On Packing Designs with Block Size 5 and Indices 3 and 5

Ahmad M. Assaf

Department of Mathematics Central Michigan University Mt. Pleasant, MI 48859, USA

<u>Abstract</u> Let V be a finite set of order v. A (v,κ,λ) packing design of index λ and block size κ is a collection of κ -element subsets, called blocks, such that every 2-subset of V occurs in at most λ blocks. The packing problem is to determine the maximum number of blocks, $\sigma(v,\kappa,\lambda)$, in a packing design. It is well known that $\sigma(v,\kappa,\lambda) \leq \left[\frac{v}{\kappa} \left[\frac{v-1}{\kappa-1} \lambda\right]\right] = \psi(v,\kappa,\lambda)$, where [x] is the largest

integer satisfying $x \ge [x]$. It is shown here that $\sigma(v, 5, 3) = \psi(v, 5, 3)$ for all $v \equiv 3 \pmod{4}$ and $\sigma(v, 5, 5) = \psi(v, 5, 5)$ for all positive integers $v \ge 5$ with the possible exceptions of v = 28, 32, 34.

1. Introduction

A (ν,κ,λ) packing design (or respectively covering design) of order ν , block size κ and index λ is a collection β of κ -element subsets, called blocks, of a ν -set V such that every 2-subset of V occurs in at most (at least) λ blocks.

Let $\sigma(v,\kappa,\lambda)$ denote the maximum number of blocks in a (v,κ,λ) packing design; and $\alpha(v,\kappa,\lambda)$ denote the minimum number of blocks in a (v,κ,λ) covering design. A (v,κ,λ) packing design with $|\beta| = \sigma(v,\kappa,\lambda)$ will be called a maximum packing design. Similarly, a (v,κ,λ) covering design with $|\beta| = \alpha(v,\kappa,\lambda)$ is called a minimum covering design. It is well known [23] that

$$\sigma\left(\nu,\kappa,\lambda\right) \leq \left[\frac{\nu}{\kappa} \left[\frac{\nu-1}{\kappa-1} \lambda\right]\right] = \psi\left(\nu,\kappa,\lambda\right) \text{ and } \alpha\left(\nu,\kappa,\lambda\right) \geq \left[\frac{\nu}{\kappa} \left[\frac{\nu-1}{\kappa-1}\right]\right] = \varphi\left(\nu,\kappa,\lambda\right)$$

where [x] is the largest integer satisfying [x] $\leq x$ and $\lceil x \rceil$ is the smallest integer satisfying $x \leq \lceil x \rceil$. When $\sigma(v,\kappa,\lambda) = \psi(v,\kappa,\lambda)$ the (v,κ,λ) packing design is called optimal packing design. Similarly when $\alpha(v,\kappa,\lambda) = \phi(v,\kappa,\lambda)$ the (v,κ,λ) covering design is called minimal covering design.

Many researchers have been involved in determining the packing number

Australasian Journal of Combinatorics 13(1996), pp.23-48

 $\sigma(\nu,\kappa,\lambda)$ known up to date. The following theorem summarizes what is known about packing pairs by quintuples.

<u>Theorem 1.1</u> Let $v \ge 5$ be a positive integer. Then

- 1) $\sigma(v,5,1) = \psi(v,5,1)$ for $v \equiv 3 \pmod{20}$ and $v \equiv 0 \pmod{4}$ $v \neq 12$, 16 with the possible exception of v = 32, 48, 52, 72, 132, 152, 172, 232, 243, 252, 272, 332, 352, 432 [16] [18] [26], and $\sigma(12,5,1) = \psi(12,5,1) - 1$, $\sigma(16,5,1) = \psi(16,5,1) - 1$ [16].
- 2) $\sigma(v,5,2) = \psi(v,5,2)$ for all positive even integers v, [5] and $\sigma(v,5,2) = \psi(v,5,2) e$ where e = 1 if $v \equiv 7$ or 9 (mod 10) or v = 13 with the possible exception of v = 15, 19, 27 and e = 0 if $v \equiv 1$, 3 or 5 (mod 10) $v \neq 13,15$ [6,7].
- 3) (a) $\sigma(v,5,3) = \psi(v,5,3)$ for all positive integers $v, v \neq 0 \pmod{4}$ with the possible exception of v = 17, 19, 29, 33, 38, 49 [8,13]. (b) $\sigma(v,5,3) = \psi(v,5,3)$ for all positive integers $v \equiv 0 \pmod{4}$, $v \leq 96$ with the possible exception of v = 20, 28, 32, 36, 56, [9].
- 4) $\sigma(v,5,4) = \psi(v,5,4)$ for all positive integers $v, v \neq 7$ and $\sigma(7,5,4) = \psi(7,5,4) 1$ [12].
- 5) $\sigma(v,5,6) = \psi(v,5,6)$ for all positive integers v, with the possible exception of v = 43 [13].
- 6) $\sigma(v,5,\lambda) = \psi(v,5,\lambda) e$ for all positive integers v and $\lambda = 8$, 12, 16 [11] with few possible exceptions where e = 1 if $\lambda(v-1) \equiv 0 \pmod{4}$ and $\frac{\lambda v (v-1)}{4} \equiv 1 \pmod{5}$ and e = 0 otherwise.

Furthermore, these few possible exceptions were removed later, in an unpublished paper, by Shalaby [24].

Our interest here is in the case κ = 5 and λ = 3, 5. Our goal is to prove the following:

<u>Theorem 1.2</u> Let $v \ge 5$ be a positive integer. Then $\sigma(v, 5, 3) = \psi(v, 5, 3)$ for all $v \equiv 3 \pmod{4}$ and $\sigma(v, 5, 5) = \psi(v, 5, 5)$ for all positive integers $v \ge 5$ with the possible exception of v = 28, 32, 34.

2. Recursive Constructions

In order to describe our recursive constructions we require several other types of combinatorial design. A balanced incomplete block design, $B[v, \kappa, \lambda]$, is

a (v,κ,λ) packing design where every 2-subset of points is contained in precisely λ blocks. If a B $[v,\kappa,\lambda]$ exists then it is clear that $\sigma(v,\kappa,\lambda) = \lambda v(v-1)/\kappa(\kappa-1)$ = $\psi(v,\kappa,\lambda)$ and Hanani [16] has proved the following existence theorem for B $\{v,5,\lambda\}$.

<u>Lemma 2.1</u> Necessary and sufficient conditions for the existence of a $B[v,5,\lambda]$ are that $\lambda(v-1) \equiv 0 \pmod{4}$ and $\lambda v(v-1) \equiv 0 \pmod{20}$ and $(v,\lambda) \neq (15, 2)$.

<u>Corollary</u> $\sigma(v,5,5) = \psi(v,5,5)$ for all positive integers v where $v \equiv 1 \pmod{4}$. A (v,κ,λ) packing design with a hole of size h is a triple (V,H,β) where V is a v-set, H is a subset of V of cardinality h, and β is a collection of κ -

element subsets, called blocks, of V such that

no 2-subset of H appears in any block;

2) every other 2-subset of V appears in at most λ blocks;

3) $|\beta| = \psi(v,\kappa,\lambda) - \psi(h,\kappa,\lambda)$.

It is clear that if there exists a (v,κ,λ) packing design with a hole of size h and $\sigma(h,\kappa,\lambda) = \psi(h,\kappa,\lambda)$ then $\sigma(v,\kappa,\lambda) = \psi(v,\kappa,\lambda)$.

Let κ , λ and v be positive integers and M be a set of positive integers. A group divisible design $GD[\kappa, \lambda, M, v]$ is a triple (V, β, γ) where V is a set of points with |V| = v, and $\gamma = \{G_1, \ldots, G_n\}$ is a partition of V into n sets called groups. The collection β consists of κ -subsets of V, called blocks, with the following properties

- 1) $|B \cap G_i| \leq 1$ for all $B \in \beta$ and $G_i \in \gamma_i$
- 2) $|G_i| \in M$ for all $G_i \in \gamma$;
- 3) every 2-subset {x,y} of V such that x and y belong to distinct groups is contained in exactly λ blocks.

If $M = \{m\}$ then the group divisible design is denoted by $GD[\kappa, \lambda, m, v]$.

A GD[$\kappa, \lambda, m, \kappa m$] is called a transversal design and denoted by T[κ, λ, m]. It is well known that a T[$\kappa, 1, m$] is equivalent to $\kappa-2$ mutually orthogonal Latin squares of side m.

In the sequel we shall use the following existence theorem for transversal designs. The proof of this result may be found in [1], [2], [14], [15], [18], [22], [24].

<u>Theorem 2.1</u> There exists a T[6,1,m] for all positive integers m with the exception of $m \in \{2,3,4,6\}$ and the possible exception of $m \in \{10, 14, 18, 22, 26, 34, 42\}$.

Theorem 2.2 If there exists a GD[6, λ ,5,5n] and a (20+h,5, λ) packing design with a hole of size h then there exists a (20(n-1)+4u+h,5, λ) packing design with a hole of size 4u + h where $0 \le u \le 5$.

