














Theorem 2 : Let G be a P4 -free graph of order p 2 3. Then

0L(G) + X|(a) S{%Ji— 2.

Moreover this bound is sharp.

Proof: We prove the theorem by induction on p. It is clearly true for p
=3 and 4 and hence let p 2 5. Assume that the theorem holds for P4 -free
graphs of order < p. We first observe that for every pair of vertices x
and y of G, ‘
X(G - x -y) = x(G)or %,(G) - 1,
and »
%4(G -x-y) =x(G)or x(G) - 1.
Suppose there are vertices x and y such that
Xi(G-x-y) =%(G)
or
4G - x-y) = x(G).
In this case
14(G) + %,(G) S (G-x-y) +x(G-x-y) + 1.

Using the induction hypothesis we have

%(G) + x,(G) < [_P_;_%J +2+1= B—’-J +2.

Henceforth we assume that for all x and y € V(GJ,
1 (G = % (G-x-y)+1 (D
and

X%(G)= (G -x-y)+1 (2)
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Since G is P4 -free, it follows from Theorem 1 that either G or G is
disconnected. Let us assume without loss of generality that G is
disconnected. Let G| be a component of G with the largest value of ¥,
and Gy be the union of all other components of G. Note that x,(G|) =
X;(G). Clearly Gy has exactly one vertex, for otherwise, we have a

contradiction to (1) . Hence let V(Gp) = { w }. Since G| is connected

and Pyq -free, it follows from Theorem 1 that G, is disconnected. Let Fj

»Fp, ..., Ft be the components of G, such that %, (Fy) 2 x,(Fp)
2 .. 2 x(Fy). If x,(F1) =1 then x,(G) <2. In this case
—_— pu] _ .I’Z
X(G) + 4 (G)y s (G +2< E +2 = 7 + 2.

Henceforth we will assume that X,(Fy) 2 2. Let U = Fp U F3 u...U F; ,
IV(F)I = a, and IV(U)l = b. Note that x,(U) = x,(F2). The graph G is

depicted in Figure 1.

Figure 1: G
We now consider two cases depending on the value of x,(U).

Case 1: y,(U) 2 3.

Since U is P4 -free, by the induction hypothesis we have

x(0) < BJ +2 - x,(U)
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Also note that

0(G) £ L(F) + 1)
and

x%(G) € x(Fp+1.
Therefore

0(G) + % (G) € X (Fp) + 4(F) + x(U) +1
e 2]
2 2
< l“bj +2= [P;'-J +2.
2 2

N

Case 2: 3, (U) £ 2

Observe that x,( Fy + w) 2 X (U). Firstly if equality occurs in this
inequality, then x,( F1 + w) = x,( Fy) = X (U) =2, since X, ( Fy) 2 2.
Consequently there are two vertex disjoint paths Q1 and Qp of length

two in Fy and Fy respectively. Applying Lemma 2 to the graph G,

(of order p - 1) we have X, (Gy) € {P—Z:gl . Now x(G) = x(Gy) <

F’%—%].Since ()< (FpD+ 1 = 3, we have

%(G) + %,(G) < [2—;—3-] +3= [%J +2.

Henceforth we will assume that 3, ( Fj + w) > %, (U).
We will now prove that x,(G) = ¥,;(F + w). Firstly observe that x,(G) 2
%, (Fp + w), since Fy + w is a subgraph of G . Consider a 1-defective
colouring of Fy + w using X;(Fj + w) colours. Since X,(U) < x,(Fy + w)

it is possible to colour all the vertices of U with the colours used in the
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above mentioned 1-defective colouring of F| + w except the one given to

the vertex w. This provides a 1-defective colouring of G with X% (Fp + w)
colours. Thus x,(a) = % (Fy + w). Now IV(U)l = 1, for otherwise, we

have a contradiction to (2). Let V(U)={ z }.
Since F| is connected and P4 -free, it follows that F, is

disconnected. Let Hj, Hjp, .., H) be the components of F, . Define

Y =Hy v H3 u..UH) andlet IV(H; )l = ¢ and IV(Y)! = d. Note that ¢

+d=p-2.

®
(2
©
O,

Figure 2: G

We observe that G - w is critical, for otherwise, if %,(G - w - u) = %,(G -
w) for some vertex u then we have a contradiction to (1) since X,(G - w)

= %,(G) . Now from Lemma 1 we have,
xi(Hp) = (Hy) =...= ;(Hy ) = (G-w) - I = x,(G) - 1.
Also since X,(G) € %,(H; ) + x,(Y) + 1, we have

X(G) + %(G) £ x(Hy) + x(H ) + 6, (Y) +2
< [ﬂ + 4,(V) +4. (3)

Firstly let x,(Y) = 3. Since Y is P4 -free we have
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1u(Y) < B-J -1

Incorporating this inequality in (3) we have

— d
%,(G) + 1,(8) < [—%J " [EJ +3

|52 [g)2

This proves the theorem in the case ¥,(Y) 2 3. Henceforth let us assume
that x,(Y) € 2. Note that %, (Y) = x,(Hy) = x(Hp) = ... = x,(H)).

If x,(Y) =1 then clearly ,(G) < 2. Letu € VHy)andve V(Hjy ).
Then G[{u,v,z}] contains a path of length 2. Again by Lemma 2, xl(a) <

[E%f‘ = B{l . Thus %,(G) + %,(G) < L%J + 2 in this case.

Finally let x,(Y) = 2. Clearly %,(G{) € 3. Since ¥;(Hj) = 2 for
each i, H; contains a path Q; of length 2. Note that V(Qj) and V(Qp) v
{z} are l-independent in G. Now assign colour 1 to the vertices of

V(Qp), colour 2 to the vertices of V(Qp) U {z)} and {p;7

] new colours

to the remaining p - 7 vertices of G. This is a 1-defective colouring of G

which uses I'—g;—%] colours. Thus xx(‘é) < P-;—E] . Combining this with

the inequality ,(G) € 3 we have the required upper bound.
To prove the sharpness let G = K(l,p-1). Clearly X,(G) = 2 and
% (G) = l:{;—J . This completes the proof of the theorem. 0O

Recall the following conjecture of Maddox [8] concerning the 1-

defective chromatic number :
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For a graph G of order p,
— -1
2%(G) + 1,(G) < P——f] +2.

Theorem 2 verifies this conjecture for the subclass of P4-free graphs of
order p.

Next we establish a weak upper bound for X, (G) + Xk(—G) for all

k=21.

Theorem 3: Let G be a graph of order p. Then
2p+2k+4

% (G) + %, (G) < )

Proof : Consider a partition of V(G) into k-independent sets Vi, V2 ...

constructed as follows:
- Vy is the largest k-independent set of G.
- Having defined the ith k-independent set Vj, the (i + Dth set Vigg

is defined as the largest k-independent set in the subgraph induced on
V(G) - cUV’
=1

- Repeat the above process until we can not proceed any further.
Clearly this procedure produces a partition of V(G) into, say m, k-
independent sets V1, V2 . .., VY with the following properties:
(i) IV 21Val 2. 21Vpl
and
(i) Vp-1t2zk+1.
Observe that %, (G) € m and we will now prove that

p+tk+2-m

k+1 “)

% (G) <
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Let xj € V; for i 2 2. Note that G[Vj.y U { x; }] contains a star S;
= K(1,k+1), for otherwise, Vi, U {x; } is a k-independent set,
contradicting the maximality of [V jl . Now we define r to be the
smallest positive integer i such that (Vi <k + 1. If no such r exists

then let r = m. Note that IV I 2 k + 2. We consider two cases.

Casel:r=m
Since IVil2k +2for2<i<m- 1, the stars S; = K(1,k+1),i=
2,3,...,m of G can be chosen to be vertex disjoint. Using Lemma 2 we

have

p—(m~l)] < p-m+k+2

G) <
x(G) { k+1 k+1

This establishes (4) in this case.

Case2:r<m-1

Note that in thiscase Vil =k + 1 forr<i< m - 1. SincelVpl21 we

have | UV,1 2 (m- r)(k + 1) + 1.

i=r

Clearly LH:IVi is k-independent in G, for otherwise, 'G[fjvi] has a

i=r i=r
star ' § = K(l1,k + 1) and thus V(S) forms a k-independent set of
cardinality k + 2 in G, contradicting the maximality of IV l. Again as in
Case I, since IVl 2k + 2 for i = 1,2,...,r-1, the stars $7,83,...,8; can
be chosen to be vertex disjoint. Now we provide a k-defective
colouring of G as follows:

- colour the vertices of §; with colouri,2<i<r.
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- colour the vertices of l'jVi - §; with colour 1. Note that| L"jvi - 8!

i=r

2(m-r)k +1).
- colour the remaining a vertices of G arbitrarily, using [%} new
+

colours wherea =p- (r- )k +2) - | l“J’Vi =S¢l

i=r
Note that ¢ < p - (r - 1)(k + 2) - (m - r)(k + 1).
Thus

p—(r—l)(k+2)~(m-r)(k+1)] .y

x“(G)S[ k+1

< p+k+2-m ‘
k+1
This proves (4).
Now from (4) and the inequality X,(G) £ m, we have
(k + DY(G) + X (G) Sp +k +2.
~ Now reversing the roles of G and G, we get
% (G) + (k + DX (G) Sp +k+2.

Combining these two inequalities we have the required inequality. O

3. Counter example to the conjecture of Maddox

In this section we will construct a graph G of order p such that

X (G) + xk(a) = {’E—’—-:—] + 3, thus disproving the conjecture of
+

Maddox[8) which states that for a graph G of order p,

— -1
1.(G) + 1(G) < [{1—1] ‘2

Lemma 3 : Suppose k 22 and m 2 0 are integers. Let G be a graph of

order (m + 3)(k + 1) shown in Figure 3, where G[A{] = Kk , GlAg]l =

187



G[A3] = Kk, Gl[A4] = K, and G[A5] = Kmges - Then X, (G)=m + 3.

Figure 3: G

Proof : Firstly %,(G) < m+ 3, since G has (m + 3)(k + 1) vertices.

If possible let %,(G) <m + 2 and consider a partition of V(G) into m + 2
k-independent sets Vi, Vo , ..., Vin4o such that Vi is a largest set.
Since IVl 2 k + 2 and the elements of Ag are adjacent to every other
vertex of G, it follows that A5 " V| = @, A5 N Vi =D fori22and |Vl
<k+1 fori22. ThusIVil22k+2and Vi € A} U Ay u A3 UAy4 Now if
Ay m Vi =, then V| = A1 u A3 U Ay, which is not k-independent, and
therefore a contradiction. On the other hand, if Ay NV # (J then
IVin(A] UAy UA3)] < k+1,s0 that V]| <k + 3. Thus we have 2k
+2 < |Vi| <k + 3 which implies k < 1, a contradiction to our assumtion

that k 2 2. This completes the proof of the lemma. O

Lemma 4: Suppose k > 1 and t 2 0 are integers. Let G be a graph of
order (t + 3)(k + 1) shown in Figure 4, where G[A] = G[A4] = &, ,
G[A2] = Kk ., G[A3]=K: and G[A5] = Kykener - Then X, (G) =t + 3.

12R



Figure 4: G

Proof: The proof of Lemma 4 is identical to that of Lemma 3, except that
Ay A V{ = @ impies |V| n (A u A3)| < k + 1 which in turn implies that
IVl < 2k + 1, contradicting the inequality |V | 22k + 2. O

Lemma 5§ : Let G= Kyt +Cs5. Then ,(G) = m + 3.

