)$ optimal packing designs, lema 2.1 and lemass 4.4 and 4.6 respectively. since a $B[15,5,2]$ does not exist, lemma 2.1 , we need to construct a $(15,5,5$) optimal packing design.

For this purpose let $X=Z_{15}$ then the required blocks are
$<036912>+i, i \in z_{3}$ twice
$<01237\rangle(\bmod 15),\langle 012510\rangle(\bmod 15),\langle 024711\rangle(\bmod 15)$.

Lemma 5.2 Let $v \equiv 19(\bmod 20)$ be a positive integer and assume the following conditions are satisfied

1) $\sigma(v+4,5,1)=\psi(v+4,5,1)$
2) $\alpha(v-1,5,4)=\phi(v-1,5,4)$
3) the excess graph $E(V, \beta)$ of the $(v-1,5,4)$ covering design consists of $v-4$ isolated vertices and one of the following graphs on the remaining 4 vertices, say, $\{1,2,3,4\}$.

Then $\sigma(v, 5,5)=\psi(v, 5,5)$.

Proof If the excess graph of the $(v-1,5,4)$ minimal covering design consists of $v-4$ isolated vertices
 and the graph on the bottom on the remaining four vertices, then a $(0,5,5)$ optimal packing design can be constructed as follows:

1) take the blocks of a $(v-1,5,4)$ minimal covering design and assume we have the block <1234 a >1 where a is an arbitrary number different from $\{1,2,3,4\}$. Delete this block.
2) take a $(v+4,5,1)$ optimal packing design. The complement graph of this design contains a circuit graph C_{n} where $n \geq 23$ [20], so we may assume that the pairs $\{1,3\}$ and $\{2,4\}$ are missing from this design. Furthermore, assume we have the block $<v v+1 v+2 v+3 v+4>$. Delete this block and in all the remaining blocks of the $(u+4,5,1)$ optimal packing design change $v+1, v+2, v+3$, and $v+4$ to v.
If the excess graph of the $(v-1,5,4)$ minimal covering design consists of $v-4$ isolated vertices and the top graph of the two graphs, on the remaining four vertices, then a $(v, 5,5)$ optimal packing design can be constructed as follows 1) take a $(v-1,5,4)$ minimal covering design. Assume in this design we have the block < $12345>$ where 5 ia an arbitrary number. Delete this block.

Furthermore, assume in this design we have the block < $67814>$ where $\{6,7,8\}$ are arbitrary numbers. In this block change 4 to 5 .
2) take a $(v+4,5,1)$ optimal packing design. The complement graph of this design contains a circuit graph C_{n} where $n \geq 23$ [20], so we may assume that the pairs $\{1,2\},\{2,3\}\{3,4\}$ and $\{4,9\}$ appear in zero blocks. Assume in this design we have the block $\langle 67895>$. In this block change 5 to 4 . Furthermore, assume in this design we have the block $<v v+1 v+2 v+3$
$v+4>$. Delete this block and in all other blocks change $v+1, v+2, v+3$ and $v+4$ to v.

Theorem 5.4 Let $v \equiv 19(\bmod 20)$ be a positive integer. Then $\sigma(v, 5,5)=\psi(v, 5,5)$.

Proof In [10] we have shown that for all $v-1 \equiv 18(\bmod 20) v \quad 98(\bmod 200), v$ $\neq 78$ there exists a $(v-1,5,4)$ covering design with a hole of size 8,13 or 18 . But for $n=8,13,18$ there exists a $(n, 5,4)$ minimal covering design such that their excess graphe is one of graphs described in lema 5.2. We now show that for the other values there exists a $(v-1,5,4)$ covering design with a hole of size 8, 13 , or 18.

For $v=78$ see [4].
For $v \equiv 98(\bmod 100)$ take $a T[6,1, m]$ where $m \equiv 17(\bmod 20)$, theorem 2.1. Delete all but 11 points from last group and replace the blocks of the resultant design by the blocks of $a \operatorname{B}[6,5,4]$ and $B[5,5,4]$, lemma 2.1. Add two points to the groups and on the first five groups construct a ($m+2,5,4$) packing design with a hole of size 2 [12]. Finally, take these two points with the last group to be the hole of size 13. Now it is clear that for all $v-1 \equiv 18(m o d 20)$ the exceas graph of the ($v-1,5,4$) minimal covering design is one of the graphs described in Lemma 5.2.

On the other side a $(v+4,5,1)$ optimal packing design exists for all $v+4 \equiv$ $3(\bmod 20), v+4 \neq 243,[20]$. Now apply lema 5.2 to get the result for all $v=$ $19(\bmod 20) v \neq 239$.

For a $(239,5,5)$ optimal packing design apply theorem 2.4 with $\lambda=5$, m=11, $s=0, u=4$ and $h=3$.

5.2 Packisg of order $v \equiv 2$ (mod 4)

We start this section with the following simple but important observation

Lemma 5.3 (a) If there exists

1) a $(v, 5, \lambda)$ covering design with $\phi(v, 5, \lambda)$ blocka;
2) a $\left(v, 5, \lambda^{\prime}\right)$ packing design with $\psi\left(v, 5, \lambda^{\prime}\right)$ blocks;
3) $\phi(v, 5, \lambda)+\psi\left(v, 5, \lambda^{\prime}\right)=\psi\left(v, 5, \lambda+\lambda^{\prime}\right)$;
4) the excess graph $E(v, \beta)$ of the covering design is isomorphic to a subgraph G of the complement graph, $C(V, \beta)$, of the packing design.

Then there exists a $\left(v, 5, \lambda+\lambda^{\prime}\right)$ packing design with $\psi\left(v, 5, \lambda+\lambda^{\prime}\right)$ blocks
(b) Similarly if there exists

1) a $(v, 5, \lambda)$ covering design with a hole of size $h ;$
2) a $\left(v, 5, \lambda^{\prime}\right)$ packing design with hole of size $h ;$
3) the total number of blocks in these two designs is $\psi\left(v, 5, \lambda+\lambda^{\prime}\right)$ $\psi\left(h, 5, \lambda+\lambda^{\prime}\right) ;$
4) the excess graph, $E(V \backslash H, \beta)$, of the covering design with a hole of size h is isomorphic to a subgraph G of the complement graph, $C(V \backslash H, \beta)$, of the packing design with a hole of size h.

Then there exists a $\left(v, 5, \lambda+\lambda^{\prime}\right)$ packing design with a hole of size h.

Lemma 5.4 $\sigma(v, 5,5)=\psi(v, 5,5)$ for $v=22,42,62,82$. Furthermore, these packing deaigns have a hole of size 2.

Proof For $v=22$ let $X=Z_{20} \cup\{a, b\}$ then the required blocks are
$<0481216>+i, i \in z_{4},<031013>U\{a, b\}$ halforbit
$\langle 01235\rangle(\bmod 20),\langle 016813\rangle(\bmod 20),\langle 0281114\rangle(\bmod 20)$,
$<04913 a\rangle(\bmod 20),\langle 01511 b\rangle(\bmod 20)$.
For $v=42,62,82$ the construction is as follows

1) Take a $B(v-1,5,2)$, 1emma 2.1.
2) Take a $(v+1,5,2)$ optimal packing design [6]. It has a hole of size 3, gay $\{v-1, v, v+1\}$. Now in all the blocks of the $(v+1,5,2)$ optimal packing deaign change $v+1$ to v.
3)

Take a $(v, 5,1)$ optimal packing design, $v=42,62,82,[9]$.

It is clear that the above three steps yield a $(0,5,5)$ optimal packing design for $v=42,62,82$.

Theorem $5.50(0,5,5)=\psi(v, 5,5)$ for all positive integer $v \equiv 2(\bmod 20), v \geq 22$.

Proof For $v=22,42,62,82$ the result follows from lemma 5.4. For $v \geq 102$ simple calculationg show that v can be written in the form $v=20 m+4 u+h+s$ where m, u, h and s are chosen so that

1) there exists a $\operatorname{RMGD}[5,1,5,5 \mathrm{~m}]$, theorem 2.3;
2) $4 u+h+s \equiv 2(\bmod 20)$ and $22 \leq 4 u+h+5 \leq 82$;
3) $0 \leq u \leq m-1, E \equiv 0(\bmod 4)$ and $h=2$;
4) there exists a $\operatorname{GD}\left[5,5,\left\{4,8^{*}\right\}, 4 \mathrm{~m}+\mathrm{s}\right]$, theorem 2.5 .