<u>Proof</u> Take a GD[$6,\lambda,5,5n$] and delete 5-u points from the last group. Inflate this design by a factor of 4. On the blocks of size 5 and 6 construct a GD[5,1,4,20] and a GD[5,1,4,24] respectively, lemma 2.1. Add h points to the groups and on the first n-1 groups construct a ($20+h,5,\lambda$) packing design with a hole of size h, and take the h points with the last group to be the hole of size 4u+h.

It is clear to apply the above theorem we require the existence of a $GD[6,\lambda,5,5n]$. Our authority for that is the following lemma of Hanani [18, p.286].

Lemma 2.2 There exists a GD[6, λ ,5,35] for λ = 3, 5.

If in the definition of $GD[\kappa,\lambda,m,v]$ (similarly $T[\kappa,\lambda,m]$) condition (3) is changed to be read as (3) every 2-subset $\{x,y\}$ of V such that x and y are neither in the same group (column) nor in the same row is contained in exactly λ blocks of β and no block contains more than one point from the same row. Then the resultant design is called a modified group divisible design (modified transversal design) and is denoted by $MGD[\kappa,\lambda,m,v]$ ($MT[\kappa,\lambda,m]$). (We may look at the points of $MGD[\kappa,\lambda,m,v]$ as the points of a matrix and then the groups of $MGD[\kappa,\lambda,m,v]$ are precisely the columns of the matrix).

A resolvable modified group divisible design, RMGD[κ, λ, m, ν], is a modified group divisible design the blocks of which can be partitioned into parallel classes.

It is clear that a RMGD[5,1,5,5m] is the same as RT[5,1,m] with one parallel class of blocks singled out, and since RT[5,1,m] is equivalent to T[6,1,m] we have the following

26,34, 42}.

The next two theorems are in the form most useful to us.

<u>Theorem 2.4 [3]</u> If there exists a RMGD[5,1,5,5m] and a GD[5, λ , {4,s*}, 4m+s], where * means there is exactly one group of size s, and there exists a (20+h,5, λ) packing design with a hole of size h then there exists a (20m+4u+h+s,5, λ) packing design with a hole of size 4u+h+s where 0 \leq u \leq m-1.

<u>Theorem 2.5</u> If there exists (1) a RMGD[5,1,5,5m] (2) a GD[5,5,4,4m] (3) a (24,5,5) packing design with a hole of size 4 (4) $\sigma(24,5,5) = \psi(24,5,5)$. Then $\sigma(20m+4,5,5) = \psi(20m+4,5,5)$.

<u>Proof</u> Inflate a RMGD[5,1,5,5m] by a factor of 4, that is, replace the blocks of size 5 by the blocks of GD[5,5,4,20]. On the rows (which are blocks of size m) construct a GD[5,5,4,4m]. Finally add 4 points to the groups and on the first (m-1) groups construct a (24,5,5) packing design with a hole of size 4 and on the last group construct a (24,5,5) optimal packing design.

It is clear that the application of the above theorem requires the existence of a GD[5,1, $\{4,s^*\}$, 4m+s]. The following theorem is most useful to us. For the proof of the first part see [3] and for the proof of the second part see [17].

<u>Theorem 2.6</u> (i) There exists a GD[5,1,{4,s*},4m+s] where s = 0 if $m \equiv 1 \pmod{5}$, s = 4 if $m \equiv 0$ or 4 (mod 5) and s = $\frac{4(m-1)}{2}$ if $m \equiv 1 \pmod{3}$.

(ii) There exists a GD[5,1, $\{4,8^*\}$, 4m+8] where $m \equiv 0$ or 2 (mod 5), $m \ge 7$ with the possible exception of m = 10.

In the case m = 7, 8, 13 the following lemma is most useful to us.

Lemma 2.3 There exists a GD[5,5,4,v] where v = 28, 32, 52

<u>Proof</u> For v = 28 let X = Z₂₈. The groups are < 0 7 14 21 > + i, i \in Z₇ and the blocks are the following: < 0 1 3 9 13 > (mod 28), < 0 4 9 15 20 > (mod 28), < 0 1 2 3 4 > (mod 28)

<0 3 9 13 19 > (mod 28), < 0 2 8 13 18 > (mod 28), < 0 3 11 15 20 > (mod 28).

For a GD[5,5,4,32] let X = $Z_{32}.$ The groups are < 0 8 16 24 > + i, i $\in \mathbb{Z}_8$ Blocks:

< 0 2 7 11 20 > (mod 32) < 0 1 2 4 11 > (mod 32) < 0 3 7 17 22 > (mod 32)< 0 5 11 17 23 > (mod 32) < 0 1 2 4 13 > (mod 32) < 0 1 5 11 18 > (mod 32)< 0 3 6 13 18 > (mod 32)

For a GD[5,5,4,52], since there exists a B[13,5,5] and a GD[5,1,4,20] it follows, [16 lemma 2.16], that there exists a GD[5,5,4,52].

The set of blocks < $\kappa \ \kappa + m \ \kappa + n \ \kappa + j \ f(\kappa) > \pmod{v}$ for $\kappa = 0, \ldots, v-1$ where $f(\kappa) = a$ if κ is even and $f(\kappa) = b$ if κ is odd will be denoted by <0 m n j> U {a,b}, and the set of blocks < $\kappa \ \kappa + m \ \kappa + n \ \kappa + j \ f(\kappa) > \pmod{v}$ for $\kappa = 0, \ldots, v-1$ where $f(\kappa) = h_i$ if $\kappa \equiv i \pmod{4}$ is denoted by <0 m n j> U { h_i }⁴_{i-1}. Similarly, the set of blocks < $(0,\kappa)$ ($0,\kappa+m$) ($1,\kappa+n$) ($1,\kappa+j$) $f(\kappa) > \mod{(-,v)}$ for $\kappa=0, \ldots, v-1$ where $f(\kappa) = a$ if κ is even and $f(\kappa) = b$ if κ is odd is denoted by <(0,0) (0,m) (1,n) (1,j)> U {a,b}.

3. The Structure of Packing and Covering Designs

Let (∇,β) be a (v,κ,λ) packing design, and for each 2-subset $e = \{x,y\}$ of ∇ define m(e) to be the number of blocks in β which contain e. Note that by the definition of a packing design we have $m(e) \leq \lambda$ for all e.

The complement of (V,β) , denoted by $C(V,\beta)$ is defined to be the graph with vertex set V and edges e occurring with multiplicity $\lambda-m(e)$ for all e. The number of edges (counting multiplicities) in $C(V,\beta)$ is given by $\lambda \begin{pmatrix} v \\ 2 \end{pmatrix} - |\beta| \begin{pmatrix} \kappa \\ 2 \end{pmatrix}$. The degree of the vertex x in $C(V,\beta)$ is $\lambda(v-1) - r_x$ ($\kappa-1$) where r_x is the number of blocks containing x.

In a similar way we define the excess graph of a (V,β) covering design denoted by $E(V,\beta)$, to be the graph with vertex set V and edges e occurring with multiplicity $m(e) - \lambda$ for all e. The number of edges in $E(V,\beta)$ is given by $|\beta| {\kappa \choose 2} - \lambda {v \choose 2}$; and the degree of each vertex is $r_x(\kappa-1) - \lambda(v-1)$ where r_x is as before.

Lemma 3.1 Let (V,β) be a (v,5,4) covering design with $|\beta| = \phi(v,\kappa,\lambda)$ then the degree of each vertex of $E(V,\beta)$ is divisible by 4 and the number of edges in the graph is 0, 6, 8 when $v \mod 5 \in \{0,1\}, \{2,4\}, \{3\}$ respectively.

In the case $v \equiv 3 \pmod{5}$ a particularly useful graph with 8 edges and each vertex of degree divisible by 4 is the one that consists of v-4 isolated vertices and the following graph on the remaining 4 vertices.

To define the complement graph of a packing design with a hole H of size h let $e = \{x, y\}$ where at least one of x or y does not lie in H and let m(e) be the number of blocks in β which contain e. Then the complement graph of the packing design with a hole H of size h, denoted by $C(V\setminus H, \beta)$, is the graph with vertex set V and edges e occuring with multiplicity λ -m(e). In a similar way the excess graph, $E(V\setminus H, \beta)$, of a (v, κ, λ) covering design with a hole of size h is defined.

4. Packing Designs with Index 3 and Order $v \equiv 3 \pmod{4}$

Lemma 4.1 For all $v \equiv 3 \pmod{20}$ we have $\sigma(v,5,3) = \psi(v,5,3)$. Furthermore, there exists a (23,5,3) packing design with a hole of size 3.

<u>Proof</u> For all $v \equiv 3 \pmod{20}$ a (v, 5, 3) packing design with $\psi(v, 5, 3)$ blocks can be constructed as follows

- 1) take a (v-1,5,2) optimal packing design; such design exists by [5].
- 2) take a B[v+2,5,1], lemma 2.1, and assume in this design we have the block < v-2 v-1 v v+1 v+2 >; drop this block and in all other blocks change both v+2 and v+1 to v; which proves the first part of the lemma.

