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Abstract 

We determine a necessary and sufficient condition for the existence 
of a cyclic {3}-GDD with a uniform group size 6n. This provides a 
fundamental class of ingredients for some recursive constructions which 
settle existence of k-rotational Steiner triple systems completely. 

1 Preliminaries 

A group divisible design (GDD) is an ordered triple (V,Q,B), where V is a finite 
Q a partition of V into groups and B a set of subsets of V, called blocks, such that 
each pair of elements from different groups appears in exactly one block and no block 
contains two elements from a common group. The group type, or simply the type, of 
a GDD (V,Q,B) is denoted g~lg~2 ... g~1n when Q contains exactly Ui (1::; i::; m) 
groups of size gi.. When the block sizes of a GDD all appear in an integer set K the 
GDD is a K - GDD. A {k} - GDD is simply denoted k GDD. 

An automorphism of a G D D (V, g, B) is a permutation 7r on V with the property 
that 7r(B) E B for each BE B. A GDD (V, Q, B) is cyclic if it has an automorphism 
which permutes the elements in each group G E Q in a IGI-cycle. A cyclic k - GDD 
is denoted k - CGDD. 

Group divisible designs are essential ingredients in constructing many combi­
natorial designs. We use group divisible designs with certain automorphisms in 
constructing other designs with relevant automorphisms. A Steiner triple system of 
order v is k-rotational if it admits an automorphism consisting of one fixed point and 
k cycles of length (v - 1)/ k. In [3], recursive constructions for k-rotational Steiner 
triple systems are developed to settle existence completely. In this paper, we inves­
tigate the existence of 3 - CGDDs of type (6nY" for integers u 2: 3, n 2: 1. These 
3 - C G D Ds are then used as an ingredient for the recursive constructions appearing 
in [3]. 
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Throughout this paper, Zg denotes the residue class group modulo 9 with residue 
classes {O, 1, ... , 9 -I}. When causing no ambiguity, [i,j] denotes the set of integers 
I! such that i ::; I! ~ j, O[i,j] (or E[i,j]) the set of odd (or even) integers in [i,j], and 
Xi denotes an element (x, i) in the set Zg x {i}. 

We first introduce the following basic constructions. The first one is trivial from 
the point of view of the difference methods. (For terminology of the difference meth­
ods the reader is referred to [2].) 

Lemma 1.1 Let V x {I, 2, .. , u}. Define G i Zg x {i} for i = 1,2, ... ) u. 
Suppose 'D is a collection of 3-subsets of V, such that (i) no member of'D contains 
two elements from the same G i and (ii) 'D covers each possible mixed (i, j) difference 
x, or simply Xij, exactly once l where X E and 1 ~ i f- j u. Then developing 
all the members of'D over Zg yields the set of blocks of a cyclic 3 G D D of type gU 
with point set V and groups Gl, Gz) ... , The members of'D are called its base 
blocks (over Zg). 

Proof. Let 13 be the set of blocks obtained by developing members of 'D over Zg, 
9 {GIl Gz,. ,Gu }. Obviously, (V,Q,B) has an automorphism 

and therefore it is cyclic. 
Let Gj be distinct groups, and let Xi E and Yj E G j . Then there is exactly 

one D 'D which covers the mixed difference (y X )ji. Without loss of generality, 
we assume D {di1 ej, fk}, where 1 ~ i,j, k u are distinct, d, e, f E Zg and 
e d y x. Then 'Jrx-d(D) E 13. But 'Jrx-d(D) {Xi,Yj, (f + X - d)k} ;2 {XilYj}. 

Therefore (V, 9 ,13) is a 3 G D D of type gU. 0 

The following example (c.f. Lemma 5.1, [4]) is an easy application of this con­
struction with u 4. 

Example 1.2 

Let n 2:: 1 be an integer. The following base blocks cover each of the mixed differences 
in ZSn {I, 2, 3, 4} exactly once and therefore developing them over ZSn yields a 
3 CGDn of type (6n)4: 

{Ol, rz, (2r h} 
{02,r3,(2r + 1)4} 
{03,r4,(2r 1)1} 
{041 rl, (2r)z} 

r E [0, 3n - 1]; 
r E [3n,6n -1]; 
r E [1,3n]j 
r E [3n, 6n - 1]. 

Lemma 1.3 Consider the residue class group Zgu. Suppose there exists a set 'D of 
3-subsets of Zgu such that the members of'D cover each possible non-zero difference 
d E Zgu exactly once for d ::f. 0 (mod u) and no member of'D covers a difference d 
with d == 0 (mod u). Then there exists a 3 - CGDD of type gUo 
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Proof. We construct a 3 CGDD on V Zg x {O, 1, ... , U I} as follows. 
First note that each integer x with 0 ::; x ::; gu 1 can be uniquely expressed 

as x Xl U + X2, where Xl, X2 are integers and 0 Xl::; 9 1,0::; X2 ::; U - 1. 
Therefore each element x = Xl U + X2 E Zgu corresponds to an element (Xl, X2) E V. 
Now for each D {XIU + X2, YIU +Y2, ZIU + Z2} E 1), where 0 ::; Xl, Yl, Zl ::; 9 1,0::; 
Xz, Y2, Z2 U 1, we construct U 3-sets 

where the arithmetic is taken modulo u. Clearly, each Di ~ V. We claim that 

A= U{DiIO::;i U I} 
DEIJ 

is the set of base blocks of a 3 - CGDD of type gU on V with groups Gi x {i} 
(i=O,l, .. ,u 1). 

Suppose Di {( Xl, X2 + i), (Yl, Y2 + i), (Zl, Z2 + in E A, and Di contains two 
elements, say (Xl, X2 + i), (Y1, Y2 + i) from the same group G j , equivalently, X2 + 
Y2 +i == j (mod u). Then (YIU+Y2)-(XIU+X2) (Y1U+Y2+i) (XIU+X2 +i) 0 
(mod u). So the member D {XIU+X2,YIU+Y2,ZlU+Z2} E 1) covers the difference 
(Y1U + Y2) (XIU + X2) == 0 (mod u). That is a contradiction. 