Now apply theorem 2.4 with $\lambda=5$ and the result follows.

Lemma 5.5 $O(v, 5,5)=\psi(v, 5,5)$ for $v=6,26,46,66,86$.

Proof Fox $v=6$ take $\mathrm{a}[6,5,4]$, lemaz 2.1, with an optimal $(6,5,1)$ packing, which has one block.

For $v=26$ let $X=Z_{20} \cup H_{6}$. On $Z_{20} \cup H_{5}$ construct a $B[25,5,1]$, lema 2.1, such that $<h_{1} h_{2} h_{3} h_{4} h_{5}>$ is a block, which we delete. Furthermore, take the following base blocks under the action of the group z_{20} :
 $<03912 h_{d}>,<04813 h_{9}>,<0 \& 814 h_{6}>$.

For $v=46,66,86$ a $(v, 5,5)$ optimal packing design may be constructed as follows:

1. take $(0,5,3)$ minimal covering design, [9]. Careful inspections show that the excess graph $E(V, \beta)$ of this covering design consists of a 1 - factor on $v-6$ vertices and the following graph on the remaining 6 verticea

2. take a $(u, 5,2)$ optimal packing design such that its complement graph $C(V, \beta)$ contains a subgraph G that is isomorphic to $E(V, \beta)$, the excess graph of $(v, 5,3)$ minimal covering design, lemma 4.2. Now apply lemma 5.3 and the result follows.

Theorem $5.6 \sigma(v, 5,5)=\psi(v, 5,5)$ for all positive integers $v \cong 6(\bmod 20)$

Proof For $6 \leq v \leq 86$ the result follows from lema 5.5. For $v \geq 106$ the proof of this theorem is the same as theorem 5.2 with the difference that $4 u+h+s$ $\equiv 6(\bmod 20), h=6$, and $6 \leq 4 u+h+s \leq 86$.

Lemma 5.6 Let m, u and $h \geq 0$ be positive even integers. If there exists (1) a $G D\left[5,2,\left\{m, u^{*}\right\}, 5 m+u\right]$ (2) a $(u+h, 5,2)$ optimal packing design with $\frac{2(u+h)^{2}-2(u+h)+c(u+h)+d}{20}$ blocks where c and d are integers determined by u and $h(3)$ a $(m+h, 5,2)$ packing design with a hole of size h with total number of blocks equal $\frac{2 m^{2}+4 h m+c m-2 m}{20}$. Then $\sigma(5 m+u+h, 5,2)=(5 m+u+h, 5,2)$

Proof We need to show that the total number of blocks obtained by this construction is equal to $\psi(5 m+u+h, 5,2)$. But a $\operatorname{GD}\{5,2,\{m, u *\}, 5 m+u]$ has the following number of blocks $2\left(m(m-u)+\frac{3}{2} m u\right)$

A $(u+h, 5,2)$ optimal packing design has the following number of blocks

$$
\begin{equation*}
\frac{2(u+h)^{2}-2(u+h)+c(u+h)+d}{20} \tag{II}
\end{equation*}
$$

where c and d are integers deterimed by u and h, and $a(m+h, 5,2)$ packing design with a hole of size h has the following number of blocks (we are assuming that this number is an integer)

$$
\begin{equation*}
\frac{2 m^{2}+4 m h+c m-2 m}{20} \tag{III}
\end{equation*}
$$

where c is as above.
On the other hand, $\psi(5 m+u+h, 5,2)=\frac{2(5 m+u+h)^{2}-2(5 m+u+h)+c(5 m+u+h)+d}{20}$
where c and d are the same integers as in (II) since $5 m+u+h$ and $u+h$ are the same congruency modulo 10.

Now it is easily checked that the total number of blocks in (I), (II) and 5 times the number of blocks in (III) is equal to the total number of blocks in (IV).

Lemma 5.7 Let $v \equiv 10$ or $14(\bmod 20), v \neq 34$ be a positive integer less than 100. Then there exista a $(0,5,2)$ optimal packing design such that the complement graph of these designs contains a subgraph that is a 1 -factor.

