Concerning Cyclic Group Divisible Designs
with Block Size Three

Zhike Jiang
Department of Combinatorics and Optimization
University of Waterloo
Waterloo, Ontario

Canada N2L 3G1

Abstract

We determine a necessary and sufficient condition for the existence
of a cyclic {3}-GDD with a uniform group size 6n. This provides a
fundamental class of ingredients for some recursive constructions which
settle existence of k-rotational Steiner triple systems completely.

1 Preliminaries

A group divisible design (GDD) is an ordered triple (V, G, B), where V is a finite set,
G a partition of V into groups and B a set of subsets of V', called blocks, such that
each pair of elements from different groups appears in exactly one block and no block
contains two elements from a common group. The group type, or simply the type, of
a GDD (V,G,B) is denoted g1* g5 ... g~ when G contains exactly u; (1 <1 < m)
groups of size g;. When the block sizes of a GDD all appear in an integer set K the
GDD isa K — GDD. A {k} — GDD is simply denoted k¥ — GDD.

An automorphismof a GDD (V,G,B) is a permutation 7 on V with the property
that w(B) € B for each B € B. A GDD (V,G,B) is cyclic if it has an automorphism
which permutes the elements in each group G € G in a |Gl-cycle. A cyclic k— GDD
is denoted &k — CGDD.

Group divisible designs are essential ingredients in constructing many combi-
natorial designs. We use group divisible designs with certain automorphisms in
constructing other designs with relevant automorphisms. A Steiner triple system of
order v is k-rotational if it admits an automorphism consisting of one fixed point and
k cycles of length (v — 1)/k. In [3], recursive constructions for k-rotational Steiner
triple systems are developed to settle existence completely. In this paper, we inves-
tigate the existence of 3 — CGDDs of type (6n)* for integers u > 3, n > 1. These
3 — CGDDs are then used as an ingredient for the recursive constructions appearing
in [3].
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Throughout this paper, Z; denotes the residue class group modulo g with residue
classes {0,1,...,¢9—1}. When causing no ambiguity, [1, 7] denotes the set of integers
£ such that 1 < £ < §, O[z, 3] (or E[s, j]) the set of odd (or even) integers in [¢, 5], and
z; denotes an element (z,4) in the set Z; x {i}.

We first introduce the following basic constructions. The first one is trivial from
the point of view of the difference methods. (For terminology of the difference meth-
ods the reader is referred to [2].)

Lemma 1.1 Let V = Z, x {1,2,...,u}. Define G; = Z; x {1} fori =1,2,... u.
Suppose D is a collection of 3-subsets of V, such that (i) no member of D contains
two elements from the same G; and (1) D covers each possible mized (3,7) difference
z, or simply z;;, ezactly once, where z € Z, and 1 <1 # 5 < u. Then developing
all the members of D over Zy yields the set of blocks of a cyclic 3 — GDD of type g*
with point set V and groups Gi,Gs,...,G,. The members of D are called its base
blocks (over Z,).

Proof. Let BB be the set of blocks obtained by developing members of D over Z,,
G ={G1,G,,...,G,}. Obviously, (V,G, B) has an automorphism

7= (0111...(g = 1)) .. (0ulu...(g — 1)),

and therefore it is cyclic.

Let G;, G; be distinct groups, and let ¢; € G; and y; € G;. Then there is exactly
one D € D which covers the mixed difference (y — );;. Without loss of generality,
we assume D = {d;,e;, fi}, where 1 < 4,7,k < u are distinct, d,e, f € Z; and
e —d =y —z. Then 7®¢(D) € B. But 7" ¢(D) = {z:,y;,(f + = — d)k} 2 {=:,y;}.
Therefore (V,G,B) is a 3 — GDD of type g*. O

The following example (c.f. Lemma 5.1, [4]) is an easy application of this con-
struction with u = 4.

Example 1.2

Let n > 1 be an integer. The following base blocks cover each of the mixed differences
in Ze, x {1,2,3,4} exactly once and therefore developing them over Zg, yields a
3 — CGDD of type (6n)*:

{01,72,(27)3} r € {0,3n — 1};
{0,,73, (2r + 1)4} re [377,, 6n — l];
{03,1"4,(27’"1)1} re [173n];
{04,71,(27)2} r € [3n,6n — 1].

Lemma 1.3 Consider the residue class group Zg,. Suppose there ezists a set D of
3-subsets of Zg, such that the members of D cover each possible non-zero difference
d € Zg, ezactly once ford #0 (mod u) and no member of D covers a difference d
withd =0 (mod u). Then there ezists a 3 — CGDD of type g*.
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Proof. We construct a 3 —CGDD on V = Z, x {0,1,...,u — 1} as follows.

First note that each integer z with 0 < z < gu — 1 can be uniquely expressed
as ¢ = ziu + Z3, where z1,x, are integers and 0 < z; < g— 1,0 < z, < u — L.
Therefore each element z = zu + z, € Z,, corresponds to an element (z1,22) € V.
Now for each D = {z1u+z3,y1u+ys2, z1u+ 23} € D, where 0 < z1,91,2; < g—1,0 <
T2,Y2, 22 < u— 1, we construct u 3-sets

D; = {(z1,22 +4), (y1,92 + 1), (21,22 + 1)} (1 =0,1,...,u — 1),
where the arithmetic is taken modulo u. Clearly, each D; C V. We claim that

A= U{Dijo<i<u—1}
DeD
is the set of base blocks of a 3 — CGDD of type g* on V with groups G; = Z, x {1}
(=01, .. u—1)

Suppose D; = {(z1,23 + 1), (y1,y2 + 1), (21,22 + 4)} € A, and D; contains two
elements, say (1, z2 +1), (y1,y2 + 1) from the same group G, equivalently, z, +1 =
Yya+i1 =7 (mod u). Then (y1u+ys)—(z1u+z2) = (yru+y2+i)— (z1utz2+1) =0
(mod u). So the member D = {z1u+ @3, y1u + Y2, 21u+ 23} € D covers the difference
(y1u +y2) — (w1 + z2) =0 (mod u). That is a contradiction.