Now suppose Oqp = (0, q) - (O,p) = (0, q p) is a mixed difference across Zg 
{p}, x{q} with 0 p<q::;u-1,0::;0 9 1. Thend ou+(q p)isan 
element of Zgu and d 1= 0 (mod u). By the assumption on 1), there is exactly one 
D E 1) which covers the difference d exactly once. Without loss of generality, we 
assume D {XIU + X2,YIU + Y2,ZIU + Z2} and (YIU + Y2) - (X1U + X2) d. Then 
Yl - Xl 0, Y2 X2 = q - p and so 

Dp - X2 {(Xl, X2 + (p - X2)), (Yl, Y2 + (p - X2)), (Zl, Z2 + (p X2)n 
{(Xl,P), (Yl, q), (Zl' Z2 + (p - X2n 

covers Oqp since (Yl, q) (Xl, p) = (0, q p). 
Applying Lemma 1.1 then establishes our claim. 0 

The guiding principle of the construction in Lemma 1.3 is that we identify each 
element x XIU + X2 E Zgu (0 ::; Xl ::; 9 - 1) with an element (Xl, X2) E Zg x {X2}, 
for a fixed X2. Taking G {x E ZgulX == 0 (mod un, a subgroup of Zgu of order g, 
each Gj = Zg x {j} is nothing but a copy of the coset G + j and all the base blocks 
Di E A (i 0, 1, ... ,U - 1) are simply obtained by developing the corresponding 
D E 1) over Zu. Therefore, the 3 - CGDD resulting from the construction can be 
viewed as on Zgu with groups G + j (j = 0,1, ... ,U - 1), 1) being its generating 
blocks, which we call its base blocks (over Zgu). 

2 Constructions from Skolem Sequences 

In this section we investigate the applications of Lemma 1.3 to constructing 3 -
CGDDs of type (6n)U with U ~ 4, where we assume U = 4s,4s + 1,4s + 2,4s + 3 
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according to the congruence class u falls in. The technique we use is an analogue to 
that appearing in [5], namely by establishing certain Skolem sequences. According 
to Lemma 1.3, to establish existence of a 3 - CGDD of type (6nyL we may attempt 
to partition all the differences d E ZSnu with d t 0 (mod u) into base blocks (over 
ZSnu). Since if a base block covers a difference d then it also covers -d, we only need 
to consider the differences 1 ::; d ::; 3nu such that d t= 0 (mod u). To be precise, 
we have the following Heffter-type problem: 

HP(n,u): Partition {l,2, ... ,3nu} \ {mull::; m ~ 3n} into n(u 
{aT' bT, Cr} for r 1,2, ... ,n(u - 1) such that a.,. + bT Cr or aT + b.,. + c.,. 

1) triples 
(6n)u. 

Lemma 2.1 If there is a solution to HP(n, u), then there is a 3 CGDD of type 
(6n)u. 

Proof. Let {aTl bT, c.,.} for r 1,2, . ,n(u-1) be a solution to HP(n,u). Construct 
triples {O, aT, Cr} for r such that a.,. + b.,. Cr, and {O, a.,., -c.,.} for r such that aT + 
b.,. + CT (6n )u. Then these triples cover each of the differences d E with d 0 
(mod u) exactly once. Applying Lemma we the result. 0 

A solution to HP(n, u) may be obtained by solving the following Skolem-type 
problem. Take 

D(n, u) {1, 2, ... nul \ {mull::; m n}, 

S(n,u) {1,2, . . ,2nu}\{mull m 2n}, 

and consider 

SP(n,u): Partition S(n,u) into n(u - 1) ordered 
such that bT aT = r for each r. 

Example 2.2 Let t 2:: 1 be an integer. There is a solution to SP(2t,5). 

In this case, D(2t, 5) = {1, 2, .. , lOt} \ {5, 10, .. , lOt}, S(2t, 5) {1,2, .. , 20t} \ 
{5, 10, .. ,20t}. To produce differences d E D(2t,5), take the following pairs: 

d 1,9 (mod 10) (lOt 1,20t - 2) and 
(2 + r, lOt - 5 - r) r E [1, 5t 4],'r == 1,2 (mod 5); 

d 2,8 (mod 10) . (10t - 3 + r, 20t - 3 - r) r E [1,5t -l],r == 1,4 (mod 5); 
d 3, 7 (mod 10) : ( 1 Ot + 1 + r, 20t r) r E [1,5t - 2],r 1,3 (mod 5); 
d 4,6 (mod 10) : ( r, lOt - 2 - r) r E [1, 5t - 3], r 1,2 (mod 5). 

A variation of the problem SP(n, u) may be considered for obtaining solutions to 
HP(n,u). Taking D(n,u) to be the same as above, modifying S(n,u) to 

S(n;u,x) = {1,2, ... ,2nu} \ {mull m ~ 2n} \ {2nu - x}U{2nu + x}, 

where 1 ~ x ~ 2nu, x t= 0 (mod u), we obtain the following problem. 

SP( n; u, x): Partition Sen; u, x) into n( u-l) ordered pairs (aT' bT) for r E D(n, u) 
such that bT aT r for each r. 
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Lemma 2.3 [Jthen: is a solution to SP(n,u) or SP(n;u,x), then there is a solution 
to HP(n, u). 

Proof. Suppose (a 1' ,b1') (1' E D(n,u)) is a solution to SP(n;u,x). Then there exists 
1'* E D(n,u) such that b1'* 2rw+x. Construct triple {1',nu+a1',nu+b1' } for each 
r' E D(n,u) with T =f r* and, for l' = r*, construct the triple {1'*,nu + a1'*,3nu - x}. 
We have l' + (nu + a1') = (nu + b1' ) for l' =f r*, and 1'* + (nu + a1'*) + (3nu x) = 6nu 
because b1'" a1'* r* implies (3nu + (nu + ar .) 1''''. It is also easy to check 
that these triples form a partition to the set {I, 2, ... , :~nu} \ {mull rn :3n} and 
therefore a solution to HP(n, u). 

Now suppose (ar,br·) (1' E D(n,u)) is solution to SP(n,u). Similarly, triples 
{r, nu + an nu + br·} (1' E D(n,u)) form a solution to HP(n, 0 

From Lemma 2.1 and Lemma Wt~ that to construct a 3 - CODD of type 
(6n)U, we may solve problem SP(n,u) or SP(n;u,x). Example 2.2 establishes a 
solution to SP(n, when n = 2t (t ~ 1) and u 5 and therefore the existence of a 
3 - CODD of type (12t)5 for each t 1. We now deal with the other cases for these 
:3 - CODDs considering a problem SP(n; u, with a properly chosen x in each 
case. 