Since the (22,5,2) optimal packing design has a hole of size 2 [5, p.49] and since we droped the block < 21 22 23 24 25 > it follows that the (23,5,3)packing has a hole of size 3.

The following lemma is very useful to us.

<u>Lemma 4.2</u> Let $v \equiv 6 \pmod{20}$ be a positive integer. Then there exists a (v, 5, 2) packing design with a hole of size 6.

<u>Proof</u> For v = 6, 26, 46 see [5, p.51].

For v = 66 let $X = Z_{00} \cup \{\infty_{1}\}_{i=1}^{6}$. Then take the following blocks under the action of the group Z_{00} . < 0 1 3 5 11 >, < 0 4 10 19 38 >, < 0 1 8 21 35 >, < 0 3 15 27 43 >, < 0 5 23 36 > $\cup \{\infty_{1}, \infty_{2}\}$, < 0 7 16 37 > $\cup \{\infty_{3}, \infty_{4}\}$, < 0 11 25 42 > $\cup \{\infty_{5}, \infty_{6}\}$. For v = 86 let $X = Z_{00} \cup \{\infty_{i}\}_{i=1}^{6}$. On Z_{00} construct an (80,5,1) minimal covering design [21], in this design each pair appears once except the pairs {i, i+40}, i = 0,..., 39 which appear twice. Furthermore, take the following blocks under the action of the group Z_{00} . < 0 1 3 7 15 >, < 0 10 21 38 54 >, < 0 5 27 50 > $\cup \{\infty_{1}, \infty_{2}\}$, < 0 9 29 48 > $\cup \{\infty_{1}, \infty_{4}\}$, < 0 13 31 56 > $\cup \{\infty_{5}, \infty_{6}\}$.

For $v \ge 106 v \ne 126$, 146 simple calculations show that v can be written in the form 20m+4u+h+s where m, u, h and s are chosen so that

- There exists a RMGD[5,1,5,5m], theorem 2.3.
- 2) There exists a GD[5,2,{4,s*},4m+s], theorem 2.5.
- 3) 4u+h+s = 6, 26, 46, 66, 86.
- 4) $0 \le u \le m-1$, $s \equiv 0 \pmod{4}$ and h = 6.

Now apply theorem 2.4 with $\lambda = 2$ to get that a (v,5,2) packing design with a hole of size 6, 26, 46, 66, or 86 exists and hence a (v,5,2) packing design with a hole of size 6 exists.

For v = 126, 146 apply theorem 2.2 with n = 7, $\lambda = 2$, h = 6 and u = 0, 5 respectively.

Lemma 4.3 Let $v \equiv 7 \pmod{20}$ be a positive integer. Then $\sigma(v, 5, 3) = \psi(v, 5, 3)$.

<u>Proof</u> For v = 7, 27, 47 the constructions are given in the next table. In general, the construction in this table and other tables to come is as follows. Let $X = Z_{r_n} \cup H_n$ or $X = Z_2 \times Z_{\frac{n-n}{2}} \cup H_n$ where $H_n = \{h_1, \ldots, h_n\}$ is the hole. The

blocks are constructed by taking the orbits of the tabulated base blocks mod $(\nu-n)$ or mod $(-, \frac{\nu-n}{2})$ respectively unless it is otherwise specified.

For all other values of ν let X = $Z_{\mu7}$ \cup H_6 \cup $\{\varpi_1,\ \varpi_2,\ \varpi_3\},$ then the construction is as follows.

- 1) On $\mathbb{Z}_{-7} \cup \mathbb{H}_6$ construct a (v-1,5,2) packing design with a hole of size 6, say, $\{h_1, \ldots, h_6\}$, lemma 4.2.
- 2) On $\mathbb{Z}_{-7} \cup H_6 \cup \{\omega_1, \omega_2, \omega_3\}$ construct a $(\nu+2, 5, 1)$ packing design with a hole of size 9, say, $\{h_1, \ldots, h_6\} \cup \{\omega_1, \omega_2, \omega_3\}$ [17]. Furthermore, replace the points ω_2 and ω_3 by ω_1 .
- 3) To the blocks obtained in (1) and (2) adjoin the following blocks

It is readily checked that the above three steps give a (v, 5, 3) optimal packing design.

υ	Point Set	Base Blocks
7	$\mathbf{Z}_{5} \cup \mathbf{H}_{2}$	< 0 1 2 4 > \cup {h ₁ , h ₂ }
27	$Z_2 \times Z_{12} \cup H_3$	< $(0,0)$ $(0,6)$ $(1,0)$ $(1,6)$ > + $(-,1)$, $i \in \mathbb{Z}_6$ < $(0,0)$ $(0,2)$ $(0,6)$ $(0,9)$ $(1,11)$ < $(0,0)$ $(1,0)$ $(1,1)$ $(1,4)$ $(1,6)$ >
		<(0,0) (0,1) (0,5) (0,10) (1,8)>, <(0,0) (1,3) (1,4) (1,8) (1,11)> < (0,0) (0,1) (1,1) (1,3) $h_i >$, < (0,0) (0,4) (1,5) (1,8) $h_i >$ < (0,0) (0,2) (1,7) (1,9) $h_i >$ >
		< (0,0) (0,1) (1,10) (1,11) > \cup {h ₁ , h ₂ }.
47	Z ₄₀ ∪ H ₇	On $\mathbb{Z}_{60} \cup \{h_i\}_{i=1}^{5}$ construct a B[45,5,1], lemma 2.1; drop the block < h_1 h_2 h_3 h_4 h_5 > and take the following blocks
		< 0 4 8 12 16 > + i, i \in Z _s twice, < 0 1 2 4 14 >,
		< 0 4 9 19 > \cup {h ₁ , h ₂ }, < 0 5 11 28 > \cup {h ₃ , h ₄ },
		<0 6 13 31 > U { h_5 , h_6 }, < 0 3 14 21 > U { h_6 , h_7 , h_7 , h_7 } >

Lemma 4.4 Let $v \equiv 11 \pmod{20}$ be a positive integer. Then $\sigma(v, 5, 3) = \psi(v, 5, 3)$.

<u>Proof</u> For v = 11, 51, 91 see the table below.

For v = 31 take the blocks of a (31,5,1) optimal packing design [20] together with the blocks of a B[31,5,2], lemma 2.1.

For v = 71 take a T[5,3,14] [18] and add a new point to the groups and on each group construct a (15,5,3) optimal packing design, (see lemma 4.6). For $v \ge 111$, $v \ne 131$ simple calculations show that v can be written in the form 20m+4u+h+s where m, u, h and s are chosen so that

- 1) There exists a RMGD[5,1,5,5m], theorem 2.3.
- 2) There exists a GD[5,3,{4,s*},4m+s], theorem 2.5.
- 3) 4u+h+s = 11, 31, 51, 71, 91.
- 4) $0 \le u \le m-1$, $s \equiv 0 \pmod{4}$ and h = 3.

```
Apply theorem 2.4 with \lambda = 3 to get the result.
```

For v = 131 apply theorem 2.2 with n = 7, h = 3 and u = 2.

υ	Point Set	Base Blocks									
11	$Z_2 x Z_5 \cup H_1$	< (0,0) (0,1) (1,0) (1,1) (1,3) >, < (0,0) (0,2) (1,0) (1,3) (1,4) < (0,0) (0,2) (0,3) (1,4) $h_1 >$									
51	$\mathbf{Z}_2 \times \mathbf{Z}_{20} \cup \mathbf{H}_{11}$	< (0,0) (0,4) (0,8) (0,12) (0,16) > + (-,i), $i \in Z_{\epsilon}$, twice									
		< (1,0) (1,4) (1,8) (1,12) (1,16) > + (-,i), $i \in \mathbb{Z}_4$									
		< (0,0) (0,10) (1,0) (1,10) $h_{11} > + i$, $i \in Z_{10}$									
		< $(0,0)(0,10)(1,1)(1,7)(1,17)$ >, < $(0,0)(0,3)(0,5)(0,16)$ > U {h ₁ , h ₂ }									
		<(1,0) (1,3) (1,5) (1,12)> \cup {h ₁ , h ₂ }, <(0,0) (0,9) (0,15) (1,1)> \cup {h ₂ , h ₄ }									
		$<(0,0)(1,0)(1,1)(1,4)> \cup \{h_3,h_4\}, <(0,0)(0,1)(0,15)(1,0)> \cup \{h_5,h_6\}$									
		$<(0,0)(1,2)(1,5)(1,7)> \cup \{h_5,h_6\}, <(0,0)(0,1)(0,3)(1,13)> \cup \{h_7,h_8\}$									
		<(0,0) (1,9) (1,16) (1,18)> \cup {h ₁ , h ₄ }, <(0,0) (0,1) (1,6) (1,15)> \cup {h ₁ , h ₂ }									
		<(0,0) (0,3) (1,18) (1,19)> \cup {h ₃ , h ₄ }, <(0,0) (0,7) (1,9) (1,10)> \cup {h ₅ , h ₆ }									
		$<(0,0)(0,7)(1,11)(1,18)> \cup \{h_7,h_8\}, <(0,0)(0,9)(1,8)(1,13)> \cup \{h_9,h_{10}\}$									
		< $(0,0)(0,8)(1,2)(1,16)$ h ₉ >, < $(0,0)(0,2)(1,8)(1,14)$ h ₁₀ >									
		<(0,0)(0,6)(1,3)(1,15) h _{ii} >.									
91	Z ₈₀ ∪ H ₁₁	On $Z_{90} \cup \{h_{11}\}$ construct a B[81,5,1], lemma 2.1, and take the following									
		blocks									
		< 0 4 12 28 40 >, < 0 5 14 32 34 >, < 0 1 7 37 61 >									
		< 0 2 13 27 > $\cup \{h_i\}_{i=1}^4$, < 0 3 18 41 > $\cup \{h_i\}_{i=5}^8$									
		< 0 10 21 43 > \cup {h ₉ , h ₁₀ , h ₁₁ , h ₁₁ }, < 0 1 4 9 > \cup {h ₁ , h ₂ }									
		< 0 6 25 41 > \cup {h ₃ , h ₄ }, < 0 7 29 42 > \cup {h ₅ , h ₆ }									
		< 0 10 31 57 > \cup {h ₇ , h ₄ } < 0 15 32 49 > \cup {h ₉ , h ₁₀ }.									