Proof: Since the order of G is 2m + 6, it follows that %,(G) <m+ 3.

If possible let x,(G) < m + 2 and consider a partition of V(G) into

l-independent sets Vi, V3,...Vp4o . Without loss of generality

assume that IVl 2 IVl 2 ... 2 V.9l Since G = C5 U Ky, any

1-independent set of G has cardinality at most 3. Therefore IVl <3.

Again if IV3l = 3 then G would have two vertex disjoint paths of length

2 each, which is impossible. Therefore 1Vl < 2. Thus
+2
m+6=IVG)= 3 |V|<2m+S5,
i=t

which is absurd. This proves X,(G) 2 m + 3, completing the proof of the

lemma. =
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We will now present a graph which disproves the conjecture of

Maddox [8].

Theorem 4 : Let k 22, t > 0 and m > 0 be integers and G a graph of
order (t + m + 3)(k + 1) + 1 shown in Figure 5, where G[A1]l = X, .
G[A7] = G[A3] = Kx. G[A4] = K. GlAs]l= Ky and G[Agl =
R‘n(kmu- Then

X%(G) + % (G)=m+t +6.

Figure 5: G

Proof : It is easy to see that x,(G) < m + 3, since the vertices of Ay v
A3 U As can be arbitrarily coloured with m + 2 colours and all the

vertices of Aj U Ag U Ag can be coloured with a new colour. Since G
contains the graph of Lemma 3 as a subgraph it follows that X% (G)2m +

3. Thus X, (G) =m + 3,

Note that G is the disjoint union of the graph of Lemma 4 and a

Knksns- Thus from Lemma 4, we have

%(G) =t + 3. Hence %,(G) + %,(G) =m + t + 6. m]
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Theorem 5 : Let G be the graph of Figure 6 where G[X] = K,,, , G[Y]
= Kypmey and G[Z] = Cs5 . Then
%(G) + (G)=m +t + 6.

X Y Z

Figure 6: G

Proof: Firstly colour the vertices of Y using m + 1 colours. Now the
vertices of X U Z can be coloured with two new colours. This is

possible since there are no edges between X and Z and %,(Cs5 ) = 2.
Thus %,(G) £ m + 3. Also 1,(G) 2 X (G[Y UZ])=m + 3 (by Lemma 5).
Hence %,(G) = m + 3.

Similarly using Lemma 5 one can show that %,(G) = t + 3. This

proves that ¥,(G) + 4(G)=m+t + 6. n|

Recall the conjecture of Maddox {8]:

For a graph G of order p,

—_ p—]
%L(G) + (G) < [m] +2

Simple counting shows that the graphs of Theorems 4 and 5 form counter -
examples to the conjecture for k 2 2 and k = 1, respectively. It is also easy
to see that these graphs have P4 as an induced subgraph. A natural

question that arises is : Does there exist a P4-free graph G of order p such

— -1
that %,(G) + %(G)2 [{Lﬁ] +3fork>2?
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4. Lower bound for the product
In this section we will provide a sharp lower bound for the product

%(G). %, (G) in terms of the generalized Ramsey number

R(K(1,k+1),K(1,k+1)).

Theorem 6 (Chartrand and Lesniak(3], p. 315)

Let k be a positive integer. Then

2k+1,if k is odd
R(K(1,k+1),K(1,k+1)) = 0O
2k +2, otherwise.

For notational convenience we denote R(K(1,k+1),K(1,k+1)) by R. From
the definition of the generalized Ramsey number R it follows that for
any positive integer t £ R - 1, there exists a graph H of order t such that
neither H nor H contains a vertex of degree k + 1. We refer to sucl; a

graph as a Ramsey graph and denote it by HJ[t].