2.1 The Case u 1 (lHad 4) 

Assuming u + 1 (8 2 wlwn n 2 even and > 1 when n 1 is odd) 
and chousing ;r Wf' consider the problem SP( n; 48 + 1,8). We first partition 
8(n;48 + 1,$) into ,',\(n;48 + 1,8) and 8z(n;4s + 1, where 

(n; +1,s) {1,2, .. ,n(4$+1)}\{m(48+1)11 m:=::;n}, 

4$ + 1,8) = 8(n;48 + 1,8) \ 81(71,;48 + 1, 

Then we use the numbers in 5\ (n; 4$ + 1,..,) to form ordered pairs which produce as 
differences all tlw odd (or even) numbers in D(n, 48 + 1) and those in .)2 ( n; 48 + 1,8) 
all the even (or odd) numbers in D(n,48 + 1) when n is odd (or even). To construct 
these ordered pairs we first introduce some basic ingredients. 
Lemma 2.4 Assumc 1. Let E(8) = E[2, and T(.s) = ([1,48]\ 
{:38+ I}) U{,)8+ I}. Thcn ther'c i8 a pa7'i'ition ofT(s) into 28 orde1'ed pairs (Ci' di) (i E 
E(8)) such that (i) UiEE(s)Ci = [1,28], (ii) UiEE(s)di = ([28+1,48]\{38+1})U{.58+1} 
and (iii) di - Ci i Jor i E E(8). 

Proof. Take the pairs as: 

(1 + 1',48 + 1 - 1') l' E [1,.s - 1] (.s ~ 2) and l' E [.'0 + 1, 2s - 1] (8 ~ 2), 

and (1,28 + 1),(8 + 1"S.s + 1). o 

Lemma 2.5 Ass'umc 8 1. Let F(s) = E[2,8s] and U(s) = [1,88 + 2] \ {28 + 1, 
68 + 2}. Thcn thcTe is a partition oj U(8) into 48 ordeTcd pair8 (ei,Ji) (i E F(8)) 
such that (i) UiEF(s) Ci = [1,48 + 1] \ {28 + I}, (ii) UiEF(s) Ji = [4$ + 2,88 + 2] \ {68 + 2} 
and (iii) Ji Ci = i JOT i E F(8). 
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Proof. Take the pairs 

(1 + 1', 88 + :J r') 
(28 + 1 + r',68 + 1 

l' E [1,.<; 
1') r' E [1, 

1](.s 2)andr'E[8+1,28 1](8:2:2), 
1] (8:2: 2) and 7' E [8 + 1,28 - 1] (8:2: 2), 

and (48 + 1,68 + 1), (8 + 1, .58 + 1), (:J8 + 1,78 + :J), (1, 6.s + 3). o 

Lenlma 2.6 A.s.sumf.5 2. Let = O[l,4.s 1] andV(s) [1,4.s+1]\{2.s+1}. 
Then there i.s a partition of V(8) into 28 ordf:red pair'S (gi, hi) (i E G(s)) such that 
hi - gi i for i E G(.s). 

Proof. Take the pairs 

and 38 + 1), (1, 

(1 + 7',48 2 
(s + 1 + 1" :38 

r) 1" [1, 
1') l' E [1,8 2] (s :3), 

o 
The sequences of ordered pairs established in Lemma 2.4 2.6 can be used to build 

up a partition of 48 + 1,8) into 2n8 ordered pairs which produce all the even 
numbers d E D(n, 48+ 1) when n is odd or all the odd numbers d E D(n, 48+ 1) when 
n is even 2 in the latter We illustrate our idea in the following 
examples, where (ci,d i ) (i E E(8)), fi) (i E F(.s)) and (gi,hd (i E are 
defined, n~spectively, as in Lemma Lemma 2 . .1 and Lemma 2.6. 

Example 2.7 

(For a:3 CGDD of type 64s+1 with 
To partition 8A 1; 48 + 1,8) into 28 ordered pairs which produce all even numbers 

in D( 1,48 + 1), use the single "brick" 

(48 + 1 + 48 + 1 + di ) i E E ( .<; ). 

(For :3 CO D D of type 184s+1 with 1) 
To partition 82 (:3; 48 + 1,8) into 68 ordered pairs which produce all even numbers 

in D(:3, 48 + 1), pile the "brick" 

(128 + :3 + 208 + .5 + di ) i E E ( s ) 

on top of the "brick" 

(148 +:3 + 148 +:3 + fi) i E F(8). 

The top "brick" produces ewm differences 88 + 4,88 + 6, ... , 128 + 2 and the 
bottom even differences 2,4, ... ,88. 
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Example 2.8 

(For :3 COD D of type 1248+1 with.<; 2) 
To partition 82 (2;48 + 1,8) into 48 ordered pairs which produce all odd numbers 

in D(2,48 + 1), pile the "brick" 

i E E(.s) 

on top of the "brick" 

(10.<; + 2 + fji, lOs + 2 + i E 

The top "brick" odd differences + :3, + fJ, ... ,88 + 1 and the bottom 
odd differences 1, ;3,. .,48 - 1. 

(For a:3 COD D of type 2448+1 with 2) 
To partition 48 + 1,8) into ordered pairs which produce all odd numbers 

in D( 4,48 + 1), pile the following "bricks": 

(168 + 4 + 288 + 7 + di ) E(.5), 
+ 4 + 228 + ,) + Ji) i E F(.5), 
+ fJ + gi, 228 + S + hd i E 

The differences produced by tlw these "bricks" are, respectively, 128 + ,), 
128 + 7, ... ,168 + :3, and 4.s + :3,48 + ,), ... ,128 + 1, and 1,:3, ... ,48 1. 

Theorem 2.9 There i.5 a .solution to SP(nj 4.'3 + 1,.'3) Jor 2:: 1 when 11, is odd and 
8 2:: 2 when n is even. 

Proof. Let (ci,di ) (i E E(8)), (Ci,Ji) (i E F(8)) and (9i,hi) (i E G(8)) be, respec­
tively, those partitions of T(8), U(.s) and V(8) obtained in Lemma 2.4, Lemma 2.,) 

and Lemma 2.6. 
Suppose n is odd and n 2t + 1, t 2: O. To produce all the odd numbers in 

D(2t + 1,48 + 1), take the following pairs: 

( 1', (2t + 1) ( 4 8 + 1) r) l' E [1, t (48 + 1) + 2.5], 1':t= 0 ( mod 4.'3 + 1). 

To produce all the even numbers in D(2t + 1,4.'3 + 1), take the following pairs: 

((2t + 1)(4.5 + 1) + Ci, (4t + 1)(48 + 1) + di ) i E E(8), 

and, when t 2:: 1, for each j = 0,1,2, ... , t 1, 

((2t + 1 + j)(48 + 1) + 28 + Ci, (4t - j)(48 + 1) (28 + 1) + Ii) i E F(8). 

Suppose n is even and n = 2t, t 2: 1. To produce all the even numbers in 
D(2t, 48 + 1), take the following pairs: 
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(7', 2t(48 + 1) T') T' E [1, t(4,'; + 1) 1], T' =f.: 0 (luod 4,'; + 1). 

To produce all the odd numbers in D(2t, + 1), take the following pairs: 

(2t(48 + 1) + (4t - 1)(48 + 1) + di ) i E E(s), 
((at 1)(4,'; + 1) + 28 + gi, (:3t 1)(4,'; + 1) + 2,'; + hi) i E G(s), 

and, when t 2, for each j = 0, 1, .. , t - 2, 

((2t + j)(48 + ) + + {:1, (4t 2 - j)(48 + 1)- + 1) + Ji) i E F (s ) . 

2.2 The Case u - 3 (nlod 4) 

o 

Assuming u 4,'; + :~ (s 1) and choosing x .5 + 1, we consider the problem 
SP(n; 48 + :3,8 + 1) when n 2 is even. We first partition S(n; 48 + 3,3 + 1) into 
5\(n;48 + :3,8 + 1) and 82(n:4.s + :3,B + 1), where 

(n;48 +:3, +1)={1.2, ... ,n(48+;~)}\{rn(4.s+:3)11 m:=:;n}, 

4.s+3, +1)\Sl(n;4s+3, +1). 

Then we use the numbers in 4.s + :3, + 1) to form ordered pairs which produce 
as differences all the eveul1umbers in D(n,4.s+:3) and those in S'2(n;48+3,s+ 1) all 
the odd numbers in D(n, 4.s + :3). To construct these ordered pairs we first introduce 
some basic ingredients. 
Lemma 2.10 Assumc 8 ~ 1 Let E(.s) 0[:3,4s + 3] and T(.s) = ([1,43 + 3]\ 
{2.s + :3, :38 + :3}) U{.5.s + .5}. Then there i8 a partition oj T(8) into 2.s + 1 or­
dered pairs (Ci, di ) (i E E(.~)) such that (i) UiEE(s) Ci = [1,28 + 1], (ii) UiEE(s) di 

+ 2,48 + 3] \ {28 + :3, :38 + :3}) U{,5.s +.1} and (iii) di - Ci i Jor i E E(8). 

Proof. Take the pairs as: 

(1 + 7',48 + 4 - 7') 
(8 + 2 + 7',38 + 3 

and (1,28 + 2), (8 + 2, .5.s + .5). 

7' E [1,8], 
T') r' E [1,.s 1] (.s 2: 2), 

o 

Lemlna 2.11 Assume 8 L Let F(8) = 0[:3,88 + ,5] and U(.s) = [1,8.5 + 8]\ 
{28 + 2,48 +.5, 68 + (), 88 + 7}. Then therc is a partition of U(8) into 48 + 2 ordered 
pairs (ei, Ji) (i E F(8)) such that (i) UiEF(s) Ci [1,48 + :3] \ {28 + 2}, (ii) UiEF(s) Ji = 
[48 + 4,88 + 8] \ {48 + 5,68 + 6,88 + 7} and (iii) Ji - ei = i for i E F(8). 
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Proof. Take the pairs as: 

(1',88+7 r) r'E[l, 1](8~2), 
(8+7',78+7 r') TE[1,8], 
(28 + :3 + r, 68 + 6 - r) r' E [1, s], 
(38+4+r,58+Ei-r) l' [1,8-1] (8 ~2), 

and (28 +:3,48 + 4), (:38 + 4,78 + 7), (8,58 + (5), (28 + 1,8$ + o 

Lemma 2.12 Assume 2:: 1. Let G($) 0[1,48 + 1] and V(8) [1,48 + 4] \ 
{28 + 2,48 + :3}. Then there i8 a partition of V(.<;) into 28 + 1 ordered pair's (gi,hi) 
(i E 0(8)) 8uch that hi - gi i for i E 

Proof. Take the pairs as: 

(r', 48 + 3 r) l' E [1, 8], 
($+2+1',:38+3-1') rE [1,3-1] (3 2), 

and(s+1,8+ + :3,4$ + 4). 

Theorem 2.13 Let n ~ L be (vtn. Let 
SP(n;48 + :3,8 + 1). 

1. Then there is a solution to 

o 

Proof. Assume n = 2t with t 1. The ordered pairs which produce all the even 
numbers in D(n,48 + :3) can be taken as: 

(1', 2t( 48 + a) - 1') r E [1, t( 48 + 3) IJ, l' =t ° (mod 4.<; + 3). 

Now let (ci,di ) (i E E(.<;)), (ei,fi) (i E F(.s)) and (gi, hi) (i E G(8)) be those 
partitions of T(.<;), U(8) and V(8) as defined in Lemma 2.10, Lemma 2.11 and Lemma 
2.12. Then the following ordered pairs produce all the odd numbers in D(n,4s + :3): 

(2t(4.<; + :3) + Ci, (4t - 1 + :3) - 1 + eli) 
((:3t - 1)(48 + :3) + (28 + l) + gi, (:3t 1)(4.<; + :3) + 

and, when t ~ 2, for each j = 0, 1, ... ,t - 2, 

i E E(8), 
+ 1) + hi) i E G (.<; ), 

((2t + j)(4s + 3) + (2s + 1) + ei, (4t 2 - j)(43 +:3) - (2s + 3) + fi) i E F(8). 

2.3 The Case 1l == 2 (nlod 4) 

o 

Assuming 1l 48 + 2 (8 1) and choosing x = .s + 1, we consider the problem 
SP(n; 4.5 + 2,.5 + 1) when n 2 is even. 
Lemma 2.14 AS.5ume.5 ~ 1. Let H(.s) = (0[:3, 4.s-1] \ {2.s + 1}) U{4} and W(.s) = 
[1,4s + 1] \ {.s + 1,3.s,4.s}. Then the1'e is a partition of W(.s) into 2s - 1 ordered 
pairs (ki,li) (i E H(.s)) such that (i) UiEH(s)ki = [1,2.s] \ {.s + 1}, (ii) UiEH(s)Ii = 
[2.s + 1,4s + 1] \ {:3.s,4.s} and (iii) li - ki = i fo1' i E H(s). 
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Proof. We construct the orden~d according to == 0, 1,2,3 (mod 4) in the 
following. 

Case (i): 0 (mod 4). 
oS 4: (6, 9), (7, 11), l;~), (:3, 10), (4, 1.1), (1, 14), (2, 1 7) ; 
.5 H, 4p, p 2: 

(1', 16p - 1 - 1') 7' E 0[1,4p-
(1+1',16p+2-1') l'EO[I,4p 1], 

which produce differences dE H(4p) such that + 3 :::; d 16p 1, 

4 - 1') l' 1 (1110d 4) (p :3), 
1') l' r 0 (mod 4) (p 3), 

which produce diff(~n~nces d H( 4p) snch that 7 d 8p - 11, and 

(4p + 2, 12p + 1), (4p 1,12p 4), (4p + 12p 
(4p + 8, ]), (Hp - 2, 8p + :3), (8p 3,8p + 1), 

(4p + 4, 12p - ;3), 
(8p 1, + 

which produce differences 4, .1, 8p 9,8p 7,8p - .1, 8p - 3, 8p - 1. 
Case (ii): 2 (mod 4) . 

.5 2:(4,7),(1, 9); 

.5 :::: 6,.5 4p + 2, p 1. 

(1', 16p + 7 - r) T E O[1,4p 1], 
(1+7',16p+10-7') 7'EO[1,4p+l], 

which produce differences dE H(4p + 2) such that 8p + 7 :::; d 16p + 7, 

( 4p + 11 + 12p + 4 
(4p+4+1',12p+:3 

T') r' E [1, 4p - 7], T' 1 (mod 4) (p 
7') E [1, 4p - 5], r =t 0 (mod 4) (p 

which produce differences d H(4p + 2) such that 7:::; d:::; 3, and 

(4p + 1, 12p + 4). (4p + 4, 12p + 5), (4p + 8, 12p + 7), 
(8p + 2, + 7), (8p + 1, + .1), (Hp + :3, 8p + 6), 

which produce differences ;3,4,.1, 8p - 1, 8p + 1, 8p + :3. 
Case (iii): == 1 (mod 4) . 

.5 = 1: (1,5); 
<: .5,,<; = 4p + 1, pI: 

(1', 16p + 3 - 7') 
(1 +1',16p+6 

l' E 0[1, 4p 
1') l' E 0[1, 4p 

1], 
1], 

2), 
2), 

which produce diffenmces dE H(4p + 1) such that 8p + 5 d:::; 16p + :3, 

(4p + 2 + 1" 12p -:3 - 1') 7' E [1,4p - 7], T' == 1 (mod 4) (p:::: 2), 
(4p + 7 + 1" 12p - 7') 7' E [1, 4p - 5], T' =t 0 (1110d 4) (p :::: 2), 
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which produce differences d E H (4p + 1) such that a :::; d 8p 7, and 

(4p + 1, 12p + 2), (4p + 6, 12p + Pi)' (4p + 4, 12p + 1), 
(4p+5,12p), (8p-1,8p+:3), 

which produce differences 4,8p - ,), 8p 
Case (iv): :3 (mod 4). 
:3, 4p + :3, p 2: 0: 

(1', 16p + 11 1') 
(1 + 1', 16p + 14 

:3,8p - 1, 8p + 1. 

l' E 0 [1 , + 1], 
1') r E O[1,4p + 1], 

which produce differences d E H (4p + :~) such that 8p + 9 d :::; 16p + 11, 

(4p + 2 1', 12p + 5 
(4p + 7 + 1" 12p + 

r') r' E [1,4p - a], l' 1 (mod 4) (p 1), 
1') l' E [1,4p 1],1' t= 0 (mod 4) (p 2: 1), 

which produce differences dE H(4p +:3) such that 3 d 8p + 1, and 

(4p + 6, 12p + 11), (4p + ,), 12p + 8), (8p + :3, 8p + 7), 

which produce difference::; 4,8p + a, 8p + Pi. 
We now construct tht:' following ingredients. 

o 

Lemma 2.15 Assume,<; 1. Let E'(.s) E[4,48 + 2] and T'(s) [1,48 + 3]\ 
{28 + 1, 2s + 2, + :3}. Then there is a partition of T' (8) into 28 ordered pair8 (c:, d~) 
(i E E'(8)) such that (i) UiEE'(S)c: = [1,28]' (ii) UiEE'(s)d~ [28+4,4s+3] and (iii) 
d~ c~ i for i E E' (8) . 

Proof. Simply take the following pairs: 

(1', 48 + 4 - 1') l' E [1, 28]. 

o 

Lemma 2.16 AS8ume 8 ~ 1. 

1. Let F(8) (0[3,48 + 3] U{48 + 9}) U(E[48 + 8, 8B + 4] \ {68 6} U{48 + 2}) 
and U(8) [1,88+6]\ {28+ 1,48+4,68+5,88+5}. Then there is a partition 
of U(8) into 4B + 1 ordered pairs (Ci, fi) (i E F(8)) 8uch that (i) UiEF(s) Ci = 
[1,48 + 2] \ {2.s + lL (ii) UiEF(s) fi = [48 + :3,88 + 6] \ {48 + 4,68 + 5,88 + ,5} 
and (iii) fi Ci = i for i E F(.s). 

2. Let F'(.s) (E[4,4.s]U{48 + 6,68 + 6})U(0[48 + ,),88 + ,5] \ {4s + 9}) and 
U'(s) = [1,88+7]\{28+2,48+:3,48+4,48+5,68+6}. Then there is a 
partition of U'(8) into 48 + 1 ordered pairs (e~,f:) (i E F'(8)) such that (i) 
UiEF,(s) e~ [1,48 + 2] \ {28 + 2}) (ii) UiEF,(s) f: [4s + 6,88 + 7] \ {68 + 6} 
and (iii) Jl e~ = i for i E F'(.s). 
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Proof. Take li) (i E H(s)) to be the partiton of W(s) obtained in Lemma 2.14. 
Then the 4s + 1 ordered pairs (Ci, fi) (i E can be taken as in the following: 

48 + Ei + Ii) 
+ 2 + 7',68 + 5 

(:38 + ;3 + 1', + 4 

and + 2,48 + 
TIw + 1 ordenccd pairs 

and 

(1 + 'T', ~8 + 8 - 1') 
+:3 + T', 68 + 

Lemnla 2.17 AssuTne.'> 1. 

i E H(8), 
1') r' E [1,8], 
r) l' [ 1 , 1] (8 

:'),s + 
can be taken as in the following: 

T [1,23 2] (s 
r) T' E [1, 28 - 1], 

1, (js + (1, + 7). o 

1. Let +2})U{1} and V(,,,) [1, + 2] \ 
(gi, hi) (i 

+ 1,48 + I}. 
a partition of V(.s) 'into 2.s or'dcnd G(.s)) such 

2. Let 0[:3, + 1] U{2.s + 
there is a partition of v' (.s) into 

and V'(s) [1,48 + :3] \ {2s + Then 
+ 1 ordered pairs (g~, h~) (i E a' (s)) such 

that h~ g~ i for i (/ (3). 

Proof. The + 1 ordered (i 0'(.5)) can be taken as: 

(1 + 1', 48 + 4 - T) E [1, 

an d (1, 28 + :3). 
Now we construct (gi, hi) (i E 0(8)) by .') into two cases. 
Suppose 2 is even. Then take the 

(7',48 - 1') 7' E 0[1,8 
(1 + r, 4.s + :3 - 1') 7' 0 [1 , 8 

and (28 + 2,28 + :3), (8 - 1,s + 1), 

:3] (8 
1] and r 

SUPPOs(~ 1 is odd. Then take the pairs as: 

(1 + T' 4.<; +:3 r) T' E O[Ls 2] (8 :3), 

[8 + 1,28 - 1], 

(1',48 1') T' E O[l, 8 - 2] (s :3) and r' E [S,28 - 2] (82:: 

and (28 - 1, (:38 + 1, :38 + :3). 

Theorem 2.18 Let n 2:: 2 be even. Let.5 2:: 1. Then there i8 a solution to 
SP(n; 48 + 2,.5 + 1). 
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Proof. Let (ci,d i ) (i E E(,c;)) be the partition ofT(,c;) obtained in Lemma 2.10, (c~,d~) 
(i E E'(8)) be the partition of T'(.5) obtained in Lemma 2.15, (ei,h) (i E F(.5)), 
(e:,f:) (i E F'(.5)) be the partitions of U(.s), U'(.s) obtained in Lemma 2.16 and 
(m,hi) (i E G(,c;)), (g;,h~) (i E G'(,c;)) be the partitions of V(.<;), V'(,c;) obtained in 
Lemma 2.17. 

Suppose n 2t with t 1. The following pairs form a solution to SP(n; 4.<; + 
2,8+1): 

(2t - 1)(48 + 2) 
(2t(48 + 2) + Ci, (4t 

2 + d~) i E E' (s), 
1 ) (4.<; + 2) - 2 + di ) i E E ( s ) , 

which produce the numbers d E D(n,4.5 + 2) with (2t - 1)(48 + 2) + 1 < d 
2t(4,c; + 2) 1, 

((t - 1)(48 + 2) + 2.5 + g~, (t 1)(48 + 2) + 2,c; + h~) i E G'(8), 
((:3t - 1)(48 + 2) + (28 + 1) + iii, Ot - 1)(4$ + 2) + (28 + 1) + hi) i E 0(.5), 

which produce the numbers d E D(n,4$ + 2) with 1 ::; d ~ 48 + 1, and, when t ;::: 2, 
for each j = 0,1, .. , t 2, 

(j (4.5 + 2) + 28 + e~, (2t - 2 - j) (4.5 + 2) (2.5 + 4) + f:) i E F' ( 8 ), 

((2t + j)(48 + 2) + (28 + 1) + ei, (4t - 2 - j)(48 + 2) (2s + 3) + fi) i E F(s), 

which produce the numbers d E D(n,48 + 2) with (2t 3 - 2j)( 48 + 2) + 1 ~ d ::; 
(2t - 1 - 2j)( 48 + 2) - 1. 0 

2.4 The Case u == 0 (lIlOd 4) 

Assuming u = 48 (8 ;::: 2), we consider the problem SP(n; 4s, x), where x = s 
when n ;::: 2 is even and x = 8 - 1 when n 2:: 1 is odd. We first deal with the case 
where n is even. 
Lemma 2.19 Assume s 2:: 2. 

1. Let F(8) = (0[48 + 1,128 1] \ {8.s + 1,lOs -l})U{lO.s} and U(s) = 
[1,48 -1]U([8$ + 1,12$ -1] \ {9.s, 11.s}U{7.s, 1:3.s}). Then there is a partition 
of U(8) 'into 48 - 1 ordered pair'8 (Ci' fi) (i E F(8)) such that (i) UiEF(s) Ci = 
[1,48 - 1]; (ii) UiEF(s).Ii = [88 + 1,128 - 1] \ {9.s, 118} U{7.s, 1:38} and (iii) 
fi - Ci = i for i E F(.s). 

2. LetF'($) = (E[48+2,128-2]\{8$,10.s})U{88+1,108-1} andU'(8) = 
[1,4s - 1]U[88 + 1,128 -1]. Then there i.s a partition of U'(8) into 4s-1 
ordered pair.s (e~,f:) (i E F'(s)) .such that (i) UiEF'(s)e~ = [1,4s - lL (ii) 

UiEF'(S) f: = [8.s + 1, 12s -1] and (iii) f: - e~ = i for i E F'(.s). 
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Proof. Thp 48 - 1 ord(~rpd (i E can be taken as: 

(1 + 1', 12.'> r' ) " 1] , 
(8 + 1 + 1', lIs - I') l' 8 - 2] (8 :3) , 

1 + I', 108 ,,) r [1,8 1], 
1+1',98-7') 1'E 8-1], 

and (:38 1,78), (48 1,108)' (1,108 + 1), (8 + 1, 
Tlw 48 - 1 ordprpd pairs If:) (i E pi (8)) can be taken as: 

(7', 1 l' ) l' E [1, - 1], 
(8 + 1',118 - 7') l' == 1 2) 

with I' [1, 2] if is odd, or 
with l' E [1, - :3] if is evpn (8 

(8 + 1 + 118+1 1') 7' == 1 (mod 2) 

with " [1, 2] if is odd, or 
with I' [1, 1] if IS even, 

+ 1', 108 7') " E [1,28 

and (8, 11.s 1), 108 + 1) if is odd, or 1,108) if 8 is evpn. 0 

Lemma 2.20 A88'lLrnf 2. 

1. Let + 1, K8 1}. V(8) ([1, 1]\ 7s})U{9.s}. 
Then then of V (.<;) into 48 - 1 ordered (gi, hi) (i E G(.s)) 
s'uch that hi gi i for i G(.c;). 

LetC/(8)=O[I,4.s 1]UE[48+2,8s-2] andV'(s) [1,8s-1]\{48}. Then 
there is a partition of V'es) into -1 ordered pairs (g;,h~) (i E G

1

(8)) such 
that h: - g; = i for' i C/ (8). 

Proof. Tlw 48 1 ord('~rpd pairs (gi, hi) (i E 0(8)) can be taken as: 

(1 + 1',88 - 1') r' E [1, s - 1], 
(.5 + 1 + 1', 7.<; 7' ) l' E [1, 8 1 ], 

+ 7',68 -1') " [1,28 -1], 

and (1,68), (8 + 1, 
The 48 1 ordpred pairs (g;, h~) (i E C/ (8)) can be taken as: 

(1',88-T) 1'E[1,2.c;-1], 
(28 - 1 + T,fi.s -1') 7' E [1,8]' 
(:38 + 1 + 1',58 -,') r' E [1,8 - 2] (8 2 :3), 

and (:3.s,:38 + 1),(48 + 1,68). o 
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Theorem 2.21 Let n 2: 2 be even and 8 2: 2. Then there is a solution to SP(n; 4s, s). 