Now suppose 64, = (6,9) — (0,p) = (6,9 — p) is a mixed difference across Z, x
{p}, Zg x{q} with0 < p<g<u—-10<6<g—1 Thend = §u+ (g~ p)isan
element of Zg, and d # 0 (mod u). By the assumption on D, there is exactly one
D € D which covers the difference d exactly once. Without loss of generality, we
assume D = {@1u + Z2,y1u + Y2, 2120 + 22} and (y1u + y2) — (z1u + z3) = d. Then
Y1 — 21 =6,y — @z = ¢ — p and so

Dpezy = {(z1,22 4 (p — 22)), (1,92 + (p — 22)), (21, 22 + (p — 22))}
= {((Bl,p), (yl; Q)> (ZI; 2y + (P - 172)}

covers &g, since (y1,9) — (z1,p) = (8,9 — p).

Applying Lemma 1.1 then establishes our claim. O

The guiding principle of the construction in Lemma 1.3 is that we identify each
element ¢ = z1u + 23 € Zgy, (0 < 27 < g — 1) with an element (z1,23) € Z; x {z,},
for a fixed z;. Taking G = {z € Zyu|z =0 (mod u)}, a subgroup of Z,, of order g,
each G; = Zy x {7} is nothing but a copy of the coset G + j and all the base blocks
D; e A(z=0,1,...,u — 1) are simply obtained by developing the corresponding
D € D over Z,. Therefore, the 3 — CGDD resulting from the construction can be
viewed as on Zg, with groups G+ j (7 = 0,1,...,u — 1), D being its generating
blocks, which we call its base blocks (over Zg,).

2 Constructions from Skolem Sequences

In this section we investigate the applications of Lemma 1.3 to constructing 3 —
CGDDs of type (6n)* with u > 4, where we assume u = 45,45 + 1,45 + 2,45 + 3
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according to the congruence class u falls in. The technique we use is an analogue to
that appearing in [5], namely by establishing certain Skolem sequences. According
to Lemma 1.3, to establish existence of a 3 — CGDD of type (6n)* we may attempt
to partition all the differences d € Zgny, with d # 0 (mod u) into base blocks (over
Zenw)- Since if a base block covers a difference d then it also covers —d, we only need
to consider the differences 1 < d < 3nu such that d 0 (mod u). To be precise,
we have the following Heffter-type problem:

HP(n,u): Partition {1,2,...,3nu} \ {mu|l < m < 3n} into n(u — 1) triples
{ap, br,c } for 7 =1,2,...,n(u—1) such that a, + b, = ¢, or a, + b, + ¢, = (6n)u.

Lemma 2.1 If there is a solution to HP(n,u), then there is a 3 — CGDD of type
(6n)~.

Proof. Let {a,,b,,c.} forr = 1,2,...,n(u—1) be a solution to HP(n,u). Construct
triples {0, a,, ¢, } for r such that a, + b = ¢, and {0, a,,—c,} for r such that a, +
b, +¢, = (6n)u. Then these triples cover each of the differences d € Zny, withd £ 0
(mod u) exactly once. Applying Lemma 1.3, we get the result. O
A solution to HP(n,u) may be obtained by solving the following Skolem-type

problem. Take

D{n,u) = {1,2,...,nu} \ {mu{l <m < n},

S(n,u) = {1,2,...,2nu} \ {mu|l <m < 2n},
and counsider

SP(n,u): Partition S(n,u) into n(u — 1) ordered pairs (a,, b,) for r € D(n,u)
such that b, — a, = r for each r.

Example 2.2 Lett > 1 be an integer. There is a solution to SP(2¢,5).

In this case, D(2t,5) = {1,2,...,10¢}\{5,10,...,10t}, S(2¢,5) = {1,2,...,20t}\
{5,10,. Ot} To produce dn‘ferences d € D(2t,5), take the following pairs:

d=1,9 (mod 10): (10t~ 1,20t — 2) and

(247,10t —5—7) €1,5t —4],r=1,2 (mod 5);
d=2,8 (mod10): (10t-3+7r20t—-3—r) E[l,St——l},’rEléL {(mod 5);
d=3,7 (mod10): (10t +1+r,20t—7) rell,5t—2,r=1,3 (mod 5);
d=4,6 (mod10): (r 10t—2—r) €[1,5t—3),r=1,2 (mod 5).

A variation of the problem SP(n,u) may be considered for obtaining solutions to
HP(n,u). Taking D(n,u) to be the same as above, modifying S(n,u) to

S(n;u,z) = {1,2,...,2nu} \ {mu|l <m < 2n}\ {2nu — z} | J{2nu + =},
where 1 <z <2nu,z #0 (mod u), we obtain the following problem.

SP(n;u,z): Partition S(n;u,z) into n(u—1) ordered pairs (a,, b,) for r € D(n,u)
such that b, — a, = r for each r.
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Lemma 2.3 [f there is a solution to SP(n,u) or SP(n;u,x), then there is a solution
to HP(n,u).

Proof. Suppose (a,,b,) (r € D(n,u)) is a solution to SP(n;u,z). Then there exists
r* € D(n,u) such that b« = 2nu+z. Construct a triple {r, nu+a,,nu+b,} for each
r € D(n,u) with r # r* and, for r = »*, construct the triple {r*, nu + a.+,3nu — z}.
We have r 4 (nu + a,) = (nu+0b,) for r # r*, and r* + (nu + a,+) + (3nu — 2) = 6nu
because b.» — a.« = »* implies (3nu + z) — (nu + a.+) = r*. It is also easy to check
that these triples form a partition to the set {1,2,...,3nu} \ {mu|l < m < 3n} and
therefore a solution to HP(n, u).

Now suppose (a,,b,) (r € D(n,u)) is a solution to SP(n,u). Similarly, triples
{r,nu+a,,nu+ b} (r € D(n,u)) form a solution to HP(n, u). O

From Lemma 2.1 and Lemma 2.3, we see that to construct a 3 — CGDD of type
(6n)*, we may solve a problem SP(n,u) or SP(n;u,z). Example 2.2 establishes a
solution to SP(n,w) when n = 2¢ (¢ > 1) and u = 5 and therefore the existence of a
3~ CGDD of type (12t)° for each ¢ >> 1. We now deal with the other cases for these
3 — CGDDs by considering a problem SP(n;u,z) with a properly chosen z in each
case.