Lemma 6: Let G be a graph of order p. If 3, (G) = I, then

= p
G)2 —.
% (G) R-1
Proof : Let %,(G) = m and consider an (m,k)-colouring of G. Let V{

Vo ...,V bea partition of V(G) into k-independent sets such that
IVl = max 1Vjl. Note that IVql 22 Since V1 is k-independent in both
i m

G and G, it follows from the definition of R that IV{I< R - I.

Thus x,(G) =m > EB—T . O
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Theorem 7 : Let G be a graph of order p. Then

% (G).1x(G) = [ EP:T]

Moreover this bound is sharp.

Proof : Let %,(G) =mand V| ,Vy , ..., V4 be a partition of V(G) into
k-independent sets such that IVl = max 1Vjl.
1

Since V7 is k-independent in G we have x,(G[V{]) = 1. Thus using

Lemma 6,

— — V,
% (G) 2 0 (G[V(]D) 2 ‘IJI——IJI .

Combining the above inequality with the fact that IVl 2 P we have
m

%(G). % (G) 2 [ E"_—J

We will now establish the sharpness of the above inequality. For

notational convenience let us write [——E—.‘ = A. Define G to be the

R-1

disjoint union of A Ramsey graphs Hy , Hyp , ... ,H) where

R~1, fori, 1€i<A-1,

[vH) | = {R-1, if i=A and R-1 divides p,
p-[—p—J(R—l), otherwise.
R-1

It is easy to see that the order of G is p and %,(G) = 1. From Lemma 6,
% (G) = A. To prove the reverse inequality, assign colour i to the vertices
of H; fori= 1,2,...,A. Since V(H;) is k-independent in G, this
provides a (A.k)-colouring of G . Thus x,(G) = A. This completes the

proof of the theorem. 0
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Remark 1: In particular we have, xl(G).x,(a) > =, since

N o

R(K(1,2),K(1.2)) = 3. 0O

5. Realizability problem

In this section we will address the realizability problem
associated with the parameter y, over the class of P4 -free graphs.
Problem : Given integers x, y and p 2 3, determine necessary and
sufficient conditions for the existence of a P4 -free graph G of order p

such that %,(G) = x and 1,(G) = y.

Let x and y be integers such that x < P’:“i and y < {%1 Consider

the following inequalities:
x+y<2+ —g— (5)
(6)

Xy 2

N

From Theorem 2 and Remark 1, it follows that (5) and (6) are necessary
for the existence of a P4 -free graph G of order p with ¥,(G) = x and

%,(G) = y. In this section we will establish the sufficiency.

P P

Theorem 8 : Let x < {—2—] y < [2.' and p 23 be integers such that

(5) and (6) hold. Then there is a P4 -free graph G of order p with
%(G) = x and x,(G) = y.

Proof : Without loss of generality let x <y. From (5) we have

p>2x + 2y - 4.
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Casel:p=2x+2y-3o0r2x+2y-4.

. . +1 . -
Firstly if x = 1, theny = % In this case the graph K, is the

required graph.
Next let x 2 2. Consider the graph G = (Ky, 3 + ;) U K, .5 .

where 8 = 0 or 1 according as p is even or odd. It is easy to verify that G

is a P4 -free graph, %,(G) = x and x,(G) = y.

Case 2 :2(x+y-1)<p<2xy

Let a;, a,,...,00, be integers satisfying the following conditions:
a, =2x,
2<0; £2x, 25igy,

and

2ai =p.
It is easy to check that such integers @, 0,...,0, always exist. For

example, the numbers defined below satisfy the required conditions.

o = 2x,

o = t+3, 2<i<s+1,
and

o = t+2,s+2<i<y,

where p-2(x+y-1)=t(y-1)+s5,0<s<y- 1

Now let G= K, UK, U..UK . Note that G is P4 -free. Clearly
1 2 y

% (G) = x,(Ka) = X. Since G contains a l-independent set of
1

cardinality 2y, from Lemma 6, we have x,(G) 2 y. Also it is easy to

check that G is (y,1)-colourable. Thus x,(—G_) =y. This completes the

proof of the theorem. ]
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