Lemma 4.5 There exists a (v, 5, 2) packing design with a hole of size 4 for v = 34, 54, 74, 94.

<u>Proof</u> For a (34,5,2) packing design with a hole of size 4 see [5, p.51]. For a (74,5,2) packing design with a hole of size 4 take a T[5,2,14] [18, p.278] and add four new points to the groups and on each group construct an (18,5,4) packing design with a hole of size 4 [5, p.49]. For a (54,5,2) and a (94,5,2) packing design with a hole of size 4 take a T[6,1,m] where m = 5, 9 respectively, theorem 2.1. Delete all but one point of the last group and inflate the design by a factor of two. Replace the blocks of this design by the blocks of GD[5,2,2,10] and GD[5,2,2,12] [18, p.284]. Finally add two new points to the groups and on the first five groups construct a (12,5,2) and (20,5,2) packing design with a hole of size 2 [5, p.49] and take these two points with the last group to be the hole of size 4.

Lemma 4.6 Let $v \equiv 15 \pmod{20}$ be a positive integer. Then $\sigma(v, 5, 3) = \psi(v, 5, 3)$.

<u>Proof</u> For v = 15 let $X = Z_{15}$ then the required blocks are < 0 1 3 7 10 > (mod 15) < 0 1 2 5 7 > (mod 15)

For υ = 35, 55, 75, 95 let X = $Z_{\nu7}$ U $\{\varpi_1,\ \varpi_2\}$ U $\{h_1,\ \ldots,\ h_7\}$ then the construction is as follows

- 1) On $Z_{r7} \cup \{\infty_1, \infty_2\} \cup \{h_1, \ldots, h_4\}$ construct a $(\nu-1, 5, 2)$ packing design with a hole of size 4, say, $\{h_1, \ldots, h_4\}$ and assume that the pair $\{\infty_1, \infty_2\}$ appears at most once, lemma 4.5.
- 2) On $Z_{p,7} \cup \{\infty_1, \infty_2\} \cup \{h_1, \ldots, h_7\}$ construct a $(\nu+2, 5, 1)$ packing design with a hole of size 9 [17] where the hole is $\{\infty_1, \infty_2\} \cup \{h_1, \ldots, h_7\}$. In this design replace the points h_6 and h_7 by h_5 .

3) To the blocks obtained in (1) and (2) add the blocks $\langle h_1 \ h_2 \ h_3 \ h_4 \ h_5 \rangle$ twice, $\langle \varpi_1 \ \varpi_2 \ h_1 \ h_2 \ h_5 \rangle$, $\langle \varpi_1 \ \varpi_2 \ h_3 \ h_4 \ h_5 \rangle$.

For $v \ge 115$, $v \ne 135$, write v = 20m+4u+h+s where m, u, h and s are chosen as in lemma 4.4 with the difference that 4u+h+s = 15, 35, 55, 75, 95. Now apply theorem 2.4 with $\lambda = 3$ to get the result.

For v = 135 apply theorem 2.2 with n = 7, h = 3 and u = 3.

Lemma 4.7 Let $v \equiv 19 \pmod{20}$ be a positive integer. Then $\sigma(v,5,3) = \psi(v,5,3)$.

Proof For v = 19 let X = {1, ..., 19} then the blocks are
< 1 2 4 5 14 >, < 3 5 6 13 16 >, < 2 4 15 17 19 >, < 1 2 5 8 15 >
< 3 5 6 10 11 >, < 5 9 10 14 18 >, < 1 3 4 8 18 >, < 3 5 10 16 19 >
< 2 5 11 17 18 >, < 1 3 13 14 15 >, < 3 7 9 14 15 >, < 6 7 14 18 19 >
< 3 9 12 17 19 >, < 6 12 13 15 19 >, < 1 6 11 14 17 >, < 4 5 12 13 17 >
< 2 6 9 16 18 >, < 1 6 12 16 17 >, < 4 8 9 11 12 >, < 7 8 9 13 16 >
< 4 10 13 14 17 >, < 8 10 11 13 19 >, < 1 7 11 18 19 >
< 2 9 11 13 14 >, < 1 12 13 16 18 >, < 1 7 11 15 16 >, < 8 10 11 12 >, < 8 10 12 14 16 >

For all other values of v, v ≠ 239, the construction is as follows.

 Take two copies of a (v-2,5,1) packing design with a hole of size 9, [17], and on the hole construct a (9,5,2) packing design with ψ(9,5,2)-1 blocks
 [6]. Close observation of this design shows that the complement graph of this design consists of the following graph

- 2) Take a (v+4,5,1) optimal packing design, $v+4 \neq 243$, [20]. Again, close observation of these designs show that the complement graph of these designs contains a subgraph on $n \geq 23$ vertices which is one cycle. So we may assume that the pairs {1,4}, {2,4}, {2,5}, {3,5}, {v-1, v+1} and {v-1, v+2} appear in zero blocks. Furthermore, assume we have the block < v v+1 v+2 v+3 v+4 >. Delete this block and in all other blocks change v+4, v+3 to v and v+2, v+1 to v-1.
- 3) To the blocks obtained in (1) and (2) add the block < 1 2 3 4 6 >. For v = 239 apply theorem 2.4 with m = 11, u = 4, h = 3, s = 0 and $\lambda = 3$.

<u>Conclusion</u> In this section we have shown that for all positive integers $v \equiv 3$ (mod 4) $v \ge 7$ we have $\sigma(v, 5, 3) = \psi(v, 5, 3)$.

5. Packing Designs With Index 5

5.1 Packing of Order $v \equiv 3 \pmod{4}$

<u>Theorem 5.1</u> For all $v \equiv 3 \pmod{20}$, $v \neq 3$, we have $\sigma(v,5,5) = \psi(v,5,5)$. Furthermore there exists a (23,5,5) packing design with a hole of size 3.

<u>Proof</u> A (v, 5, 5) packing design with $\psi(v$, 5, 5) blocks may be constructed as follows.

- 1) Take a B[v+2,5,1], lemma 2.1, and assume we have the following two blocks < 1 2 3 v v+2 >, < 4 5 6 v-1 v+1 > In the first block change v+2 to 7 and in the second block change v+1 to 8 where 1,2, ...,7,8 are all arbitrary numbers. In all other blocks change v+2 to v and v+1 to v-1.
- 2) Take a B[v-2,5,1], lemma 2.1, v-2 \neq 21, and assume we have the following two blocks

< 1 2 3 9 7 >, < 4 5 6 10 8 >

In the first block change 7 to v and in the second block change 8 to v-1.

The above two steps give us a sort of a design such that $\{7,9\}$ and $\{8,10\}$ each appears exactly once; $\{7,v\}$ $\{8,v-1\}$ $\{9,v\}$ $\{10,v-1\}$ each appears exactly 3 times; $\{v-1,v\}$ appears exactly four times, and each other pair appears exactly twice.

- 3) Take a (v, 5, 2) optimal packing with a hole of size 3, [5], such that the hole is $\{v-2, v-1, v\}$
- 4) Take a (v, 5, 1) optimal packing, [20], which exists for all $v \equiv 3 \pmod{20}$, $v \neq 243$. The complement graph of this design contains a subgraph that is the circuit graph C_n where $n \ge 23$, we may assume that $\{7, v\}$, $\{8, v-1\}$ $\{9, v\}$ and $\{10, v-1\}$ are missing from the (v, 5, 1) optimal packing design.

It is readily checked that the above four steps yield the blocks of a (v, 5, 5) optimal packing design for all positive integers $v \equiv 3 \pmod{20}$ $v \neq 23$, 243.