Proof For $v=10,14,30,90$ see $[5$, p. 51].
For $v=70$ let $X=Z_{\infty} U\{a, b\}$, then take the following base blocks under the action of the group $Z_{G B}$.
 $<09223648>,<082945>\cup\{a, b\}$.

FOr $v=50,54,74$ and 94 take $\operatorname{GD}[5,2,\{m, u *\}, 5 m+u]$ where m, u and h are choosen as prescribed in the table below (see lema 2.1 of [5, p. 46] for the existence of $\left.a \operatorname{GD}\left[5,2,\left\{m, u^{*}\right\}, 5 m+u\right]\right)$. Adjoin a set H of h points to the groups and on the first five groups construct a (m+h,5,2) packing design with a hole of size $h[5, ~ p .48]$ and take these h points with the last group as a block which we delete since the total number of points is leas than Eive. Now apply lemma 5.6 to get the reault.

v	m	u	h	Lemma	v	m	u	h	Lemna
50	10	0	0	5.6	74	14	0	4	5.6
54	10	2	2	5.6	94	18	2	2	5.6

Note that our constructions are correct provided that: the $(10,5,2)$ optimal packing design; the $(12,5,2)$ packing design with a hole of size 2 ; the $(18,5,2)$ packing design with a hole of size 4 , and the $(20,5,2)$ packing deaign with a hole of size 2 , theix complement graph has a complement subgraph that is

1-factor. This can easily be checked. For the (18,5,2) packing design with 2 hole of size 4 , the 1 -factor on $\{5, \ldots, 18\}$ is $\{\{5,17\}\{6,12\}\{7,9\}\{8,11\}\{10,16\}$ $\{13,18\}\{14,15\}\}$.

Leuma $5.8 \sigma(v, 5,5)=\dot{\sim}(v, 5,5)$ for al1 $v \equiv 10$ or $14(\bmod 20)$ and $10 \leq v \leq 94$, $v \neq 34$.

Proof A $(v, 5,5)$ optimal packing design for $v \equiv 10$ or $14(\bmod 20)$ and $v \leq 94$ can be constructed as follows.

1) take a $(0,5,3)$ minimal covering design [9]. The excess graph, $E(V, \beta)$, of each of these designs is a 1-factor.
2) take a $(v, 5,2)$ optimal packing design such that the compliment graph of these deaigns contains a subgraph which is 1-factor (lemma 5.7). Since $\alpha(v, 5,3)=\phi(v, 5,3)$ and $\sigma(v, 5,2)=\psi(v, 5,2)$ for such v; and $\alpha(v, 5,3)$ + $\psi(v, 5,2)=\psi(v, 5,5)$ it follows that $\sigma(v, 5,5)=\psi(v, 5,5)$.

Theorem $5,7 \sigma(v, 5,5)=\psi(v, 5,5)$ for all positive integers $v \equiv 10$ or 14 (mod 20) with the possible exception of $v=34$.

Proof For $14 \leq v \leq 94, v \equiv 10$ or 14 (mod 20) the result follows from lema 5.8. For $v \geq 110, v \neq 130,134,214$, the proof of the theorem is the same as theorem 5.5 with the difference that $4 u+h+s=10,30,50,70,90$ if $v=10$ (mod 20) and $4 u+h+s=14,54,74,94$ if $v=14(\bmod 20)$. For $v=130,134$ apply theorem 2.2 with $h=2, n=7$ and $u=2$ and 3 respectively.

For $v=214$ take a $T[6,5,10],[18, p .278]$, and delete 7 points from the last group. Inflate this design by a factor of 4 , that is, replace each block of size 5 and 6 by the blocks of $\operatorname{GD}[5,1,4,20]$ and $\operatorname{GD}[5,1,4,24]$ respectively, lema 2.1. Add two points to the groups and on the first 5 groups construct a $(42,5,5)$ packing design with a hole of size 2 (This design exists by lemma 5.4); and on the last group construct a $(14,5,5)$ optimal packing design.

Lemma 5.9 $\sigma(v, 5,5)=\psi(v, 5,5)$ for $v=18,38,58,78,98$.

Proof For $v=18$ let $X=\{1,2, \ldots, 18\}$ then the required blocks are

$<$		2		4	10	$>$		4	5	13	15	16	$>$	<1	2	8	14	18	$>$		5	15	16	18
$<$	1	2	8	14	15	\geqslant	$<$	4	8	10	11	17	$>$,	<1	2	8	12	15	$>$	<4	9	10	14	15
$<$	1	2	11	15	16	$>$	$<$	4	9	11	12	14	$>$	<1	3	5	9	14	\gg	<4	10	13	14	18
$<$	1	3	5	6	7	$>{ }_{1}$	$<$	5	6	11	13	16	$>$	<1	3	10	13	18	\gg	<5	7	8	10	15
$<$	1	3	11	14	16	$>$,	$<$	5	8	12	17	18	$>$	<1	4	6	8	18	$>$,	<5	9	10	11	18
$<$	1	4	7	16	18	$>$	$<$	5	11	13	14	15	$>$,	<1	4	7	12	13	$>$	<6	7	8	9	10
$<$	1	4	9	11	17	$>$	$<$	6	7	8	11	14	$>$,	<1	5	6	9	15	$>{ }^{\prime}$	<6	7	10	13	18
$<$	1	5	7	11	16	$>$	$<$	6	8	9	11	13	$>$,	<1	5	8	12	17	\geqslant	<6	10	15	16	17
$<$	1	6	9	13	17	>	$<$	6	13	14	16	18	$>$,	<1	6	10	11	17	$>$	<7	8	9	14	16
$<$	1	7	12	13	17	$>$,	$<$	7	10	12	14	16	$>$	<1	9	10	12	15	\geqslant	<7	11	15	17	18
$<$	11	10	14	16	18	$>$	$<$	8	9	12	13	16	$>$	<2	3	5	6	10	$>$	<8	10	13	15	17
$<$	2	3	8	10	11	$>$	$<$	9	11	12	15	16	\gg	<2	3	9	13	16	\gg	<10	12	13	14	17
$<$	2	3	9	13	17	$>$	$<$	2	4	5	7	13	$>$	<2	4	6	12	14	$>$	<2	4	7	10	11
	2	4	11	12	13	$>$	$<$	2	5	8	13	14	$>$,	<2	5	10	12	16	$>$	<2	5	11	17	18
$<$	2	6	7	9	18	$>$	$<$	2	6	14	15	17	$>$	<2	7	9	16	17	$>$	<2	7	9	15	18
$<$	21	12	16	17	18	$>$	$<$	3	4	6	12	15	$>$	<3	4	6	8	16	>		4	7	15	17
	3	4	8	16	17	$>$,	$<$	3	5	7	14	17	$>{ }^{\prime}$	<3	5	9	10	12	$>$	<3	6	12	15	18
$<$	3	7	8	13	15	$>$	<	3	7	11	12	14	$>$	<3	8	11	12	18	\geqslant	<3	9	14	17	18
$<$	31	11	13	15	18	$>$,		4	5	6	14	17	$>{ }^{\prime}$	<4	5	8	9	18	$>$.					

For $v=38,58,78$ the construction is as follows

1) take a $(v-1,5,4)$ optimal packing design, [12];
2) take a $(v+4,5,1)$ optimal packing design, [9]. Assume we have the block $<v v+1 v+2 v+3 v+4>$. Delete this block and in all other blocks change the points $v+1, v+2, v+3, v+4$ to v.

For $v=98$ let $X=z_{s 0} \cup H_{18}$. Then the construction is as follows:

1) On $z_{80} \cup H_{9}$ construct an $(89,5,1)$ packing design with a hole of size 9, [17].
2) On $z_{80} \cup\left\{h_{i}\right\}^{18}{ }_{i=10}$ construct an $(89,5,1)$ packing design with a hole of size 9 .
3) Take the following base blocks under the action of the group $Z_{\text {w }}$

Theorem $5.8 \quad \sigma(v, 5,5)=\psi(v, 5,5)$ for all positive integers $v \equiv 18(\bmod 20)$.

Proof For $18 \leq v \leq 98$ see lemma 5.9. For $v \geq 118, v \neq 138$ the proof of this theorem is the same as theorem 5.5 with the difference that
$4 u+h+s=18(\bmod 20), 18 \leq 4 u+h+5 \leq 98$.
For $v=138$ apply theorem 2.2 with $n=7, h=2$ and $u=4$.

5.3 Packing of oxder $v \equiv 0$ (mod 1)

Theorem 5.9 Let $v \equiv 16(\bmod 20)$ be a positive integer. Then $\sigma(v, 5,5)=$ $\psi(v, 5,5)$.

Proof The blocks of a $(v, 5,5)$ optimal packing design for all positive integers $v \equiv 16(\bmod 20)$, may be constructed as follows.

1) take a $\mathrm{B}[\mathrm{v}-1,5,4]$, lemma 2.1;
2) take a $(v+4,5,1)$ optimal packing design which is constructed by taking a $B[v+5,5,1]$ and deleting the point $t+5$ and all the blocks containing this point. Assume in the $(v+4,5,1)$ optimal packing design we have the block $<v v+1 v+2 v+3 v+4>$. Delete this block and in all the remaining blocks change $v+1, v+2, v+3$ and $v+4$ to v.

Lemma 5.10 There exists a $(24,5,5)$ packing deaign with a hole of size 4 .

Proof Let $X=z_{20} \cup H_{4}$ then take the following base blocks undex the action of the group Z_{20}
 $\left.<01613 h_{2}>,<02713 h_{3}>,<03912 h_{4}>,<01111\right\rangle \cup\left\{h_{1}\right\}_{i=1}^{4}$.

Theorem 5.10 Let $v \equiv 4(\bmod 20)$ be positive integer greater than 4 . Then $\sigma(v, 5,5)=\psi(v, 5,5)$.

Proof For $v=24,44,64,84$ the construction is as follows:

1) take a $(v-1,5,1)$ optimal packing deaign, [20].
2) take $a \cdot B[v+1,5,1]$, lemma 2.1. Assume we have the block $\langle 123 v v+1\rangle$. In this block change $v+1$ to 5 , where $\{1,2,3,5\}$ are arbitrary numbers, and in all other blocks change $v+1$ to v.
3) take a $(v, 5,3)$ optimal packing design [9] and assume that the pairs $\{4, v\}$ and $\{5, v\}$ each appears at most twice (close observation of these designs show that we may assume this). Furthermore, assume in this dasign we have the block <1 $2345>$. In this block change 5 to v. Now it is easily checked that the above three steps yield a $(0,5,5)$ optimal packing design for $v=24,44,64,84$.

For $v \geq 124, v \neq 144,224$ simple calculations show that v can be written in the form $v=20 m+4 u+h+s$ where m, u, h and s are chosen as in theorem 5.5 with the difference that $4 u+h+s=24,44,64,84$ and $h=4$.

Now apply theorem 2.4 with $\lambda=5$ and the result followg.
For $v=104,144,224$ apply theorem 2.5 with $m=5,7,11$ reapectively.

Theorem 5.11 Let $v \equiv 0,8$ or $12(\bmod 20)$ be a positive integer greater than zero. Then $\sigma(v, 5,5)=\psi(v, 5,5)$ with the possible exception of $v=28$, 32.

Proof We first prove the theorem for $8 \leq v \leq 100, v \neq 28,32$. For $8 \leq v \leq 100$, $v \neq 20,28,32$ a $(v, 5,5)$ optimal packing design can be constructed by taking the blocks of $a(0,5,3)$ and $a(v, 5,2)$ optimal packing design [9]. [5].

For $v=20$ let $X=z_{20}$ then the blocks are
$\langle 0481216\rangle+i, i \in Z_{4}, 3$ times $\langle 0141015\rangle(\bmod 20),\langle 0271013\rangle$
$(\bmod 20),\langle 01235>(\bmod 20),<017914\rangle(\bmod 20)$.
For $v \geq 100 v \neq 128,132,208,212$, simple calculations show that v can be written in the form $v=20 m+4 u+h+s$ where m, u, h and are chosen as in theorem 5.10 with the difference $4 u+h+g \equiv 0,8$ or $12(\bmod 20), 8 \leq 4 u+h+g \leq 92,4 u+h+g$ $\neq 28$, 32. Now apply theorem 2.4 with $\lambda=5$ and the result follows.

For $v=128$, 132 apply theorem 2.2 with $n=7, h=0$ and $u=2,3$ respectively.