2.1 The Case u=1 (mod 4)

Assuming v = 4s 4+ 1 (s > 2 when n > 2 is even and s > 1 when n > 1 is odd)
and choosing x = s, we consider the problem SP(n;4s + 1,s). We first partition
S(n;4s 4+ 1,8) into Si(n;4s + 1, 5) and Sy(n;4s + 1, 5), where

Siln;ds + 1,s)={1,2,...,n(ds + D} \ {m(4s + D1 <m <n},
Sa(n;ds+1,8) = S(n;ds + 1,5) \ S1(n;4s + 1, 5).

Then we use the numbers in Si(n;4s + 1, ) to form ordered pairs which produce as
differences all the odd (or even) numbers in D(n,4s+ 1) and those in S;(n;4s+1,s)
all the even (or odd) numbers in D(n,4s + 1) when n is odd (or even). To construct
these ordered pairs we first introduce some basic ingredients.

Lemma 2.4 Assume s > 1. Let E(s) = E[2,4s] and T(s) = ([1,43]\

{3s+1})U{5s+1}. Then there is a partition of T(s) into 2s ordered pairs (c;, d;) (i €

E(s)) such that (i) U,EE(S) ¢ = [1,2s], (i) Uiep(s) di = ([25+1,4s]\{3s+1}) U{55+1}
and (iii) di — ¢; =1 for 1 € E(s).

Proof. Take the pairs as:
(I+rds+1—=7r) re[l,s—1](s>2)andr € [s+ 1,25 — 1] (s > 2),
and (1,25 4+ 1), (s +1,5s + 1). )

Lemma 2.5 Assume s > 1. Let F(s) = E[2,8s] and U(s) = [1,85 + 2]\ {25 + 1,
6s + 2}, Then there is a partition of U(s) into 4s ordered pairs (e;, f;) (i € F(s))
such that (i) Uiepey €5 = [1, 45+ 1\{25+ 1}, (i0) Uier(s) fi = [45 42,854+ 2]\ {6s+2}
and (ii) fi — e; =1 for 1 € F(s).

231



Proof. Take the pairs as:

2)and r € [s 41,25 — 1] (s

(I+78s+3—r) rell,s—1] (s> >
(s>2)andr€s+1,25-1] (s >

2s+14rbs+1—7) rells—1]
and (4s+ 1,65+ 1),(s+ 1,58 +1),(3s + 1,75 + 3), (1,65 + 3). o

Lemma 2.6 Assume s > 2. Let ((s) = O[1,4s—1] and V(s) = [1,4s+1]\ {25 +1}.
Then there is a partition of V(s) into 2s ordered pairs (g;,h;) (1 € G(s)) such that
hi—g: =1 for1 € G(s).

Proof. Take the pairs as:

(I+rd4s+2—1r) rell, s,
(s+14+nr3s—r) rell,s—2](s>3),

and (3s,3s + 1), (1, 2s). O

The sequences of ordered pairs established in Lemma 2.4 - 2.6 can be used to build
up a partition of Sy(n;4s + 1,s) into 2ns ordered pairs which produce all the even
numbers d € D(n,4s+1) when n is odd or all the odd numbers d € D(n,4s+1) when
n is even (Assume s > 2 in the latter case). We illustrate our idea in the following
examples, where (c;,d,) (i € E(s)), (c;,f}) (i € F(s)) and (gi,hs) (i € G(s)) are
defined, respectively, as in Lemma 2.4, Lemma 2.5 and Lemma 2.6.

Example 2.7
(For a 3 — CGDD of type 6*+! with s > 1)

To partition S»(1;4s+ 1, s) into 25 ordered pairs which produce all even numbers
in D(1,4s + 1), use the single “brick”

(ds+1+c,ds+ L+ d;) 1€ E(s).

(For a 3 — CGDD of type 18%F! with s > 1)
To partition S3(3;4s + 1, s) into 65 ordered pairs which produce all even numbers
in D(3,4s + 1), pile the “brick”

(126 +3 4 ¢;,20s + 54 d;) i€ E(s)
on top of the “brick”

(l4s +3+ e, 145+ 34+ fi) 1€ F(s).

The top “brick” produces even differences 8s + 4,8s + 6,...,12s + 2 and the
bottom even differences 2,4, ... 8s.
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Example 2.8

(For a 3 — CGDD of type 12*+! with s > 2)
To partition S3(2;4s + 1, s) into 4s ordered pairs which produce all odd numbers
in D(2,4s + 1), pile the “brick”

B8s+2+¢,12s4+3+4d;) i€ E(s)

on top of the “brick”

(105 4+ 2 4 g, 105 + 2+ hy) i € G(s).

The top “brick” produces odd differences 4s+3,45+5,...,8s+1 and the bottom
odd differences 1,3,...,4s — 1.

(For a 3 — CGDD of type 24**! with s > 2)
To partition S5(4;4s + 1, s) into 8s ordered pairs which produce all odd numbers
in D(4,4s + 1), pile the following “bricks”:

(165 4+ 4 +¢;,28s+7+d;) i€ E(s),
(185 4+ 4 +¢;,225+5+ f;) i€ F(s),
(225 +5+¢i,22s + 5+ h;) 1€ G(s).

The differences produced by the these “bricks” are, respectively, 12s + 5,
125 +7,...,165 + 3, and 45 + 3,4s + 5,...,12s + 1, and 1,3,...,45 — .

Theorem 2.9 There is a solution to SP(n;4s + 1,s) for s > 1 when n is odd and
s > 2 when n is even.

Proof. Let (¢;,d;) (i € E(s)), (e, fi) (i € F(s)) and (gi, ki) (i € G(s)) be, respec-
tively, those partitions of T'(s), U/(s) and V(s) obtained in Lemma 2.4, Lemma 2.5
and Lemma 2.6.

Suppose n is odd and n = 2¢ + 1, t > 0. To produce all the odd numbers in
D(2t + 1,4s + 1), take the following pairs:

(r(2t+ D)(4s+ 1) —7) re[lt(4s+1)+2s], r#0 (mod 4s + 1).
To produce all the even numbers in D(2t + 1,4s + 1), take the following pairs:
(2t 4+ 1D(s + D)4, (4t + 1)(ds + 1) + di) i € E(s),
and, when ¢t > 1, for each j = 0,1,2,...,t — 1,
(2t +1457)4s+ 1)+ 25+ €, (4t — j)(4s+ 1) — (2s + 1)+ f;) 1 € F(s).