For v = 23 the construction is as follows:

- take a (23,5,2) minimal covering design [19]. In this design each pair appears in precisely two blocks except one pair, say, {22,23} that appears in 6 blocks.
- 2) take a (23,5,2) optimal packing design with a hole of size 3, say, {5,22,23} [6].
- 3) take a (23,5,1) optimal packing desing. The complement graph of this design is the circuit graph C_{23} , [20], so we may assume that the pairs {22,23} and {4,23} appear in zero blocks.

The above three steps give a design such that $\{22,23\}$ appears in six blocks and each other pair in at most 5 blocks. To reduce this to five, assume in the (23,5,2) minimal covering design we have the block < 1 2 3 22 23 >. In this block change 23 to 5. Furthermore, assume in the (23,5,2) optimal packing design we have the block <1 2 3 4 5 >. In this block change 5 to 23.

Now it is easy to check that the above construction yields a (23,5,5) optimal packing design.

For v = 243 apply theorem 2.4 with m = 11, $\lambda = 5$, h = 3, s = 0 and u = 5. For a (23,5,5) packing design with a hole of size 3 let $X = Z_{20} \cup H_3$. Then the required blocks are:

On $\mathbb{Z}_{20} \cup \{h_1\}$ construct a B[21,5,1], lemma 2.1, and take the following blocks: < 0 4 8 12 16 > + i, i $\in \mathbb{Z}_4$, 3 times < 0 3 10 13 h_1 > half orbit < 0 1 2 3 5 > (mod 20), < 0 1 7 12 h_2 > (mod 20), < 0 2 7 13 h_3 > (mod 20) < $\kappa \kappa + 3 \kappa + 9 \kappa + 14 f(\kappa) > \kappa = 0, \dots$, 19 where $f(\kappa) = h_1$ if $\kappa \equiv 0$ or 1 (mod 4), $f(\kappa) = h_2$ if $\kappa \equiv 2 \pmod{4}$ and $f(\kappa) = h_3$ if $\kappa \equiv 3 \pmod{4}$.

In the following lemma we give direct constructions for small values of v.

<u>Lemma 5.1</u> $\sigma(v, 5, 5) = \psi(v, 5, 5)$ for v=7, 27, 47, 67, 87.

- <u>Proof</u> For v = 7, 47, 67, 87 the constructions are given in the following table. For v = 27 the construction is as follows:
- 1) take a B[26,5,4], lemma 2.1;
- 2) take a (31,5,1) optimal packing design ([20], lemma 3.6 with s = 8). Assume in this design we have the block < 27 28 29 30 31 >. Delete this block and in all other blocks change 28, 29, 30 and 31 to 27.

υ	Point Set	Base Blocks							
7	$Z_2 \times Z_3 \cup H_1$	< $(0,0)(0,1)(1,0)(1,2)$ h ₁ >, < $(0,0)(0,1)(1,0)(1,1)$ h ₁ >							
		< (0,0)(0,1)(1,0)(1,1)(1,2) >							
47	Z ₄₀ ∪ H ₇	On Z_{40} U H ₅ construct a B[45,5,1], lemma 2.1. Assume $< h_1, \ \ldots, \ h_5 >$ are in one block. Delete this block and take the following blocks							
		<0 8 16 24 32> + i, i $\in \mathbb{Z}_8$, <0 13 20 33> \cup {h ₆ , h ₇ }, half orbit							
		<0 1 2 4 10>, <0 3 10 24 28>, <0 5 14 20 27>, <0 5 17 28 h _i >							
		<0 1 6 15 h_2 >, <0 2 19 30 h_3 >, <0 3 4 22 h_4 >, <0 3 10 14 h_5 >							
		< 0 2 8 17 h ₆ >, < 0 5 13 24 h ₇ >.							
67	Z ₆₀ ∪ H ₇	On \mathbb{Z}_{g0} \cup H_5 construct a B[65,5,1], lemma 2.1. Assume $< h_1,$, $h_5 >$ are in one block. Delete this block and take the following blocks							
		<0 12 24 36 48> + i, i $\in z_{12}$ <0 21 30 51> \cup {h ₆ , h ₇ }, half orbit							
		<0 1 3 5 11>, <0 7 14 26 42>, <0 1 3 7 23>, <0 5 14 27 45>							
		<0 6 17 32 42>, <0 1 3 7 15>, <0 10 20 31 44>, <0 9 22 45 h _i >							
		<0 8 25 41 h ₂ >, <0 8 27 39 h ₃ >, <0 17 20 46 h ₄ >, <0 1 5 28 h ₅ >							
		< 0 5 18 43 h ₆ >, < 0 9 28 39 h ₇ >.							
87	Z _{so} ∪ H ₇	On $\mathbb{Z}_{80} \cup \mathbb{H}_5$ construct a B[85,5,1], lemma 2.1. Assume $\langle h_1, \ldots, h_5 \rangle$ are in one block. Delete this block. On \mathbb{Z}_{80} construct an (80,5,1) covering, [21]. In this design each pair appears exactly once except the pairs (i, i+40); i $\in \mathbb{Z}_{80}$, each appears exactly twice. Take the following blocks							
		<0 16 32 48 64> + i, i \in $z_{16},$ <0 11 40 51> \cup {h ₆ , h ₇ }, half orbit							
		<0 5 28 38 50>, <0 1 3 7 17>, <0 11 26 50 62>, <0 1 3 7 21>							
		<0 1 3 7 25>, <0 5 14 22 53>, <0 10 30 43 59>, <0 8 27 42 h _l >							
		<0 9 34 53 h_2>, <0 13 37 54 h_3>, <0 5 28 37 h_4>, <0 12 25 45 h_5>							
		< 0 8 31 52 h_6 >, < 0 11 26 45 h_7 >.							

<u>Theorem 5.2</u> Let $v \equiv 7 \pmod{20}$ be a positive integer. Then $\sigma(v, 5, 5) = \psi(v, 5, 5)$.

<u>Proof</u> For $7 \le v \le 87$, the result follows from lemma 5.1 For $v \ge 107$, $v \ne 127$, simple calculations show that v can be written in the form v = 20m + 4u + h + s where m, u, h and s are chosen so that the following 4 conditions hold

1) there exists a RMGD[5,1,5,5m], theorem 2.3,

2) $4u + h + s \equiv 7 \pmod{20}$ and $7 \leq 4u + h + s \leq 87$,

3) $0 \le u \le m-1$, $s \equiv 0 \pmod{4}$ and h = 3

4) there exists a GD[5,5,{4,s*},4m+s}, theorem 2.5,

Now apply theorem 2.4 with $\lambda = 5$ and the result follows.

For v = 127, apply theorem 2.2 with u = 1, h = 3 and n = 7.

<u>Theorem 5.3</u> Let $v \equiv 11$ or 15 (mod 20) be a positive integer. Then $\sigma(v, 5, 5) = \psi(v, 5, 5)$.

<u>Proof</u> A (v,5,5) packing design with precisely $\psi(v,5,5)$ blocks for all $v \equiv 11$ or 15 (mod 20) can be constructed by simply taking the blocks of a B[v,5,2] and a (v,5,3) optimal packing designs, lemma 2.1 and lemmas 4.4 and 4.6 respectively. Since a B[15,5,2] does not exist, lemma 2.1, we need to construct a (15,5,5) optimal packing design.

For this purpose let $X = Z_{15}$ then the required blocks are < 0 3 6 9 12 > + i, i $\in Z_3$ twice < 0 1 2 3 7 > (mod 15), < 0 1 2 5 10 > (mod 15), < 0 2 4 7 11 > (mod 15).

<u>Lemma 5.2</u> Let $v \equiv 19 \pmod{20}$ be a positive integer and assume the following conditions are satisfied

1) $\sigma(v+4,5,1) = \psi(v+4,5,1)$ 2) $\alpha(v-1,5,4) = \phi(v-1,5,4)$

3) the excess graph $E(V,\beta)$ of the $(\nu-1,5,4)$ covering design consists of $\nu-4$ isolated vertices and one of the following graphs on the remaining 4 vertices, say, $\{1,2,3,4\}$.

Then $\sigma(v, 5, 5) = \psi(v, 5, 5)$.

<u>Proof</u> If the excess graph of the (v-1,5,4) minimal covering design consists of v-4 isolated vertices

and the graph on the bottom on the remaining four vertices, then a (v, 5, 5) optimal packing design can be constructed as follows:

- 1) take the blocks of a (v-1,5,4) minimal covering design and assume we have the block < 1 2 3 4 a > where a is an arbitrary number different from {1,2,3,4}. Delete this block.
- 2) take a (v+4,5,1) optimal packing design. The complement graph of this design contains a circuit graph C_n where $n \ge 23$ [20], so we may assume that the pairs $\{1,3\}$ and $\{2,4\}$ are missing from this design. Furthermore, assume we have the block < v v+1 v+2 v+3 v+4 >. Delete this block and in all the remaining blocks of the (v+4,5,1) optimal packing design change v+1, v+2, v+3, and v+4 to v.