Proof. Let Ji) (i E P(8)), (e:,I:) (i E P'(8)) be the partitions of U(s), U'(s) 
obtained in Lemma 2.19 and (gi, hi) (i E 0(8)), (g;,h~) (i E G'(s)) those of V(s), 
Vi (8) obtained in Lemma 2.20. 

Suppose n = 2t, t 2: 1. Tlwn the following pairs form a solution to SP(2t; 48, 8): 

«t 1)(48) + g;, (t 1)(4s) + h~) i E (/(s), 
«:3t - 1)(48) + gi, (:3t·- 1)(4.s) + hi) i E G(.s), 

which produce the numbers d E D(2t, 4,<;) with 1 ::; d ::; 2( 4s) 1, and, when t 2: 2, 
for each j = 0, , .. , t - 2, 

(j(48) + I (2t -:3 - j)(48) J:) i E P'(8), 
( (2t + j) ( 48) + Ci, ( 4t -:3 j) ( 48) + fi) i E P (.<; ) , 

which produce the numbers d D(2t, 48) with (2t - 2 2j)( 4.5) + 1 < d < 
(2t 2j) ( 48) 1. 0 

Now we deal with the case when n is odd. 

Lemma 2.22 A.5sume.5 2: 2. Let H(8) = {4} u 0[.5, 2.s + 1] andW(.5) = [1,2.s+3]\ 
{.s,.s + 2, 2.s + I}. Then there is a partition of W(.s) into ordered pairs (ki , Ii) (i E 

H(.s)) such that (i) UiEH(s) k i = (1, + 1] \ {.s}J (ii) UiEJl(S) li [s + 3, 2s + 3] \ {2.s + I} 
and (iii) Ii - ki = i for i H(.s). 

Proof. Case (i): 8 1 (mod 4), = 4p + 1, p 1. 

(1',8p + ,I) -1') l' E [1,4p :3], l' (mod 2), 
(1 + r,Sp - r') I' E [1,4p 7], 1':= 1 (mod 4) (p 2: 2), 
(:3 + r.,Sp + 6 - 1') 7' E (1,4p - 3], r' 1 (mod 4), 

and (4p + 2, 4p + 6), (4p - 1,4p + 4), (4p - 2,4p + 5), 
Case (ii):.5 2 (mod 4), .s = 4p + 2, p 2: o. 

(1" 8 P + 7 - 1') l' E [1, 4 p + 1], l' (mod 2), 
(1 + 1', 8p + 2 - 1') r' E [1, 4p :3], l' (mod 4) (p 1), 
(:3 + T,8p + 8 -1') l' E [1,4p ;3], T (mod 4) (p 1), 

and (4p + :3, 4p + 7). 
Case (iii):.s :3 (mod 4), 8 = 4p + :3, p 2: o. 

(r',Sp+9-1') 1'E [1,4p+l]' l' (mod 2), 
(1+r"Sp+4 1') 1'E[1,4p-3],r' 1 (mod 4) (p2:1), 
(:3+T,Sp+1O-r) l'E[I,4p+l],I':=1 (mod 4), 

and (4p + 2,4p + 6). 
Case (iv): .s := 0 (mod 4), .s = 4p, p 2: 1. 

241 



(:~ + 1',8p 7') 7' E [1,4p 7' == 1 (mod 2) (p '2': 
(2 + 1',8p -:3 7') 7' [1,4p 7], l' 1 (mod 4) (p'2': 2), 
(4 + 1',8p +:3 - T') l' [1,4p -:3], r (mod 4), 

and (4p 1,4p+:3),(1,8p), 8p+;~), o 

Lemma 2.23 Assume 8 2, 

1. Let F(8) = (0[48 + 1,128 - 1] \ {68 + 1,108 + 1})U{4s + 2} and [1(8) = 
([2,48 + 1] \ {48}) U([88 + 1, 12s - 1] \ {98 1, ll8 + 1}U{7s + 1,1:38 1}). 
Then there a pa1'iition of U(.s) into 48 1 ordered pairs (ei l fi) (i E F(8)) 
such that (i) UiEF(s) (i [2,48 + 1] \ {48L Ii = + 1,128 1] \ 
{98 1,118+ }U{7s 1,l:ts l}and{iii)fz- iforiEF(8). 

2. Let F'(8) (E[48 + 2, 128 2] \ {48 + 2, U{68 + 1,108 + I} and [1'(s) = 
[1,48 - 1] U([88 + 2,128 + 1] \ {128}). Then there is a partition of [1'(8) into 
4.5 - 1 ordered pairs (c:,I:) (i P'(8)) such that (i) UiEF'(s) [1,48 - 1); 

(ii) UiEF'(S) f: + 2,128 + 1] \ {128} and (iii) f: - e~ i for i E F'(s). 

Proof. Let ii) (i H(.s)) be the partition of ~V(8) defined in Lemma 2.22. Then 
the 48 - 1 ord(~red pairs (c fi) U F(s)) can be taken as: 

(1+, -1') 
(8 + r, 118 + 1 7') 
(:~8 + 78 - 2 + [i) 

and (:38,78 + 1), (8,1:38 1). 

r [1, - 2] (8 
1'E[1,28-1]' 

E H(8), 

The 48 1 ordered pairs «, f:) (i E F' (8)) can be taken as: 

(7', 128 - 1') 
(28 + 1 + 1', lOs + 1 

and (2.5 + 1,88 + 2), (28,125 + 1). 

Lemma 2.24 A58ume 8 2. 

l' E [1,25 - 1], 
1') 7' E [1, 25 - 2], 

1. LetG(s) O[1,48-1]\{25+1} andV(s) = ([2,4s 1]\{3s+1})U{5s I}. 
Then there is a partition of into 23 - 1 ordered pair8 (gi, hi) (i E G( 3)) 
such that hi - gi = i for' i E 

2. Let (;'(8) = E[2,48 - 2]U{2,s + I} and V'(.s) = [1,48 - 1]U{48 + 1}. Then 
there is a partition of v' (5) 'into 28 or'der'cd pairs (g;, h~) (i E (]' (8)) 8uch that 
h~ - g; = i for i E c/ (8). 
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Proof. The 2s - 1 ordered pairs (gi, hi) (i E O(s)) can be taken as: 

(1 + 1',48 -1') r' E [1,s - 2] (s 2:: :3), 
(.5 + r', :38 + 1 - 1') l' E [1, 8 ], 

and 58 - 1). 
The 28 ordered pairs (g;, h:) (i E C/ (8)) can be taken as: 

and 48 + 1). 