Suppose n is even and n = 2¢, ¢ > 1. To produce all the even numbers in
D(2t,4s + 1), take the following pairs:
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(r,2t(4s + 1) —7) re[Lit(ds+1)—1], r#0 (mod 4s+1).
To produce all the odd numbers in D(2t,4s + 1), take the following pairs:

(2t(4s +1) + ¢, (4t —1)(4s + 1) + d;) i€ E(s),
(3t —1)(4s + 1) + 25 + g;, (3t — 1)(4s + 1) + 25 + hy) 1 € G(s),

and, when £ > 2, for each 7 = 0,1,...,t =2,

9

(2 + )(ds + 1) + 25 + e (4t —2—5)(ds + 1) = (25 + 1) + fi) 1€ F(s).

2.2 The Case u=3 (mod 4)

Assuming u = 4s + 3 (s > 1) and choosing = = s + 1, we consider the problem
SP(n;4s + 3,5 + 1) when n > 2 is even. We first partition S(n;4s + 3,s + 1) into
Si(n;4s + 3,5+ 1) and Sy(n;4s + 3,5 + 1), where

Sy(nsds + 3,5+ 1) ={1,2,...,n(4s + 3)} \ {m(4s + 3)|1 < m < n},

Sy(nids + 3,5 +1) = S(nids + 3,8 + 1)\ Si(nids + 3,5+ 1).

Then we use the numbers in S1(n:4s+ 3,5+ 1) to form ordered pairs which produce
as differences all the even numbers in D(n,4s+3) and those in Sy(n;4s+3,5+1) all
the odd numbers in D(n,4s +3). To construct these ordered pairs we first introduce
some basic ingredients.

Lemma 2.10 Assume s > 1. Let E(s) = O[3,4s + 3] and T(s) = ([1,4s + 3]\
{25 + 3,35 + 3})U{Bs + H}. Then there is a partition of T(s) into 2s + 1 or-
dered pairs (c;,d;) (i € E(s)) such that (i) Uiepy e = [1,25 + 1], (i9) Uiep() di =
([25 + 2,45 + 3]\ {25 + 3,35 + 3}) U{Bs + 5} and (i) dj — ¢; = i fori € E(s).

Proof. Take the pairs as:

(I+rds+4—r) rell, s,
(s+2+n3s+3—-r) rell,s—1](s=>2),

and (1,254 2),(s + 2,55 + 5). O

Lemma 2.11 Assume s > 1. Let F(s) = O[3,8s + 5] and U(s) = [I,8s + 8]\
{25+ 2,45 + 5,65+ 6,85 + T}. Then there is a partition of U(s) into 4s +2 ordered
p(li’l‘S (6,‘, fz) (Z S F(q)) such that (1,) UiEF(s) €; = [1,49—{-3]\{28-}*2}, (Zl) UieF(s) fz =
[45 + 4,85 + 8]\ {45 + 5,65 + 6,85 + 7} and (iii) fi — e; =1 fori € F(s).

234



Proof. Take the pairs as:

(r,8s+7—1) rell,s—1] (s >2),
(s+7rT7s+7—7) re(l,s],
(2s+34+r6s54+6—1) rell,s],
(Bs+4+rbs+5—-r) refl,s—1](s>2),

and (25 + 3,45 +4),(3s +4,7s +7), (5,55 + 5), (25 + 1,85 + 8). |

Lemma 2.12 Assume s > 1. Let G(s) = Ofl,4s + 1] and V(s) = [1,4s + 4] \
{25+ 2,45 4+ 3}. Then there is a partition of V(s) into 2s + 1 ordered pairs (g:, h;)
(i € G(s)) such that h; — g; = 1 for i € G(s).

Proof. Take the pairs as:
(r,4s +3 —1) rell,s],
(s+24r3s+3—r) rell,s—1] (s>2),
and (s+ 1,5 +2),(2s + 3,45 +4). 0

Theorem 2.13 Let n > 2 be even. Let s > 1. Then there is a solution to
SPm;4s+3,s+1).

Proof. Assume n = 2t with ¢ > 1. The ordered pairs which produce all the even
numbers in D(n,4s + 3) can be taken as:

(r,2t(4s+3)—r) re[l,t(4s+3)~1], r£0 (mod 4s + 3).

Now let (ci,d:) (i € E(s)), (e, fi) (1 € F(s)) and (gi, k) (i € G(s)) be those
partitions of T'(s), U(s) and V(s) as defined in Lemma 2.10, Lemma 2.11 and Lemma
2.12. Then the following ordered pairs produce all the odd numbers in D(n, 4s + 3):

(2t(4s+3) + ¢, (At = D)(4s +3) = 1 + d;) i € E(s),
((Bt=1)(4s+3)+2s+ 1)+, Bt — D(4s +3) + (2s + 1) + hy) 1 € G(s),
and, when ¢ > 2, foreach j = 0,1,...,t =2

(2t +5)(4s+3)+ 25+ 1)+ e, (4t =2 =) (4s +3) = (25 +3) + fi) i € F(s).

]

2.3 The Case u=2 (mod 4)

Assuming u = 4s +2 (s > 1) and choosing z = s + 1, we consider the problem
SP(n;4s + 2,3+ 1) when n > 2 is even.
Lemma 2.14 Assume s > 1. Let H(s) = (0[3,4s—1]\{2s+1}) U{4} and W(s) =
[1,4s + 1]\ {s + 1,3s,4s}. Then there is a partition of W(s) into 2s — 1 ordered
pairs (ki ;) (1 € H(s)) such that (i) Uieny ki = [1,25]\ {s + 1}, (ii) Uier(s li =
[2s + 1,45 + 1]\ {3s,4s} and (ii) l; — k; = fori € H(s).
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Proof. We construct the ordered pairs according to s = 0,1,2,3 (mod 4) in the
following.
Case (i): s=0 (mod 4).
s=4:(6,9), (7, 11), (8, 13), (3, 10), (4, 15), (1, 14), (2, 17);
s> 8 s=4p, p> 2

(Ta l6p —1 - 7.) re 0[1,4]) - 3]7
(I+r16p+2—r) reO[l,4p—1],

which produce differences d € H(4p) such that 8p+3 < d < 16p — 1,

(dp+11+r12p—4—7) reldp—11l],r=1 (mod4) (p>3),
(dp+4+r12p—5-7r) relldp—9,r#£0 (mod4)(p=>3),

which produce differences d € H(4p) such that 7 < d < 8p — 11, and

(Ap+2,12p+ 1), (4p—1.12p—4), (4p+3,12p—~2), (4p+4,12p-3),
(4p+8,12p—1), (8p—2,8p+3), (8p—3,8p+1), (Bp—1,8p+2),

which produce differences 3,4,5,8p —9,8p — 7,8p — 5,8p — 3,8p — 1.
Case (ii): s =2 (mod 4).

s=2:(4,7), (1,5), (2, 9);

s>6,s=4p+2,p>1:

(r,16p +7—~1) re Ol 4p — 1],
(147 16p+10~7) reO[l,4p+1],

which produce differences d € H(4p + 2) such that 8p +7 < d < 16p + 7,

(dp+1L+r12p+4—7) re(l,4p—T,r=1 (mod4) (p>2),
(dp+4+4+r12p+3—r) reldp—-5],r#0 (mod4) (p=>2),

which produce differences d € H(4p + 2) such that 7 < d < 8p — 3, and

(4p+1,12p+4), (dp+4,12p+5), (4dp+8,12p+7),
(Bp+2,8p+7), (8p+1L,8p+5), (8p+3,8p+6),

which produce differences 3,4,5,8p — 1,8p + 1,8p + 3.
Case (iii): s =1 (mod 4).

s=1: (1, 5);

s>h, s=4p+1,p>1:

(7‘7 16]) +3 - 7') re 0[1’41) - 1]7
(I1+r,16p+6-—7r) reO[l,4p-1],

which produce differences d € H(4p + 1) such that 8p +5 < d < 16p + 3,

(4p+24+r12p=3—r) re(l,d4p—="T,r=1 (mod4) (p>2),
(Ap+7+r,12p—1) re(l,dp—5l,r#0 (mod4) (p>2),
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which produce differences d € H(4p + 1) such that 3 < d < 8p — 7, and

(4p+ 1,12p 4 2), (4p +6,12p+5), (4p+4,12p +1),
(4]) + 57 12])), (8p - 178]) + 3)7

which produce differences 4,8p — 5,8p — 3,8p — 1,8p + 1.
Case (iv): s =3 (mod 4).
s>3,s=4p+3,p>0:

(r,16p+ 11 —7) re O[l,4p + 1],
(L4+r16p+14—7) »re€ O[1,4p + 1],

which produce differences d € H(4p + 3) such that 8p+ 9 < d < 16p + 11,

(dp+2+r12p+5—-7r) rell,dp-3,r=1 (mod4) (p>1),
p+T7+7r12p+8—7) re[l,dp—1],r£0 (mod4) (p>1),

which produce differences d € H{(4p + 3) such that 3 < d < 8p + 1, and

(4p +6,12p + 11), (4p+5,12p+8), (8p+3,8p+7),

which produce differences 4, 8p + 3, 8p + 5. 0o
We now construct the following ingredients.

Lemma 2.15 Assume s > 1. Let E'(s) = E[4,4s + 2] and T'(s) = [1,4s + 3]\
{2541,2542,25+3}. Then there is a partition of T'(s) into 2s ordered pairs (c,, d;)

(i € E'(s)) such that (i) User'(s) ¢ = [1,2s], (i) Urer'(s) d; = [25+4,4s+3] and (iii)
d; —c; =i forie E'(s).

Proof. Simply take the following pairs:

(r,ds+4—-r) rell,2s].

Lemma 2.16 Assume s > 1.

1. Let F(s) = (O[3,4s + 3] U{4s + 9}) U(E[4s + 8,85 + 4] \ {65 + 6} U{4s + 2})
and U(s) = [1,8s4+6]\ {25+ 1,45+ 4,65+5,85+5}. Then there is a partition
of U(s) into 4s + 1 ordered pairs (e, f;) (i € F(s)) such that (i) Uieps) e =
(1,45 + 2]\ {2s + 1}, (i) Uiep(o) fi = [45 + 3,85 + 6] \ {4s + 4,65 + 5,85 + 5}
and (iii) f; —e¢; =1 for 1 € F(s).

Let F'(s) = (E[4,4s]U{4s + 6,65 + 6})U(O[4s + 5,85 + 5] \ {4s + 9}) and
U'(s) = [1,85 + 7]\ {25 + 2,45 + 3,45 + 4,45 + 5,65 + 6}. Then there is a
partition of U'(s) into 4s + 1 ordered pairs (e, fi) (i € F'(s)) such that (i)
Uier' sy & = [L4s + 20\ {25 + 2}, (i) Uieprp) fi = [45 + 6,85 + 7]\ {65 + 6}
and (iii) f; —e; =i fori € F'(s).

o
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Proof. Take (k;,l;) (i € H(s)) to be the partiton of W(s) obtained in Lemma 2.14.
Then the 4s + 1 ordered pairs (e;, f;) (1 € F'(s)) can be taken as in the following:

(kiyds + 5+ 1) i€ H(s),
(2s+2+r6s+5—r) rell,s],
(Bs+3+rbs+4—1r) rell,s—1] (s > 2),

and (25 + 2,45+ 3), (35 + 3,75+ 5), (5 + 1,5s +4).
The 4s + 1 ordered pairs (e., f|) (i € F'(s)) can be taken as in the following:

(I+7r,8s+8—r) re(l,2s=2] (s >2),
(2s+3+7r6s+5—7) reil2s—1]

and (2s,6s +5), (25 + 3,65 +9), (25 + 1,65 + 8), (1,65 + 7). O
Lemma 2.17 Assume s > 1.

1. Let G(s) = (E[2,45)\ {25 + 2})U{1} and V(s) = [1,4s + 2]\ {25 + 1,4s + 1}.
Then there is a partition of V(s) into 2s ordered pairs (gi, hi) (1 € G(s)) such
that h; — g; =i for i € G(s).

2. Let ('(s) = O[3,4s + 1]U{2s + 2} and V'(s) = [1,4s + 3]\ {2s + 2}. Then

there is a partition of V'(s) into 25 + 1 ordered pairs (g,, h:) (i € G'(s)) such
that h; — g; =i fori € G'(s).