If the excess graph of the (v-1,5,4) minimal covering design consists of v-4 isolated vertices and the top graph of the two graphs, on the remaining four vertices, then a (v,5,5) optimal packing design can be constructed as follows 1) take a (v-1,5,4) minimal covering design. Assume in this design we have

the block < 1 2 3 4 5 > where 5 is an arbitrary number. Delete this block.

Furthermore, assume in this design we have the block < 6 7 8 1 4 > where $\{6,7,8\}$ are arbitrary numbers. In this block change 4 to 5.

2) take a (v+4,5,1) optimal packing design. The complement graph of this design contains a circuit graph C_n where n ≥ 23 [20], so we may assume that the pairs {1,2}, {2,3} {3,4} and {4,9} appear in zero blocks. Assume in this design we have the block < 6 7 8 9 5 >. In this block change 5 to 4. Furthermore, assume in this design we have the block < v v+1 v+2 v+3 v+4 >. Delete this block and in all other blocks change v+1, v+2, v+3 and v+4 to v.

Theorem 5.4 Let $v \equiv 19 \pmod{20}$ be a positive integer. Then $\sigma(v, 5, 5) = \psi(v, 5, 5)$.

<u>Proof</u> In [10] we have shown that for all $\nu-1 \equiv 18 \pmod{20}$ $\nu \neq 98 \pmod{100}$, $\nu \neq 78$ there exists a $(\nu-1,5,4)$ covering design with a hole of size 8, 13 or 18. But for n = 8, 13, 18 there exists a (n,5,4) minimal covering design such that their excess graphs is one of graphs described in lemma 5.2. We now show that for the other values there exists a $(\nu-1,5,4)$ covering design with a hole of size 8, 13, or 18.

For v = 78 see [4].

For $v \equiv 98 \pmod{100}$ take a T[6,1,m] where $m \equiv 17 \pmod{20}$, theorem 2.1. Delete all but 11 points from last group and replace the blocks of the resultant design by the blocks of a B[6,5,4] and B[5,5,4], lemma 2.1. Add two points to the groups and on the first five groups construct a (m+2,5,4) packing design with a hole of size 2 [12]. Finally, take these two points with the last group to be the hole of size 13. Now it is clear that for all $v-1 \equiv 18 \pmod{20}$ the excess graph of the (v-1,5,4) minimal covering design is one of the graphs described in lemma 5.2.

On the other side a (v+4,5,1) optimal packing design exists for all $v+4 \equiv$ 3 (mod 20), $v+4 \neq 243$, [20]. Now apply lemma 5.2 to get the result for all $v \equiv$ 19 (mod 20) $v \neq 239$.

For a (239,5,5) optimal packing design apply theorem 2.4 with λ =5, m=11, s=0, u=4 and h=3.

5.2 Packing of order $v \equiv 2 \pmod{4}$

We start this section with the following simple but important observation

Lemma 5.3 (a) If there exists

- 1) a $(v, 5, \lambda)$ covering design with $\phi(v, 5, \lambda)$ blocks;
- 2) a $(v, 5, \lambda')$ packing design with $\psi(v, 5, \lambda')$ blocks;

3)
$$\phi(v,5,\lambda) + \psi(v,5,\lambda') = \psi(v,5,\lambda+\lambda');$$

4) the excess graph $E(V,\beta)$ of the covering design is isomorphic to a subgraph G of the complement graph, $C(V,\beta)$, of the packing design.

Then there exists a $(v, 5, \lambda + \lambda')$ packing design with $\psi(v, 5, \lambda + \lambda')$ blocks

- (b) Similarly if there exists
- 1) a $(v, 5, \lambda)$ covering design with a hole of size h;
- 2) a $(v, 5, \lambda')$ packing design with a hole of size h;
- 3) the total number of blocks in these two designs is $\psi(v, 5, \lambda + \lambda') = \psi(h, 5, \lambda + \lambda');$
- 4) the excess graph, $E(V\setminus H,\beta)$, of the covering design with a hole of size h is isomorphic to a subgraph G of the complement graph, $C(V\setminus H,\beta)$, of the packing design with a hole of size h.

Then there exists a $(v, 5, \lambda + \lambda')$ packing design with a hole of size h.

Lemma 5.4 $\sigma(v, 5, 5) = \psi(v, 5, 5)$ for v = 22, 42, 62, 82. Furthermore, these packing designs have a hole of size 2.

<u>Proof</u> For v = 22 let X = $Z_{20} \cup \{a,b\}$ then the required blocks are < 0 4 8 12 16 > + i, i $\in Z_4$, < 0 3 10 13 > $\cup \{a,b\}$ half orbit < 0 1 2 3 5 > (mod 20), <0 1 6 8 13 > (mod 20), < 0 2 8 11 14 > (mod 20), < 0 4 9 13 a > (mod 20), < 0 1 5 11 b > (mod 20).

For v = 42, 62, 82 the construction is as follows

- Take a B[v-1,5,2], lemma 2.1.
- 2) Take a (v+1,5,2) optimal packing design [6]. It has a hole of size 3, say $\{v-1, v, v+1\}$. Now in all the blocks of the (v+1,5,2) optimal packing design change v+1 to v.
- 3) Take a (v, 5, 1) optimal packing design, v = 42, 62, 82, [9].

It is clear that the above three steps yield a (v, 5, 5) optimal packing design for v = 42, 62, 82.

<u>Theorem 5.5</u> $\sigma(v,5,5) = \psi(v,5,5)$ for all positive integer $v \equiv 2 \pmod{20}$, $v \geq 22$.

<u>Proof</u> For v = 22, 42, 62, 82 the result follows from lemma 5.4. For $v \ge 102$ simple calculations show that v can be written in the form v = 20m + 4u + h + s where m, u, h and s are chosen so that

1) there exists a RMGD[5,1,5,5m], theorem 2.3;

2) $4u + h + s \equiv 2 \pmod{20}$ and $22 \leq 4u + h + s \leq 82$;

3) $0 \le u \le m-1$, $s \equiv 0 \pmod{4}$ and h = 2;

4) there exists a GD[5,5,{4,s*},4m+s], theorem 2.5. Now apply theorem 2.4 with $\lambda = 5$ and the result follows.

Lemma 5.5 $\sigma(v,5,5) = \psi(v,5,5)$ for v = 6, 26, 46, 66, 86.

<u>Proof</u> For v = 6 take a B[6,5,4], lemma 2.1, with an optimal (6,5,1) packing, which has one block.

For v = 26 let $X = Z_{20} \cup H_6$. On $Z_{20} \cup H_5$ construct a B[25,5,1], lemma 2.1, such that < h₁ h₂ h₃ h₄ h₅ > is a block, which we delete. Furthermore, take the following base blocks under the action of the group Z_{20} : <0 5 10 15 h₆> orbit length 5. < 0 1 2 3 h₁>, <0 1 3 8 h₂>, <0 2 7 13 h₃>, <0 3 9 12 h₄>, <0 4 8 13 h₃>, <0 4 8 14 h₆>.

For v = 46, 66, 86 a (v,5,5) optimal packing design may be constructed as follows:

1. take a (v,5,3) minimal covering design, [9]. Careful inspections show that the excess graph $E(V,\beta)$ of this covering design consists of a 1- factor on v-6 vertices and the following graph on the remaining 6 vertices

2. take a (v, 5, 2) optimal packing design such that its complement graph $C(V,\beta)$ contains a subgraph G that is isomorphic to $E(V,\beta)$, the excess graph of (v, 5, 3) minimal covering design, lemma 4.2. Now apply lemma 5.3 and the result follows.

<u>Theorem 5.6</u> $\sigma(v,5,5) = \psi(v,5,5)$ for all positive integers $v \equiv 6 \pmod{20}$

<u>Proof</u> For $6 \le v \le 86$ the result follows from lemma 5.5. For $v \ge 106$ the proof of this theorem is the same as theorem 5.2 with the difference that $4u + h + s = 6 \pmod{20}$, h = 6, and $6 \le 4u + h + s \le 86$.

Lemma 5.6 Let m, u and $h \ge 0$ be positive even integers. If there exists (1) a GD[5,2,{m,u*}, 5m+u] (2) a (u+h,5,2) optimal packing design with $\frac{2(u+h)^2 - 2(u+h) + c(u+h) + d}{20}$ blocks where c and d are integers determined by u

and h (3) a (m+h,5,2) packing design with a hole of size h with total number of blocks equal $\frac{2m^2 + 4hm + cm - 2m}{20}$. Then $\sigma(5m+u+h,5,2) = \psi(5m+u+h,5,2)$

<u>Proof</u> We need to show that the total number of blocks obtained by this construction is equal to $\psi(5m+u+h,5,2)$. But a GD[5,2,{m,u*}, 5m+u] has the following number of blocks $2(m(m-u) + \frac{3}{2}mu)$ (I)

A (u+h,5,2) optimal packing design has the following number of blocks

$$\frac{2(u+h)^2 - 2(u+h) + c(u+h) + d}{20}$$
 (II)

where c and d are integers deterimed by u and h, and a (m+h,5,2) packing design with a hole of size h has the following number of blocks (we are assuming that this number is an integer)

$$\frac{2m^2 + 4mb + cm - 2m}{20}$$
 (III)

where c is as above.