For $v=208,212$ take $T[6,5,10],[18, p, 278]$, and delete all but u points from last group where $u=2,3$, respectively. Inflate this deaign by a factor of 4 , that is, replace all blocks of size 5 and 6 by the blocks of a $G D[5,1,4,20$] and $\operatorname{GD}[5,1,4,24]$ respectively, lema 2.1. Finally on the groups construct a ($n, 5,5$) optimal packing design where $n=40,8,12$.

7. Conclusion

We have shown that $\sigma(v, 5,5)=\psi(v, 5,5)$ for all poaitive integera $v, v \geq 5$ with the possible exception of $v=28,32,34$.

Exfermes

[1] R. J. Abel, Four Mutually orthogonal Latin squares of order 28 and 52. J. Combin. Theory Ser. A 58 (1991) 306-309.
[2] R. J. Abel and D. T. Todorov, Four MoLs of oxders 20, 30, 38 and 44. J. Combin. Theory Ser. A 64 (1993) 144-148.
[3] A. Mo Assaf, An application of modified group divisible designs. J. Combin. Theory Ser. A 68 (1994) 152-168.
[4] A. M. Assaf, Two more covering designs with block size 5 and index 4. Utilitas Math. 39 (1991) 210-214.
[5] A. M. Asaaf, N. Shalaby, L. P. S. Singh, Packing designs with block size 5 and index 2: the case v even. J. Combin. Theory Ser. A 63 (1993) 4354.
[6] A. M. Assaf, L. P. S. Singh, Packing pairs by quintuples with index 2: v odd, v (mod 20). Discrete Math. 126 (1994) 1-12.
[7] A. M. Assaf, Bipacking pairs by quintuples: the case $v \equiv 13$ (mod 20). Discrete Math. 133 (1994) 41-54.
[8] A. M. Assaf, L. P. S. Singh, Tripacking of pairs by quintuples: the case $v \equiv 2(\bmod 4)$. Ars Combinatoria, accepted.
[9] A. M. Assaf, N. Shalaby, On small packing and covering designs with block size 5 and index 3 , in preparation.
[10] A. M. Assaf, N. Shalaby, On covering designs with block size 5 and index 4. Ars Combinatoria 33 (1992) 227-237.
[11] Packing designs with block size 5 and indexes 8, 12, 16. J. Combin. Theory Ser. A 59 (1992) 23-30.
[12] A. M. Assaf and A. Hartman, on packing designs with block size 5 and index 4. Discrete Math. 79 (1989/90) 111-121.
[13] A. M. Assaf, N. Shalaby and L. P. S. Singh, On packing designs with block size 5 and indices 3 and 6. Ars Combinatoria, accepted.
[14] T. Beth, D. Jungnickel, H. Lenz, Design Theory. Bibl. Inst. Mannheim, 1985.
[15] A. E. Brouwer, The number of mutually orthogonal Latin squares - a table up to 1,000. Math Centrum, Report zw123/79. June 1979.
[16] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D. Smith, A new table of constant weight codes, IEEE Trans. Inform. Theory 36(1990) 1334-1380.
[17] A. M. Hamel, W. H. Mills, R. C. Mullin, R. Rees, D. R. Stinson, J. Ying The spectrum of PBD $\left(\left\{5, K^{\star}\right\}, v\right)$ for $\kappa=9$, 13, reprint.
[18] H. Hanani, Balanced incomplete block designs and related designs. Discrete Math. 11 (1975) 225-369.
[19] R. C. Mullin, w. K. Mills, on λ-covexs of paixs by quintuples: v odd. preprint.
$[20]$ R. C. Mullin, J. Yin, On packing of pairs by quintuples the case $v=3,9$ or 17 (mod 20). Ars Combinatoria 35 (1993) 161-171.
[21] W. H. Mills, A covering number, preprint.
[22] R. Roth, M. Peters, Four pairwise orthogonal Latin squares of order 24. J. Combin. Theory ser. A 44 (1987) 152-155.
[23] J. Schoenheim, on coverings, Pacific J. Math. 14 (1964), 1405-1411.
[24] N. Shalaby, personal comunication.
[25] D. T: Todorov, Four mutually orthogonal Latin squares of order 20, Ars Combinatoria, 27 (1989) 63-65.
[26] J. Yin, Packing paira by quintuples: the cage $v \equiv 0$ (mod 4), applied Math - Jcu 9B (1994) 401-404.