Proof. The 25 + 1 ordered pairs (g, h.) (i € G'(s)) can be taken as:

(I+rds+4—r) rell,2s],

and (1,2s + 3).
Now we construct (gi, ;) (1 € (G(s)) by distinguishing s into two cases.
Suppose s > 2 is even. Then take the pairs as:

(r,4s — 1) reOfl,s—3] (s >4),
(1+rds+3—7r) reO[l,s—1]andre[s+1,2s - 1],

and (25 + 2,25 +3), (s — 1,5+ 1).
Suppose s > 1 is odd. Then take the pairs as:

(I4+r4d4s4+3=r) reO[l.s—2](s>13),
(r,4s — 1) reO[l,s=2] (s>3)and r € [5,25—2] (s > 3),

and (25 —1,2s),(35 + 1,35 + 3). wl

Theorem 2.18 Let n > 2 be even. Let s > 1. Then there is a solution to
SPmn;4s +2,s+1).
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Proof. Let (¢, d;) (i € E(s)) be the partition of T(s) obtained in Lemma 2.10, (c,, d;)
(i € E'(s)) be the partition of T'(s) obtained in Lemma 2.15, (e;, f;) (i € F(s)),
(€5, f)) (i € F'(s)) be the partitions of U(s), U'(s) obtained in Lemma 2.16 and
(gish) (i € G(s)), (g;,h:) (i € G'(s)) be the partitions of V(s), V'(s) obtained in
Lemma 2.17.

Suppose n = 2t with t > 1. The following pairs form a solution to SP(n;4s +

2,54 1):

(e (2t — 1)(4s +2) — 2+ dy) i € E'(s),
(2t(4s +2) + i, (4t — D)(ds +2) = 2+ d;) 1 € E(s),

which produce the numbers d € D(n,4s +2) with (2t — 1)(4s +2) + 1 < d <
2(4s +2) — 1,

(¢ = D)(4s 4+ 2) + 25 + g, (t — 1)(4s + 2) + 25 + hy) i€ d'(s),
((Bt—1DAs+2)+2s+ D4+ g, B3t —=1Dds+2)+ (2s+ 1) + k) 7€ G(s),

which produce the numbers d € D(n,4s + 2) with 1 < d < 4s+ 1, and, when t > 2,
foreach 7 =0,1,...,t—2,

(GG4s+2)+ 25+ €, (2t —2 — j)(4s +2) — (25 +4) + f) i€ F'(s),
((2t+5)(4s+2)+ (25 + 1) + e, (4 =2 - 5)(4s +2) — (2s +3) + fi) i€ F(s),

which produce the numbers d € D(n,4s + 2) with (2t =3 - 25)(4s+2)+1 < d <
(2t — 1 —2j)(4s +2) - L. O

2.4 The Case u=0 (mod 4)

Assuming u = 4s (s > 2), we consider the problem SP(n;4s,z), where z = s
when n > 2 is even and x = s — 1 when n > 1 is odd. We first deal with the case
where n is even.

Lemma 2.19 Assume s > 2.

1. Let F(s) = (O[4s + 1,125 — 1] \ {8s + 1,10s — 1})U{10s} and U(s) =
[1,4s — 1JU([8s + 1,125 — 1]\ {9s, 118} U{7s,135}). Then there is a partition
of U(s) into 4s — | ordered pairs (e, f;) (i € F(s)) such that (1) Uieps) € =
(1,45 — 1], () Uiepo) fi = [8s + 1,125 — 1]\ {95,115} U{7s, 135} and (iii)
fi—ei=1 fori € F(s).

Let F'(s) = (El4s + 2,125 — 2]\ {85,10s})U{8s + 1,10s — 1} and U'(s) =
[1,4s — 1]U[8s + 1,125 — 1]. Then there is a partition of U'(s) into 4s — 1
ordered pairs (e, fi) (i € F'(s)) such that (i) Uier (s) e; = [1,4s — 1], (i)
Uier'(s) fi=[8s+ 1,125 — 1] and (iii) f; — e; =1 fori € F'(s).

o
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Proof. The 45 — 1 ordered pairs (¢, f;) ( € F(s)) can be taken as:

(147125 — 1) rell,s—1],
(s+1+4nlls—7r) rell,s—2](s>3),
(26 =1 4+7,10s—7r) rell,s—1],
(8s—14+r9—r) rell,s—1],

and (3s —1,7s),(4s — 1 10%) (1 10s + 1), (s +1,138s).
The 4s — 1 ordered pairs (e, f1) (i € F'(s)) can be taken as:

17

(r,125 — ) rel,s—1],
(s+r lls—2~7) r=1 (mod2)
with » € [1,s — 2] if s is odd, or
with r € [1,5 — 3] if s is even (s > 4),
(s+1+nr1ls+1—7r) r=1 (mod?2)
with r € [1,s — 2] if s is odd, or
with r € [1,s — 1] if s is even,
(28 + 7,108 — 1) rell,2s —1],

and (s,11s — 1), (25,105 + 1) if s is odd, or (5,115 — 1), (2s — 1,10s) if 5 is even. O
Lemma 2.20 Assume s > 2

1. Let G(s) = E[2,4s - 2)UO[4s+ 1,85 — 1}, V(s) = ([1,8s— 1]\ {4s, 7s}) U{9s}.
Then there is a partition of V(s) into 4s — 1 ordered pairs (g;, h:) (1 € G(s))
such that h; — g; =1 for i € G(s).

2. Let (I(s) = O1,4s — 1JU E[4s +2,8s — 2] and V'(s) = [1,8s — 1]\ {4s}. Then
there is a partition of V'(s) into 4s — 1 ordered pairs (gi,h:) (i € G'(s)) such
that b, — g, = i fori € G'(s).

Proof. The 45 — 1 ordered pairs (g;, h;) (¢ € G(s)) can be taken as:

(1478s—r) rell,s—1],
(s+14+nT7s—7r) rell,s—1],
(25 + 1,65 —1) re[l,2s —1],

and (1,6s), (s + 1,9s).
The 4s — 1 ordered pairs (g;,h:) (i € G'(s)) can be taken as:

(r,8s —r) T e
(2s = 1+r6s—r) rell,s],
Bs+L+rbs—r) re

and (3s,3s 4+ 1), (4s + 1,63). m]
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Theorem 2.21 Letn > 2 be even and s > 2. Then there is a solution to SP(n; 4s,s).