On the other hand,
$$\psi(5m+u+h,5,2) = \frac{2(5m+u+h)^2 - 2(5m+u+h) + c(5m+u+h) + d}{20}$$
 (IV)

where c and d are the same integers as in (II) since 5m+u+h and u+h are the same congruency modulo 10.

Now it is easily checked that the total number of blocks in (I), (II) and 5 times the number of blocks in (III) is equal to the total number of blocks in (IV).

Lemma 5.7 Let $v \equiv 10$ or 14 (mod 20), $v \neq 34$ be a positive integer less than 100. Then there exists a (v, 5, 2) optimal packing design such that the complement graph of these designs contains a subgraph that is a 1-factor.

<u>Proof</u> For v = 10, 14, 30, 90 see [5, p.51].

For v = 70 let $X = Z_{gs} \cup \{a,b\}$, then take the following base blocks under the action of the group Z_{gs} .

<0 1 3 8 22>, <0 4 17 35 44>, <0 10 25 36 48>, <0 1 3 7 18>, <0 5 24 30 40>
<0 9 22 36 48>, <0 8 29 45> \cup {a,b}.

For v = 50, 54, 74 and 94 take a GD[5,2,{m,u*}, 5m+u] where m, u and h are choosen as prescribed in the table below (see lemma 2.1 of [5, p. 46] for the existence of a GD[5,2, {m,u*}, 5m+u]). Adjoin a set H of h points to the groups and on the first five groups construct a (m+h,5,2) packing design with a hole of size h [5, p. 48] and take these h points with the last group as a block which we delete since the total number of points is less than five. Now apply lemma 5.6 to get the result.

						the second s
50 10 0 0 5	5.6	74	14	0	4	5.6
54 10 2 2 5	5.6	94	18	2	2	5.6

Note that our constructions are correct provided that: the (10,5,2) optimal packing design; the (12,5,2) packing design with a hole of size 2; the (18,5,2) packing design with a hole of size 4, and the (20,5,2) packing design with a hole of size 2, their complement graph has a complement subgraph that is

1-factor. This can easily be checked. For the (18,5,2) packing design with a hole of size 4, the 1-factor on $\{5,\ldots,18\}$ is $\{\{5,17\}\ \{6,12\}\ \{7,9\}\ \{8,11\}\ \{10,16\}\ \{13,18\}\ \{14,15\}\}$.

<u>Le.mma 5.8</u> $\sigma(v,5,5) = \varphi(v,5,5)$ for all $v \equiv 10$ or 14 (mod 20) and $10 \le v \le 94$, $v \neq 34$.

<u>Proof</u> A (v, 5, 5) optimal packing design for $v \equiv 10$ or 14 (mod 20) and $v \leq 94$ can be constructed as follows.

- 1) take a (v, 5, 3) minimal covering design [9]. The excess graph, $E(V, \beta)$, of each of these designs is a 1- factor.
- 2) take a (v, 5, 2) optimal packing design such that the compliment graph of these designs contains a subgraph which is 1-factor (lemma 5.7). Since $\alpha(v, 5, 3) = \phi(v, 5, 3)$ and $\sigma(v, 5, 2) = \psi(v, 5, 2)$ for such v; and $\alpha(v, 5, 3) + \psi(v, 5, 2) = \psi(v, 5, 5)$ it follows that $\sigma(v, 5, 5) = \psi(v, 5, 5)$.

<u>Theorem 5.7</u> $\sigma(v,5,5) = \psi(v,5,5)$ for all positive integers $v \equiv 10$ or 14 (mod 20) with the possible exception of v = 34.

<u>Proof</u> For $14 \le v \le 94$, $v \equiv 10$ or 14 (mod 20) the result follows from lemma 5.8. For $v \ge 110$, $v \ne 130$, 134, 214, the proof of the theorem is the same as theorem 5.5 with the difference that 4u + h + s = 10, 30, 50, 70, 90 if $v \equiv 10 \pmod{20}$ and 4u + h + s = 14, 54, 74, 94 if $v \equiv 14 \pmod{20}$. For v = 130, 134 apply theorem 2.2 with h = 2, n = 7 and u = 2 and 3 respectively.

For v = 214 take a T[6,5,10], [18, p.278], and delete 7 points from the last group. Inflate this design by a factor of 4, that is, replace each block of size 5 and 6 by the blocks of a GD[5,1,4,20] and GD[5,1,4,24] respectively, lemma 2.1. Add two points to the groups and on the first 5 groups construct a (42,5,5) packing design with a hole of size 2 (This design exists by lemma 5.4); and on the last group construct a (14,5,5) optimal packing design.

<u>Lemma 5.9</u> $\sigma(v,5,5) = \psi(v,5,5)$ for v = 18, 38, 58, 78, 98.

<u>Proof</u> For v = 18 let $X = \{1, 2, \dots, 18\}$ then the required blocks are < 1 2 3 4 10 >, < 4 5 13 15 16 >, 8 14 18 >, 5 15 16 18 > < 1 2 < 4 8 14 15 >, < 1 2 < 4 8 10 11 17 >, < 1 2 8 12 15 >, < 4 9 10 14 15 > 2 11 15 16 >, 9 14 >, < 1 < 4 9 11 12 14 >, < 1 5 < 4 10 13 14 18 > 3 7 >, 1 6 11 13 16 >, 3 10 13 18 >, < 5 6 < 5 < 1 < 5 7 8 10 15 > 18 >, 8 18 >, < 1 3 11 14 16 >, < 5 8 12 17 < 1 4 6 < 5 9 10 11 18 > < 1 18 >, < 5 11 13 7 4 7 16 14 15 >, < 1 4 7 12 13 >, < 6 8 9 10 > < 1 4 9 11 17 >, < 6 14 >, 6 9 15 7 10 13 18 > 7 8 11 < 1 5 >, < 6 < 1 7 11 16 >, < 6 8 < 1 < 6 10 15 16 17 > 5 9 11 13 >, 5 8 12 17 >, 9 13 17 >, < 6 13 14 16 18 >, 6 10 11 17 >, < 1 6 < 1 < 7 8 9 14 16 > 7 12 13 17 >, 9 10 12 15 >, < 1 < 7 10 12 14 16 >, < 7 11 15 17 18 > < 1 < 1 10 14 16 18 >, < 8 9 12 13 16 >, < 2 3 5 6 10 >, < 8 10 13 15 17 > < 9 11 12 15 16 >, 3 < 2 8 10 11 >, < 2 9 13 16 >, <10 12 13 14 17 > 3 < 2 9 13 17 >, 13 >, 6 12 14 >, 3 < 2 4 5 7 < 2 4 7 10 11 > < 2 4 2 4 11 12 13 >, 8 13 14 >, 5 10 12 16 >, < < 2 5 < 2 < 2 5 11 17 18 > < 2 18 >, < 2 6 14 15 17 >, 9 16 17 >, < 2 7 18 > 6 7 9 < 2 7 9 15 < 2 12 16 17 18 >, < 3 4 6 12 15 >, < 3 4 6 8 16 >, < 3 4 7 15 17 > 8 16 17 >, 7 14 17 >, 9 10 12 >, < 3 4 < 3 5 < 3 5 < 3 6 12 15 18 > 7 11 12 14 >, 8 13 15 >, 8 11 12 18 >, < 3 7 < 3 < 3 < 3 9 14 17 18 > < 3 11 13 15 18 >, < 4 5 6 14 17 >, < 4 5 8 9 18 >. For v = 38, 58, 78 the construction is as follows take a (v-1,5,4) optimal packing design, [12]; 1) take a $(\nu+4,5,1)$ optimal packing design, [9]. Assume we have the block 2)

< v v+1 v+2 v+3 v+4 >. Delete this block and in all other blocks change the points v+1, v+2, v+3, v+4 to v.

For v = 98 let X = $Z_{50} \cup H_{18}$. Then the construction is as follows:

1) On $\mathbb{Z}_{80} \cup H_9$ construct an (89,5,1) packing design with a hole of size 9,[17]. 2) On $\mathbb{Z}_{80} \cup \{h_i\}_{i=10}^{16}$ construct an (89,5,1) packing design with a hole of size 9. 3) Take the following base blocks under the action of the group \mathbb{Z}_{80} <0 2 11 30 59>, <0 1 4 14 h_i >, <0 5 12 37 h_2 >, <0 6 29 53 h_3 >, <0 8 34 52 h_4 > <0 15 31 50 h_5 >, <0 17 38 58 h_6 >, <0 1 3 7 h_7 >, <0 5 13 23 h_8 >, <0 9 35 47 h_9 > <0 11 27 55 h_{10} >, <0 14 31 51 h_{11} >, <0 15 34 56 h_{12} >, <0 1 3 7 h_{13} >, <0 5 13 30 h_{14} > <0 9 21 48 h_{15} >, <0 10 36 47 h_{16} >, <0 14 34 49 h_{17} >, <0 16 38 56 h_{18} >.

<u>Theorem 5.8</u> $\sigma(v,5,5) = \psi(v,5,5)$ for all positive integers $v \equiv 18 \pmod{20}$.

<u>Proof</u> For $18 \le v \le 98$ see lemma 5.9. For $v \ge 118$, $v \ne 138$ the proof of this theorem is the same as theorem 5.5 with the difference that $4u + h + s \equiv 18 \pmod{20}$, $18 \le 4u + h + s \le 98$.

For v = 138 apply theorem 2.2 with n = 7, h = 2 and u = 4.

5.3 Packing of order $v \equiv 0 \pmod{4}$

<u>Theorem 5.9</u> Let $v \equiv 16 \pmod{20}$ be a positive integer. Then $\sigma(v, 5, 5) = \psi(v, 5, 5)$.

<u>Proof</u> The blocks of a (v, 5, 5) optimal packing design for all positive integers $v \equiv 16 \pmod{20}$, may be constructed as follows.

take a B[v-1,5,4], lemma 2.1;

2) take a (v+4,5,1) optimal packing design which is constructed by taking a B[v+5,5,1] and deleting the point v+5 and all the blocks containing this point. Assume in the (v+4,5,1) optimal packing design we have the block < v v+1 v+2 v+3 v+4 >. Delete this block and in all the remaining blocks change v+1, v+2, v+3 and v+4 to v.

Lemma 5.10 There exists a (24,5,5) packing design with a hole of size 4.

<u>Proof</u> Let $X = Z_{20} \cup H_4$ then take the following base blocks under the action of the group Z_{20}

<0 4 8 12 16> orbit of length 4, three times <0 2 3 5 9>, <0 1 2 4 h_i >, <0 1 6 13 h_2 >, <0 2 7 13 h_3 >, <0 3 9 12 h_4 >, <0 1 6 11> $\bigcup {h_i}_{i=1}^4$.

<u>Theorem 5.10</u> Let $v \equiv 4 \pmod{20}$ be a positive integer greater than 4. Then $\sigma(v, 5, 5) = \psi(v, 5, 5)$.

<u>Proof</u> For v = 24, 44, 64, 84 the construction is as follows:

take a (v-1,5,1) optimal packing design, [20].

- 2) take a B[v+1,5,1], lemma 2.1. Assume we have the block <1 2 3 v v+1>. In this block change v+1 to 5, where {1,2,3,5} are arbitrary numbers, and in all other blocks change v+1 to v.
- 3) take a (v, 5, 3) optimal packing design [9] and assume that the pairs $\{4, v\}$ and $\{5, v\}$ each appears at most twice (close observation of these designs show that we may assume this). Furthermore, assume in this design we have the block <1 2 3 4 5>. In this block change 5 to v. Now it is easily checked that the above three steps yield a (v, 5, 5) optimal packing design for v = 24, 44, 64, 84.

For $v \ge 124$, $v \ne 144$, 224 simple calculations show that v can be written in the form v = 20m+4u+h+s where m, u, h and s are chosen as in theorem 5.5 with the difference that 4u+h+s = 24, 44, 64, 84 and h = 4.

Now apply theorem 2.4 with $\lambda = 5$ and the result follows.

For v = 104, 144, 224 apply theorem 2.5 with m = 5, 7, 11 respectively.

<u>Theorem 5.11</u> Let $v \equiv 0$, 8 or 12 (mod 20) be a positive integer greater than zero. Then $\sigma(v, 5, 5) = \psi(v, 5, 5)$ with the possible exception of v = 28, 32.

<u>Proof</u> We first prove the theorem for $8 \le v \le 100$, $v \ne 28$, 32. For $8 \le v \le 100$, $v \ne 20$, 28, 32 a (v,5,5) optimal packing design can be constructed by taking the blocks of a (v,5,3) and a (v,5,2) optimal packing design [9], [5].

For v = 20 let X = Z_{20} then the blocks are <0 4 8 12 16> + i, i $\in Z_4$, 3 times <0 1 4 10 15> (mod 20), <0 2 7 10 13> (mod 20), <0 1 2 3 5> (mod 20), <0 1 7 9 14> (mod 20).

For $v \ge 100$ $v \ne 128$, 132, 208, 212, simple calculations show that v can be written in the form v = 20m+4u+h+s where m, u, h and s are chosen as in theorem 5.10 with the difference $4u+h+s \equiv 0$, 8 or 12 (mod 20), 8 $\le 4u+h+s \le 92$, $4u+h+s \ne 28$, 32. Now apply theorem 2.4 with $\lambda=5$ and the result follows.

For v = 128, 132 apply theorem 2.2 with n = 7, h = 0 and u = 2, 3 respectively.

For v = 208, 212 take a T[6,5,10], [18, p.278], and delete all but u points from last group where u = 2, 3, respectively. Inflate this design by a factor of 4, that is, replace all blocks of size 5 and 6 by the blocks of a GD[5,1,4,20] and GD[5,1,4,24] respectively, lemma 2.1. Finally on the groups construct a (n,5,5) optimal packing design where n = 40, 8, 12.

7. Conclusion

We have shown that $\sigma(v,5,5) = \psi(v,5,5)$ for all positive integers $v, v \ge 5$ with the possible exception of v = 28, 32, 34.

References

- R. J. Abel, Four Mutually orthogonal Latin squares of order 28 and 52. J. Combin. Theory Ser. A 58 (1991) 306-309.
- [2] R. J. Abel and D. T. Todorov, Four MOLS of orders 20, 30, 38 and 44. J. Combin. Theory Ser. A 64 (1993) 144-148.
- [3] A. M. Assaf, An application of modified group divisible designs. J. Combin. Theory Ser. A 68 (1994) 152-168.
- [4] A. M. Assaf, Two more covering designs with block size 5 and index 4. Utilitas Math. 39 (1991) 210-214.

- [5] A. M. Assaf, N. Shalaby, L. P. S. Singh, Packing designs with block size 5 and index 2: the case v even. J. Combin. Theory Ser. A 63 (1993) 43-54.
- [6] A. M. Assaf, L. P. S. Singh, Packing pairs by quintuples with index 2: $v \text{ odd}, v \neq 13 \pmod{20}$. Discrete Math. 126 (1994) 1-12.
- [7] A. M. Assaf, Bipacking pairs by quintuples: the case $v \equiv 13 \pmod{20}$. Discrete Math. 133 (1994) 41-54.
- [8] A. M. Assaf, L. P. S. Singh, Tripacking of pairs by quintuples: the case $v \equiv 2 \pmod{4}$. Ars Combinatoria, accepted.
- [9] A. M. Assaf, N. Shalaby, On small packing and covering designs with block size 5 and index 3, in preparation.
- [10] A. M. Assaf, N. Shalaby, On covering designs with block size 5 and index 4. Ars Combinatoria 33 (1992) 227-237.
- [11] _____, Packing designs with block size 5 and indexes 8, 12, 16. J. Combin. Theory Ser. A 59 (1992) 23-30.
- [12] A. M. Assaf and A. Hartman, On packing designs with block size 5 and index 4, Discrete Math. 79 (1989/90) 111-121.
- [13] A. M. Assaf, N. Shalaby and L. P. S. Singh, On packing designs with block size 5 and indices 3 and 6. Ars Combinatoria, accepted.
- [14] T. Beth, D. Jungnickel, H. Lenz, Design Theory. Bibl. Inst. Mannheim, 1985.
- [15] A. E. Brouwer, The number of mutually orthogonal Latin squares a table up to 1,000. Math Centrum, Report ZW123/79. June 1979.
- [16] A. E. Brouwer, J. B. Shearer, N. J. A. Sloane and W. D. Smith, A new table of constant weight codes, IEEE Trans. Inform. Theory 36(1990) 1334-1380.
- [17] A. M. Hamel, W. H. Mills, R. C. Mullin, R. Rees, D. R. Stinson, J. Yin, The Spectrum of PBD ($\{5, \kappa^*\}, \nu$) for $\kappa = 9$, 13, reprint.
- [18] H. Hanani, Balanced incomplete block designs and related designs. Discrete Math. 11 (1975) 225-369.
- [19] R. C. Mullin, W. H. Mills, On λ -covers of pairs by quintuples: ν odd, preprint.
- [20] R. C. Mullin, J. Yin, On packing of pairs by quintuples the case $v \equiv 3$, 9 or 17 (mod 20). Ars Combinatoria 35 (1993) 161-171.
- [21] W. H. Mills, A covering number, preprint.
- [22] R. Roth, M. Peters, Four pairwise orthogonal Latin squares of order 24. J. Combin. Theory Ser. A 44 (1987) 152-155.
- [23] J. Schoenheim, On coverings, Pacific J. Math. 14 (1964), 1405-1411.
- [24] N. Shalaby, personal communication.
- [25] D. T. Todorov, Four mutually orthogonal Latin squares of order 20, Ars Combinatoria, 27 (1989) 63-65.
- [26] J. Yin, Packing pairs by quintuples: the case $v \equiv 0 \pmod{4}$, applied Math JCU 9B (1994) 401-404.

(Received 4/1/94, revised 8/8/95)