
ON DEFECTIVE COLOURINGS OF COMPLEMENTARY GRAPHS 

Nirmala Achuthan, N.R.Achuthan and M.Simanihuruk 
School of Mathematics and Statistics 

Curtin University of Technology 
GPO Box U 1987 

Perth, Australia, 6001 

ABSTRACT: A graph is (m,k)-colourable if its vertices can be coloured 

with m colours such that the maximum degree of the subgraph induced 

on vertices receiving the same colour is at most k. The k-defedive 

chromatic number Xk(G) of a graph G is the least positive integer m 

for which G is (m,k)-colourable. In this paper we obtain a sharp upper 

bound for XI (G) + X/G) whenever G has no induced subgraph 

isomorphic to P 4 ' a path of order four. For general k, we obtain a weak 

upper bound for Xk(G) + Xk(G). Furthermore we will present a sharp 

lower bound for the product Xk(G).Xk(G) in terms of some generalized 

Ramsey numbers and discuss the associated realizability problem for the 

I-defective chromatic number. 

1. Introduction 

All graphs considered in this paper are undirected, finite, loopless 

and have no multiple edges. For the most part we follow the notation of 

Chartrand and Lesniak [3]. For a graph G, we denote the vertex set and 
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the edge set of 0 by Y(O) and E(G) respectively. Pn is a path of order n 

and G is the complement of G. For a subset U of Y(O), the subgraph of 0 

induced on U is denoted by G[U]. 

The generalized Ramsey number R(K( 1 ,m).K( 1 ,n» is the smallest 

positive integer p such that for every graph 0 of order p, either G contains 

a vertex whose degree is at least m or G contains a vertex with degree at 

least n. 

A graph is said to be P 4 -free, if it does not contain P 4 as an 

induced subgraph. A subset U of V(G) is said to be k-independent if the 

maximum degree of O[U] is at most k. A graph is (m,k)-colourable if its 

vertices can be coloured with m colours such that the subgraph induced 

on vertices receiving the same colour is k-independent. Sometimes 

we refer to an (m,k)-co\ouring of G as a k-defective colouring of O. 

Note that any (m,k)-colouring of a graph G partitions the vertex set of G 

into m subsets V I ' V 2 , ... , V m such that every Viis k-independent. 

The k-defective chromatic number Xk (G) of 0 is the least positive 

integer m for which G is (m,k)-colourable. Note that Xo(G) is the usual 

chromatic number of G. Clearly Xk(G) ~ r-p-l, where p is the order 
k+ I 

of O. If Xk(O) = m then G is said to be (m,k)-chromatic. In 

addition, if Xk(G- v) = m - I for every vertex v of 0 then G is said to be 

(m,k)-critical. 

These concepts have been studied by several authors. Hopkins and 

Staton [6] refer to a k-independent set as a k-small set. Maddox [8,9] and 

Andrews and Jacobson [2] refer to the same as a k-dependent set. The k­

defective chromatic number has been investigated by Frick [4]; Frick and 

Henning [5]; Maddox [8,9]; Hopkins and Staton [61 under the name k-
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partition number; Andrews and Jacobson [2) under the name k-chromatic 

number. 

The k-defective chromatic number is a generalization of the 

chromatic number of a graph which is related to the point partition number 

Pic (0) defined by Lick and White [7]. It is well known that Xk(O) ~ 

Pit (0). Lick and White [7] established that 

Pit (0) + Pit (0) ~ p-l + 2, 
k+l 

for a graph 0 of order p. A natural question that arises is whether the 

above upper bound is approximately the right bound for Xk(G) + X/G). We 

investigate this problem in this paper. 

The Nordhaus-Oaddum [10] problem associated with the parameter 

Xk is to find sharp bounds for Xk(O) + Xk(G) and Xk(G),Xk(G) where G is 

a graph of order p. Maddox [8] investigated this problem and has shown 

that if either G or G is triangle free, then Xk(G) + Xk < sr-p-l 
- 3k+4' 

where p is the order of G. When k = I he improved the above bound to 

6r t 1- Maddox [8] suggested the following conjecture: 

For a graph 0 of order p, 

r1?.:J.l + 2 . 
k+l 

Achuthan et al. [1] have proved that for any graph 0 of order p, 

In this paper we will investigate the Nordhaus-Oaddum problem 

for the k-defective chromatic number of a graph. In Section 2 we will 

prove that XI(G) +X/O) ~ l~J + 2 for a P4 -free graph G of order p. 

Note that this verifies the above conjecture of Maddox for the case k = 
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over the subclass of P 4 -free graphs of order p. We will also establish a 

weak upper bound for XIr;(G) + X/G) • for k ~ 1 where G is a graph of 

order p. In Section 3 we disprove the conjecture of Maddox [8] and in 

Section 4 we will present a sharp lower bound for XIr;(G),Xk{G). In the 

final section we will study the following realizability problem for the 1-

defective chromatic number: 

Given a positive integer p. determine integer pairs x and y such that 

there exists a P 4 -free graph G of order p with XI (G) :::: x and X/G) :::: y . 

In all the figures of this paper, we follow the convention that a 

solid line between two sets X and Y of vertices represents the existence 

of all possible edges between X and Y. 

2. Upper bound for the sum 

We need the following theorem to prove our results. 

Theorem l(Seinsche [11]): 

Let G be a graph. The following statements are equivalent. 

1. G has no induced subgraph isomorphic to P 4 . 

2. For every subset U of Y(G) with more than one element, either 

G[UJ or G [U] is disconnected. 0 

Our first result deals with critical graphs. 

Lemma 1: Let G be (m,k)-critical. For aH v E Y(G) the k-defective 

chromatic number of every component of G - v is equal to m - 1. 

178 



Proof: Let v E V(G). