








Proof: Let v E V(G). Since G is (m,k)-critical, Xk(G- v) ::: m - 1. If v is 

not a cut vertex there is nothing to prove. Now let v be a cut vertex 

of G and let HI ,H2 , ... ,Ht ,be the components of G - v. If Xk(H.) ::: 

Xk(H2) ::: ... ::: Xk(H t ) then the lemma follows from the criticality of G. 

Otherwise, let t be an integer, �l�~� t �~� t, such that Xk(H,) �~� m 2. From the 

criticality of G it follows that G - Ht is (m-l ,k)-colourable. Consider any 

(m-l,k)-colouring of the vertices of G - Ht using colours 1,2, ... ,m - l. 

Without loss of generality we can assume that m - I is the colour 

received by the vertex v. Now consider an (m-2,k)-colouring of the 

graph He using the colours 1,2,.. m-2. Note that this is possible since 

Xk(H,) �~� m - 2. This produces an (m-l,k)-coIouring of G, which 

contradicts the hypothesis and proves the lemma. 0 

Lemma 2 : Let G be a graph of order p with vertex disjoint stars S] , 

S2 .... ,Sa of order k + 2 each. Then 

Proof: Clearly V(Si ) is a k-independent set in a, for each i . Now 

consider the following colouring of a: The vertices of Sj are assigned 

colour i, 1 �~� i �~� a; and the remaining p - (k + 2)a vertices are coloured 

using f p -(k+2)al new colours. This is a k-defective colouring of a 
k+l 

which uses fp-al colours. Thus Xk(a) �~� fp-al 
k+l k+l 
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Theorem 2 : Let G be a P 4 -free graph of order p ~ 3. Then 

XI(G) + XI (0) ~ l~J+ 2. 

Moreover this bound is sharp. 

Proof: We prove the theorem by induction on p. It is clearly true for p 

== 3 and 4 and hence let p ~ 5. Assume that the theorem holds for P4 -free 

graphs of order < p. We first observe that for every pair of vertices x. 

and y of G, 

X,(G - x. - y) XI(G) or XI(G) - 1, 

and 

XI (G - x. - y) == XI or X/G) 1. 

Suppose there are vertices x and y such that 

or 

In this case 

Using the induction hypothesis we have 

X.(G) + XI(O) lp;2 J + 2 + 1 == l~J + 2. 
Henceforth we assume that for all x and y E V(G), 

XI (G) == XI (G - x - y) + 1 

and 
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Since 0 is P 4 -free. it follows from Theorem I that either 0 or G is 

disconnected. Let us assume without loss of generality that G is 

disconnected. Let 0 I be a component of 0 with the largest value of XI 

and 02 be the union of all other components of O. Note that XI (0 1) :: 

XI (0). Clearly 02 has exactly one vertex, for otherwise, we have a 

contradiction to (1) . Hence let V(G2) = { w }. Since G 1 is connected 

and P 4 -free, it follows from Theorem that 0'1 is disconnected. Let Fl 

, F2, ... , Ft be the components of such that Xl (F 1 ) ~ XI (F2 ) 

~ ... ~ XI(Ft ). If XI(Fl ) :: 1 then XI(G) ~ 2. In this case 

XI(0)+XI(O')~XI(01)+2~ rp
;11+2 ::l~J+2. 

Henceforth we will assume that XI (Ft) ~ 2. Let U == u F3 u ... u Ft ' 

IV(F 1)1 = a, and IV(U)I :: b. Note that XI (U) :: XI (F2)' The graph G is 

depicted in Figure I . 

Figure 1: 0' 

We now consider two cases depending on the value of XI(U). 

Case I: XI(U) ~ 3. 

Since U is P 4 -free, by the induction hypothesis we have 

XI(D) ~ l~J + 2 - XI(U) 
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~ l~J - 1. 

Also note that 

XI(G) ~ XleF,) + X1(U) 

and 

Therefore 

XI(G) + X/G) ~ XI(Fl ) + XICi~;I) + XI(U) + 1 

Case 2: XI (U) ~ 2 

Observe that XI ( 

~ la~bJ+2=lpTJ+2. 

+ w) ~ Xl (U). Firstly if equality occurs in this 

Consequently there are two vertex disjoint paths Ql and Q2 of length 

two in FI and respectively. Applying Lemma 2 to the graph at 

(of order p - 1) we have Xl(Gt) ~ rp~31· Now X1(G) = X1(Gl) ~ 

r
p 

2
3
1. Since X/G) ~ XI(Fl) + 1 = 3, we have 

XI(G) + XI(a) s r p~31 + 3 l~J + 2. 

Henceforth we will assume that Xl ( F 1 + w) > XI (U). 

We will now prove that XI (G) = XI (FI + w). Firstly observe that Xl (a) ~ 

Xl (F 1 + w), since F 1 + w is a subgraph of G . Consider a I-defective 

colouring of FI + w using XI(FI + w) colours. Since XI(U) < XI(Fl + w) 

it is possible to colour an the vertices of U with the colours used in the 
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above mentioned I-defective colouring of F 1 + w except the one given to 

the vertex w. This provides a I-defective colouring of G with Xl (F I + w) 

colours. Thus XI(G) = XI(Ft + w). Now IV(U)I = I. for otherwise, we 

have a contradiction to (2). Let V(U) = { z }. 

Since F I is connected and P 4 -free, it follows that PI is 

disconnected. Let HI, H2 .... , HA be the components of PI . Define 

Y == H2 v H3 v ... v HA and let IV(HI )1 = c and IV(Y)I = d. Note that c 

+d=p-2. 

Figure 2: G 

We observe that G - w is critical, for otherwise, if Xl (G w - u) = Xl (G -

w) for some vertex u then we have a contradiction to (I) since Xl (G - w) 

= Xl (G) . Now from Lemma 'I we have, 

(3) 

Firstly let X\(Y) ~ 3. Since Y is P4 -free we have 
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Incorporating this inequality in (3) we have 

XI(G) + XI(G) ~ l~J + l%J + 3 

This proves the theorem in the case XI (Y) ~ 3. Henceforth let us assume 

that XI (Y) ~ 2. Note that Xl (Y) ::: XI (H 1) ::: XI (H2) :: ... ::: XI (H,), 

If XI(Y)::: 1 then clearly XI(G) ~ 2. Let U E V(Hl) and v E V(H2 ). 

Then G[{u,v,z}] contains a path of length Again by Lemma 2, XI(G) ~ 

IP
2

11 l~J ThusXI(G)+XI(G)~ l~J+2inthiscase. 
Finally let Xl (Y) ::: 2. Clearly XI (0 I) 3. Since Xl (Hi) ::: 2 for 

each i, Hi contains a path Qi of length 2. Note that V(QI) and V(Q2) u 

{z} are I-independent in G. Now colour 1 to the vertices of 

V (Q I), colour 2 to the vertices of V(Q2) u {z} and I p; 71 new colou rs 

to the remaining p - 7 vertices of G. This is a I-defective colouring of G 

which uses I p 2 31 colours. Thus XI (G) I p 2 31· Combining this with 

the inequality XI (G) ~ 3 we have the required upper bound. 

To prove the sharpness let G == K(l ,p-l). Clearly XI (0) ::: 2 and 

Xl (G) ::: l ~J . This completes the proof of the theorem. 0 

Recall the following conjecture of Maddox [8] concerning the 1-

defective chromatic number: 
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For a graph G of order p. 

Xt (G) + Xt ( G) ~ r p ~ 11 + 2. 

Theorem 2 verifies this conjecture for the subclass of P 4 -free graphs of 

order p. 

Next we establish a weak upper bound for Xk(G) + Xk(G) for all 

k ~ 1. 

Theorem 3: Let G be a graph of order p. Then 

+2k+4 
Xk(G) + Xk(G) ~ -"----

k+2 

Proof: Consider a partition of V(O) into k-independent sets VI, V2 , ... 

constructed as follows: 

- V 1 is the largest k-independent set of O. 

- Having defined the ith k-independent set Vi, the (i + 1)th set V i+ 1 

is defined as the largest k-independent set in the su bgraph induced on 
i 

VeO) u", 
1=) 

- Repeat the above process until we can not proceed any further. 

Clearly this procedure produces a partition of V(G) into, say m, k­

independent sets VI, V 2 ' ... , V m with the following properties: 

and 

(ii) IVm-11 ~ k + 1. 

Observe that Xk(G) ~ m and we will now prove that 

(0) p+k+2-m 
Xle ~ k+ 1 . (4) 
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Let xi E Vi for i ~ 2. Note that G[Vi-l U { xi }] contains a star Si 

== K( t,k+ I). for otherwise, V i-I U {xi } is a k-independent set, 

contradicting the maximality of IV i-II . Now we define r to be the 

smallest positive integer i such that IV il :::;; k + 1. If no such r exists 

then let r = m. Note that IV r-II ~ k + 2. We consider two cases. 

Case 1: r = m 

Since IVil ~ k + 2 for 2:::;; iSm - I, the stars Si == K(1,k+l), i = 

2,3, ... ,m of G can be chosen to be vertex disjoint. Using Lemma 2 we 

have 

x (0) ~ rp (m -1)1 ~ 
k k+ 1 

This establishes (4) in this case. 

Case 2 : r :::;; m - 1 

-m+k+2 

k+l 

Note that in this case IVil = k + 1 for r S i:::;; m - 1. Since IV ml ~ 1 we 

m 
have I UVj I ~ (m r)(k + 1) + 1. 

i=r 

m _ m 
Clearly UVi is k-independent in G, for otherwise. G[ UVj has a 

i=r i=r 

star S K(l,k + 1) and thus V(S) forms a k-independent set of 

cardinality k + 2 in G, contradicting the maximality of IV rio Again as in 

Case I, since 1Vi I ~ k + 2 for i = 1,2, ... ,r-l, the stars S2 ,S3 ' ...• Sr can 

be chosen to be vertex disjoint. Now we provide a k-defective 

colouring of G as follows: 

- colour the vertices of Si with colour i, 2 :::;; i ~ r. 

186 



m m 
- colour the vertices of U Vi - Sr with colour 1. Note that I UVi - Sr I 

~r ~r 

~ (m - r)(k + I). 

- colour the remaining a vertices of G arbitrarily, using r~l new 
k +1 

m 
colours where (l = P - (r - l)(k + 2) - I UVj - Sr I. 

i=r 

Note that a :$; p - (r - l)(k + 2) - (m - r)(k + 1). 

Thus 

G) :$; r p - (r - 1)( k + 2) - (m - r)( k + 1) 1 + r 
Xk( k + 1 

:$; p+k+2-m 

k+l 

This proves (4). 

Now from (4) and the inequality Xk(G) :$; m, we have 

(k + 1)Xk(O) + Xk(G) :$; p + k + 2. 

Now reversing the roles of G and (i, we get 

Xk(G) + (k + l)Xk(G) :$; p + k + 2. 

Combining these two inequalities we have the required inequality. 0 

3. Counter example to the conjecture of Maddox 

In this section we will construct a graph G of order p such that 

Xk(G) + Xk(G) = rp-1l + 3, thus disproving the conjecture of 
k+l 

Maddox[8] which states that for a graph G of order p, 

Xk(G) + Xk(G) :$; rp
-

11 + 2. 
k+l 

Lemma 3 : Suppose k ~ 2 and m ~ 0 are integers. Let G be a graph of 

order (m + 3)(k + 1) shown in Figure 3, where G[A 1] == Kic ' G[A2l == 
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A 
4 AI 

Figure 3: G 

Proof. Firstly Xk(G) ~ m + 3, since G has (m + 3)(k + 1) vertices. 

If possible let Xk(G) ~ m + 2 and consider a partition of V(G) into m + 2 

k-independent sets VI, V 2 , ... , V m+2 such that V 1 is a largest set. 

Since IV 11 k + 2 and the elements of A5 are adjacent to every other 

vertex of G, it follows that AS n VI = 0, AS n Vi ;f. 0 for i ~ 2 and 1Vi I 

$; k+l for i 2:: 2. Thus IVII ~ 2k + 2 and VI ~ Al u A2 u A3 uA4' Now if 

A2 n VI = 0, then V I = A I u A3 u A4. which is not k-independent, and 

therefore a contradiction. On the other hand, if A2 n VI ;f. 0 then 

IVI n (AI U A2 u A3)1 ~ k + I, so that IVII $; k + 3. Thus we have 2k 

+ 2 $; I V 1 I $; k + 3 which implies k $; 1, a contradiction to our assumtion 

that k 2:: 2. This completes the proof of the lemma. 0 

Lemma 4: Suppose k ~ 1 and t ~ 0 are integers. Let G be a graph of 

order (t + 3)(k + 1) shown in Figure 4, where G[A 1] == G[A4] == Kic ' 

G[A21 == Kk. G[A3J == K2 and G[Asl == Kt(k+l)+i • Then X,,(G) = t + 3. 

1RR 



AI 4 

Figure 4: G 

Proof: The proof of Lemma 4 is identical to that of Lemma 3, except that 

A2 n VI;:; 0 impies I V 1 (\ (A 1 u A3) I ~ k + 1 which in turn implies that 

I V I I ~ 2k + 1, contradicting the inequality I V 11 ~ 2k + 2. 0 

Lemma 5 : Let G == K2m+l + Cs Then XI(G) = m + 3. 

Proof: Since the order of G is 2m + 6, it follows that XI (G) ~ m + 3. 

If possible let Xl (G) $ m + 2 and consider a partition of V(G) into 

I-independent sets VI, V 2 ' ... , V m+2 . Without loss of generality 

assume that IV l' ~ IV 2' ~ ... ~ IV m+21. Since G == Cs U K2m+l , any 

I-independent set of G has cardinality at most 3. Therefore IV l' $ 3. 

Again if IV 2' = 3 then G would have two vertex disjoint paths of length 

2 each, which is impossible. Therefore IV 2' ~ 2. Thus 
m+2 

2 m + 6 = IV (G) 1 = L IVi I ~ 2m + S, 
i=1 

which is absurd. This proves XI(G) ~ m + 3, completing the proof of the 

lemma. o 
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We will now present a graph which disproves the conjecture of 

Maddox [8]. 

Theorem 4 : Let k ~ 2, t ~ 0 and m ~ 0 be integers and G a graph of 

order (t + m + 3)(k + 1) + 1 shown in Figure 5, where O[A I]:: KII: • 

Kt(k+I)+I' Then 

AI 4 

Figure 5: G 

Proof: It is easy to see that Xk(G) 5; m + 3, since the vertices of A2 u 

A3 u A5 can be arbitrarily coloured with m + 2 colours and all the 

vertices of Al u A4 u A6 can be coloured with a new colour. Since G 

contains the graph of Lemma 3 as a subgraph it follows that X,,(G) ~ m + 

3. Thus Xk(G) = m + 3. 

Note that G is the disjoint union of the graph of Lemma 4 and a 

Km(k+I)+I' Thus from Lemma 4, we have 
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Theorem 5 : Let G be the graph of Figure 6 where G[X] - K2t+I' G[Y] 

== K2m+1 and G[Z] == Cs . Then 

XI (G) + X/G) = m + t + 6. 

x y Z 

Figure 6: G 

Proof: Firstly colour the vertices of Y using m + I colours. Now the 

vertices of X u Z can be coloured with two new colours. This is 

possible since there are no edges between X and Z and XI(C5 ) = 2. 

Thus X1(G) $; m + 3. Also Xl(G) ~ XI (G[Y u Z]) = m + 3 (by Lemma 5). 

Hence Xl (G) = m + 3. 

Similarly using Lemma S one can show that XI (G) = t + 3. This 

proves that Xl (G) + X/G) = m + t + 6. o 

Recall the conjecture of Maddox [8]: 

For a graph G of order p. 

Xle (G) + Xle (0) ~ r ~: ~ 1 + 2. 

Simple counting shows that the graphs of Theorems 4 and 5 form counter­

examples to the conjecture for k ~ 2 and k = 1, respectively. It is also easy 

to see that these graphs have P 4 as an induced subgraph. A natural 

question that arises is : Does there exist a P 4 -free graph G of order p such 

that XIe(G) + Xk(G) ~ rp-1l + 3 for k ~ 2 ? 
k+l 
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4. Lower bound for the product 

In this section we will provide a sharp lower bound for the product 

Xk(G).Xt./O) in terms of the generalized Ramsey number 

R(K( 1 ,k+ 1 ),K( 1 ,k+ 1 ». 

Theorem 6 (Chartrand and Lesniak[3], p. 315 ) 

Let k be a positive integer. Then 

{

2k + 1, if k is odd 
R(K(1,k+l),K(1,k+l» = 

2k + 2, otherwise. 
o 

For notational convenience we denote R(K(1 ,k+ 1 ),K(l ,k+ 1» by R. From 

the definition of the generalized Ramsey number R it follows that for 

any positive integer t:S; R - 1, there exists a graph H of order t such that 

neither H nor H contains a vertex of degree k + 1 We refer to such a 

graph as a Ramsey graph and denote it by H[t]. 

Lemma 6: Let G be a graph of order p. If Xk(G) = I, then 

Proof: Let X./O) m and consider an (m,k)-colouring of O. Let VI 

,V 2 , .... V m be a partition of V(O) into k-independent sets such that 

IV II = max 1Vil. Note that IV 11 ~~ . Since V 1 is k-independent in both 
i m 

G and a, it follows from the definition of R that IV 11::S; R - 1. 

Thus Xk(G) = m ~ -p- . 0 
R-I 
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Theorem 7 : Let G be a graph of order p. Then 

Moreover this bound is sharp. 

Proof: Let Xk(G) = m and Vl ,V2 , ... , Vm be a partition of V(a) into 

k-independent sets such that IV 11 = max IV il. 
i 

Since V I is k-independent in G we have Xk(G[V 1]) = 1. Thus using 

Lemma 6, 

Xk(O);;:: Xk(O[V I]) ~ M . 
R-l 

Combining the above inequality with the fact that IV 11 ;;:: ~ we have 
m 

We will now establish the sharpness of the above inequality. For 

notational convenience let us write r-p-l = A. Define G to be the 
R-l 

disjoint union of A Ramsey graphs HI. H2 •... ,HA where 

R -I, for i, 1 ~ i ~ A-I, 

I V(Hi) I = R-l, if i = A and R-l divides p, 

p-l-P-J(R -1). otherwise. 
R-l 

It is easy to see that the order of G is p and Xk(G) = 1. From Lemma 6, 

Xk(O) ;;:: A. To prove the reverse inequality, assign colour i to the vertices 

of Hi for i = l,2, ...• }... Since V(Hi) is k-independent in 0, this 

provides a (A,k)-colouring of G . Thus XI.;(O) = A. This completes the 

proof of the theorem. o 
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Remark l' In particular we have, Xl (G). Xl (G) ~ .£ , since 
2 

R(K(l,2),K(l,2») = 3 

5. Realizability problem 

In this section we will address the realizability problem 

associated with the parameter XI over the class of P 4 -free graphs. 

Problem: Given integers x, y and p ~ 3, determine necessary and 

sufficient conditions for the existence of a P 4 -free graph G of order p 

suchthat XI(G) = x andx)(G)=y. 

o 

Let x and y be integers such that x r~l and y r~l Consider 

the following inequalities: 

x+y 2+.£ 
2 

xy ~ .£ 
2 

(5) 

(6) 

From Theorem 2 and Remark 1, it follows that (5) and (6) are necessary 

for the existence of a -free graph G of order p with XI (0) = x and 

X/G) = y. In this section we will establish the sufficiency. 

Theorem 8 : Let x S r ~ 1, y ~ r ~ 1 and p ~ 3 be integers such that 

(5) and (6) hold. Then there is a P 4 -free graph G of order p with 

Xl(G) = x and Xl(G) = y. 

Proof: Without loss of generality let x ~ y. From (5) we have 

p ~ 2x + 2y - 4. 
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Case 1 . P :: 2x + 2y - 3 or 2x + 2y - 4. 

Firstly if x :: 1. then y:: p+ 1. In this case the graph Kp is the 
2 

required graph. 

Next let x ~ 2. Consider the graph G == (K2x- 3 + P3 ) U K2y- 4+S ' 

where 0 :: 0 or 1 according as p is even or odd. It is easy to verify that G 

is a P 4 -free graph. XI (G) :: x and XI (0) :: y. 

Case 2 : 2(x + y - I) $ p $ 2xy 

Let a,. ~ .. ,ay be integers satisfying the following conditions: 

a l :: 2x. 

and 

2 $ a i $ 2 x. 2 $ i $ y. 

y 
Lai :: p . 
i=1 

It is easy to check that such integers a l • ~, ... ,ay always exist. For 

example, the numbers defined below satisfy the required conditions. 

((, :: 2x, 

((i :: t + 3. 2 $ i $ s + 1, 

and 

((i :: t + 2 , s + 2 $ i $ y, 

where p - 2(x + y - 1) :: t(y - 1) + s, 0 $ s < Y - 1. 

Now Jet G == K((, uK
U2 

u ... uKay . Note that G is P4 -free. Clearly 

Xl (G) :: XI (Ka) :: x. Since G contains a I-independent set of 
I 

cardinality 2y, from Lemma 6, we have Xl (0) 2: y. Also it is easy to 

check that 0 is (y,l )-colourable. Thus Xl (0) :: y. This completes the 

proof of the theorem. o 
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