Theorem 2.25 Let n 
SP(n; 48, 8 1). 

(1',48 1') TE[1,2.<;-1], 

bc odd and .<; 2:: 2. Then thcre is a solution to 

o 

Proof. Let (fi,Ii) (i E F(s)), (e:,/) (i E F'(8)) be the partitions of U(8), U' (8) 
obtained in Lemma 2.2:3 and hd (i E 0(8)), (g;,h~) (i E 0'(8)) be those of V(s), 
V' (8) obtained in Lemma 2.24. 

Suppose n 2t + 1, t O. Then the following pairs form a solution to 
S P (2t + 1; 1): 

(t(4.s) + g;, t(48) + h~) i E 0'(.5), 
((:3t + 1)(48) + gil (:3t + 1)(4.5) + hi) i E 0(8), 

which produce the numbers d E D(2t + 1,48) such that 1 :::; d 48 - 1, and, when 
t 2:: 1, for each j 0, 1, ... , t - 1, 

(j(48) + c~,(2t - 2 - j)(48) + f;) i E P'(s), 
((2t + 1 + j)(4s) + t:i, (4t 1 j)(48) + fi) i E P(.5), 

which produce the llumbt~rs d E D(2t + 1,48) such that (2t - 1 - 2j)( 48) + 1 :::; d :::; 
(2t + 1 - 2j)(48) 1. 0 

3 Conclusions 

We now consider the existenceofa :3-CODD of type (6n)U when u == 2,:3 (mod 4) 
and 11, is odd. A:3 CO D D of this type can not exist. 

Lemma 3.1 Thf1'c is no:3 (: G D D of type (6n)U whcnever' U == 2,:3 (mod 4) and 
n is odd. 

Proof. Assume there is a:3 - CODD (V,Q,B) of type (6n)u. Without loss of gen­
erality, we may assume that V = Z6n X {1, 2, ... , u}, Q = {Z6n X {i}li = 1,2, ... , u} 
and the cyclic automorphism is 

7r = (01h ... (6n - l)t) ... (Ou1u ... (6n - l)u). 
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The automorphism IT yields a partition of B into equivalence namely the 
orbits of IT, such that B1 , B2 E B are in the same class if and only if IT(Y( Bd B2 for 
some int{~ger 0'. Ld V be a set of representatives of the orbits of IT. We claim that 
V covers (~ach of the lllixed diffen~nces in V x {I, 2, ... 1 u} exactly Ollce. 

Since each pair {Oi, Xj} {x E is contained in one block B in B, each of the 
pairs {Yil } is coutairwd in a block which is in the orbit containing B. Therefore 
th{~ representative block in V of tllt' orbit containing B covers the mixed difference 
J; ji. Furthermore, each mixt~d difference in V = x {I, 2,. ., u} is covered at 
lllOSt one block in V. For otherwise, suppose BI, B2 E V both cover a difference Xji. 

Without loss of g(~nerality, we assume that Bl = {ail bj, cd, B2 {di, ej, if}. Then 
b - a f - d Consequently, 

{(a+d- (b+d-a)j,(c+d a)d 

{di 1 t j, (c + d a)d 

contains {di, t:j}. Since ITd-ct(Bd and B2 are in different orbits they are distinct. 
Then the pair {di , Cj} contained in two distinct blocks in B, which contradicts 
that (V, B) is a ODD. 

Now consider a block B = {ai, Ck} in V. Note that the mixed difference Xij 
is equal to B six differences (±(a - b))ij, (±(b C))jkl (±(a -
Obviously, (a b) + (b - c) (a c). Since ±(a - b) (respectively, ±(b 
±( a c)) are both eVf~n or both odd in the number of odd differences covered 
by B is either 0 or 4. (~ollsequentlYl the total number of odd differences covered 
by blocks in V is multiplf~ of 4. Since V covers each of the mixed differences in 
V = Z6n X {1,:2, ... 1 u} once, we conclude that the total number of odd mixed 
differences in V is divisible by 4. All easy calculation shows that the total number of 
odd mix(~d differences in V is 2 (~) :3n = :3nu( u 1) and this number is not divisible 
by 4 when 1t 2,:3 (mod 4) and n is odd. Therefore there is no 3 - GGDD of type 
(6n)U whenever u 2,:3 (mod 4) and n is odd. 0 

Even if n is even, a :3 COD D of type (6n)3 does not exist. This is an immediate 
consequence of the following result, which appeared in a preliminary version of [1] in 
terms of Latin squan~s. 

Lemma 3.2 There is no :3 - C/U D D of type g3 whenever g even. 

Proof. Assume (V,Q,B) is a:3 CGDD of type g3. As in Lemma 3.1, we assume 
that V = x {1,2,3}, Q {Zg x {i}li 1,2,:3} and the cyclic automorphism is 

Let {OI,7'2, (xrh}, whert~ X r• E Zgl be the block in B containing the pair {Ol,r2} for 
each r' E Zg. Define 
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Clearly, each block in V is in a distinct orbit of 11". Since each orbit of 11" has cardinality 
9 and IB 1 g2, 11" has 9 orbits. Therefore V is a set of representatives of the orbits 
of 11". Similar to Lemma :3.1, we see that V covers each of the mixed differences in 
V = x {1, 2, :3} exactly once. This impli(~s that Xr i- X s , Xr - l' i- Xs - .<; for each 
1",<; E with l' oF 8. In particular, Xr i- Xo, Xr r i- Xo for each l' E Zg with l' i- O. 
Therefore (with arithmetic taken in the group ErEZg\{O} Xr ErEZg\{O}(xr 1'), 
and consequently we ErEZg\{O} l' = O. But this is true only when the order 9 of 
Zg is odd. This establishes the result. 0 

Lemma :3.1, Lemma a.2 and results in the previous sections can be used to com­
pletely determine the spectrum of a:3 CODD of type (6n)u. 

Theorem 3.3 Then a:3 CGDD of tYPf (Gn)U if and only if (i) u 4 and (ii) 
u t= 2,:3 (mod when n L'i odd. 

Proof. The necessity follows froUl Lemma :3.1 and Lemma a.2. 
For the sufficiency, Example 1.2 establishes a 3 CGDD of type (6n)U for u = 4 

and allY integer n 1; For the remaining cases of nand u, a solution to SP(n, u) or 
to SP( n; u, x), for some x, is established in Example 2.2, Theorem 2.9, Theorem 2.1:3, 
Theorem 2.18, Theorem 2.21 and Theorem 2.25 and therefore successively applying 
Lemma 2.:3 and Lemma 2.1 establishes the existence of a 3 - CODD of type (6n)U 
in these cases. 0 
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