Proof. Let (e;, fi) (1 € F(s)), (e., f|) (i € F'(s)) be the partitions of U(s), U'(s)
obtained in Lemma 2.19 and (g;, h:) (1 € G(s)), (gi,h;) (i € G'(s)) those of V(s)
V'(s) obtained in Lemma 2.20.

Suppose n = 2t, ¢ > 1. Then the following pairs form a solution to SP(2t;4s,s):

b

(L= )(4) + g (- D) +K) i€ C(s),
(3t = 1)(4s) 4 gi, (3t — 1)(4s) + h;) i € G(s),

which produce the numbers d € D(2t,4s) with 1 < d < 2(4s) — 1, and, when ¢ > 2,
foreach y=0,1,...,t -2,

(7(4s) + e, (2t =3 — 5)(4s) + f)) i€ F'(s),
(28 + 5)(4s) + e, (4 = 3= j)(ds) + £}) i € F(s),
which produce the numbers d € D(2t,4s) with (2t — 2 — 25)(4s) + 1 < d <
(2t — 25)(4s) — 1. ]
Now we deal with the case when n is odd.

Lemma 2.22 Assume s > 2. Let H(s) = {4} JO[5,2s+1] and W (s) = [1,2s+3]\
{s,8 42,254+ 1}. Then there is a partition of W(s) into s ordered pairs (ki sl)) (i €
H(s)) such that (i) Uiep(oy ki = [1, s+ 1]\ {s}, (i) Uier(sli = [s+3,2s+3]\{2s+1}
and (i) l; — k; = i fori € H(s).

Proof. Case (i): s=1 (mod4),s=4p+1,p>1.

(r,8p+5—r1) rell,dp—3], r=1 (mod 2),
(I1+7r8p—7) re[l,dp—-T, r=1 (mod4) (p>2),
(B3+7r84+6—-7r) re[l,dp—3], r=1 (mod 4),

and (4p +2,4p +6), (4p — 1,4p + 4), (dp — 2,4p + 5).
Case (ii): s =2 (mod4),s=4p+2,p>0.

(r,8p+7—1) re[ldp+1], r
(I+78+2-7) relldp-3], r
B+r8p+8—r) re(ldp-13], r

(mod 2),
(mod 4) (p > 1),
(mod 4) (p > 1),

e

and (4p + 3,4p + 7).
Case (iii): s =3 (mod4), s=4p+3,p>0.

(r,8p+9—r) relldp+1, r=1 (mod?2),
(I+r8+4~r) reldp-3],r=1 (mod 4) (p > 1),
B+nr8p+10-r) re[ldp+1], r=1 (mod 4),

and (4p + 2,4p + 6).
Case (iv): s =0 (mod 4), s =4p, p > 1.
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(3+r8p-—r) rel,dp—5], r=1 (mod 2) (p > 2),
24 r8p~3~r) re[lldp—T, r=1 (mod4) (p>2),
(4+r8p+3—7) relldp-3], r=1 (mod 4),

and (4p — 1,4p + 3),(1,8p), (2,8p + 3). o

Lemma 2.23 Assume s > 2.

1. Let F(s) = (Ol4s + 1,125 — 1]\ {6s + 1,10s + 1})U{4s + 2} and U(s) =
(12,45 + 1]\ {4sP)U(8s + 1,125 — 1]\ {95 — 1,11s + 1}U{7s + 1,13s — 1}).
Then there is a partition of U(s) into 4s — 1 ordered pairs (e, fi) (1 € F(s))
such that (’L) Uzep(s) € = [2,4% + 1} \ {45}, (&l) UiEF(s] j‘2 = ([8‘2 + 1, 128 — 1] \
{9s — 1, 11s + 1} U{7s + 1,135 — 1} and (ui) fi —e; = 4 for i € F(s).

e

Let F'(s) = (EJ4s + 2,125 — 2]\ {4s + 2,8s})U{6s + 1,105 + 1} and U'(s) =
[1,4s — JU([8s + 2,125 + 1]\ {125}). Then there is a partition of U'(s) into
4s — 1 orderc;d pairs (¢;, f;) (1 € F(s)) such that (,z) Uilepl(a) €, = [1,4/5 - 1],
(1) Uier (o) fi = [85 + 2,125 + 1]\ {125} and (i) f; — ¢; =1 fori € F(s).

Proof. Let (k;,l;) (1 € H(s)) be the partition of W(s) defined in Lemma 2.22. Then
the 45 — 1 ordered pairs (¢, fi) (i € F(s)) can be taken as:

(147128 —7) rell,s—=2] (s> 3),
(s+rlls+1—r) rell,2s—1],
(Bs+k;,7s—2+41) 1€ H(s),

and (3s,7s+1),(s,13s — 1).
The 4s — 1 ordered pairs (e, f,) (i € F'(s)) can be taken as:

(r,125 — 1) rell,2s—1],
2s+14+r10s+1—7) refl,2s—2],

and (2s + 1,85 4+ 2), (25,125 + 1).
Lemma 2.24 Assume s > 2.

1. Let G(s) = O[1,4s — 1]\ {2s + 1} and V(s) = ([2,4s — 1]\ {3s + 1}) U{Bs — 1 }.
Then there is a partition of V(s) into 2s — 1 ordered pairs (gi, ki) (i € G(s))
such that h; — g; = 1 for i € G(s).

IS

Let G'(s) = E[2,4s — 2]U{2s + 1} and V'(s) = [1,4s — 1]U{4s + 1}. Then
there is a partition of V'(s) into 2s ordered pairs (g;,h;) (i € G'(s)) such that
hi—g: =i fori€ G'(s).
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Proof. The 2s — 1 ordered pairs (gi,h:) (¢ € G(s)) can be taken as:
(1 47r4s—7) re(l,s—2] (s> 3),
(s+7r3s+1—7r) rell,s],

and (s,5s — 1).
The 2s ordered pairs (g;,k.) (i € G'(s)) can be taken as:

(r,4s —r) re[l,2s—1],
and (2s,4s + 1). m]

Theorem 2.25 Let n > 1 be odd and s > 2. Then there is a solution to
SPm;ds,s —1).

Proof. Let (e, f:) (i € F(s)), (e., f;) (i € F'(s)) be the partitions of U(s), U'(s)
obtained in Lemma 2.23 and (g;, k) (i € G(s)), (g;,h:) (i € G'(s)) be those of V(s),
V'(s) obtained in Lemma 2.24.

Suppose n = 2t 4+ 1, ¢t > 0. Then the following pairs form a solution to
SP(2t + 1;4s,5 — 1):

(t(4s) + gi, t(4s) + hy) i € G'(s),
((3t+ 1)(4s) + ¢i, (3t + 1)(4s) + hy) € G(s),

which produce the numbers d € D(2t + 1,4s) such that 1 < d < 4s — 1, and, when
t > 1, for each j =0,1,...,t—1,

(7(48) + €, (2t — 2~ j)(4s) + f;) i€ F'(s),
(2t +1+7)(4s) + e, (4 =1 —j)(4s) + fi) i€ F(s),

which produce the numbers d € D(2t + 1,4s) such that (2t — 1 — 2))(4s) + 1 < d <
(26 41 — 25)(4s) — 1.

[m]

3 Conclusions

We now consider the existence of a 3—CGDD of type (6n)* when u = 2,3 (mod 4)
and n is odd. A 3 — CGDD of this type can not exist.

Lemma 3.1 There is no 3— CGDD of type (6n)* whenever u = 2,3  (mod 4) and
n is odd.

Proof. Assume thereis a 3 — CGDD (V,G,B) of type (6n)*. Without loss of gen-

erality, we may assume that V = Zg,, x {1,2,...,u}, G = {Ze, x {s}}s = 1,2,...,u}
and the cyclic automorphism is

m=(0111...(6n—1)1)...(0,1,...(6n —1),).
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The automorphism 7 yields a partition of B into equivalence classes, namely the
orbits of m, such that By, B; € B are in the same class if and only if n*(B;) = B; for
some integer «. Let D be a set of representatives of the orbits of 7. We claim that
D covers each of the mixed differences in V = Zg, x {1,2,...,u} exactly once.

Since each pair {0;,z;} (¢ € Zs,) is contained in one block B in B, each of the
pairs {y:, (¢+y);} is contained in a block which is in the orbit containing B. Therefore
the representative block in D of the orbit containing B covers the mixed difference
xj;. Furthermore, each mixed difference in V = Zg, x {1,2,...,u} is covered by at
most one block in D. For otherwise, suppose By, By € D both cover a difference z;;.
Without loss of generality, we assume that By = {a;, b;, ek}, By = {d;, ¢, fe}. Then
b—a=¢e¢—d=z. Consequently,

B = {(a+d—a),(b+d—a),(c+d—a)}
{di, 5, (c+ d ~ a)}

Il

contains {d;,e;}. Since 7% *(B;) and B, are in different orbits they are distinct.
Then the pair {d;,¢;} is contained in two distinct blocks in B, which contradicts
that (V,G,B)is a GDD.

Now consider a block B = {a;,b;,c;} in D. Note that the mixed difference z;;
is equal to (—z)j. B covers six differences (£(a — b))y, (£(b — )k, (£(a — ¢))u-
Obviously, (a — b) + (b —¢) = (a — ¢). Since *(a — b) (respectively, +(b — ¢),
+(a — ¢)) are both even or both odd in Z,, the number of odd differences covered
by B is either 0 or 4. Consequently, the total number of odd differences covered
by blocks in D is a multiple of 4. Since D covers each of the mixed differences in
V = Zgnx{1,2,...,u} exactly once, we conclude that the total number of odd mixed
differences in V is divisible by 4. An easy calculation shows that the total number of
odd mixed differences in V is 2(’2‘) 3n = 3nu(u — 1) and this number is not divisible
by 4 when u = 2,3 (mod 4) and n is odd. Therefore there is no 3— CGDD of type
(6n)* whenever u = 2,3 (mod 4) and n is odd. O

Evenif n is even, a 3— CG/DD of type (6n)® does not exist. This is an immediate
consequence of the following result, which appeared in a preliminary version of [1] in
terms of Latin squares.

Lemma 3.2 There is no 3 — CGDD of type ¢° whenever g is even.

Proof. Assume (V,G,B)is a 3 —~ CGDD of type ¢°. As in Lemma 3.1, we assume
that V = 7, x{1,2,3}, ¢ = {Z, x {i}|¢ = 1,2,3} and the cyclic automorphism is

7'(':(0111(g——l)l)(o:glg(g—'l)g)

Let {01,72, (z,)3}, where z, € Z,, be the block in B containing the pair {0;,r;} for
each r € Z,. Define

D = ({04,732, (2 )5}l € Z,}.
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Clearly, each block in D is in a distinct orbit of 7. Since each orbit of # has cardinality
g and |B| = ¢*, 7 has g orbits. Therefore D is a set of representatives of the orbits
of 7. Similar to Lemma 3.1, we see that D covers each of the mixed differences in
V =7, x{1,2,3} exactly once. This implies that z, # x,, , — r # x, — s for each
7,5 € Zg with r # s. In particular, z, # o, 2, —r # 2o for each r € Z, with r # 0.
Therefore (with arithmetic taken in the group Z,) 3 ¢4 Ao} &r = Z,,Ezg\{o}(z, —r),
and consequently we get Y.cz (037 = 0. But this is true only when the order g of
Zg4 is odd. This establishes the result. |

Lemma 3.1, Lemma 3.2 and results in the previous sections can be used to com-
pletely determine the spectrum of a 3 — C'GDD of type (6n)*.

Theorem 3.3 Therc is a 3 — CGDD of type (6n)* of and only if (i) u > 4 and (ii)
u 2,3 (mod 4) when n is odd.

Proof. The necessity follows from Lemma 3.1 and Lemma 3.2.

For the sufficiency, Example 1.2 establishes a 3 — CGDD of type (6n)* for u = 4
and any integer n > 1; For the remaining cases of n and v, a solution to SP(n,u) or
to SP(n; u, ), for some z, is established in Example 2.2, Theorem 2.9, Theorem 2.13,
Theorem 2.18, Theorem 2.21 and Theorem 2.25 and therefore successively applying
Lemma 2.3 and Lemma 2.1 establishes the existence of a 3 — CGDD of type (6n)“
in these cases.
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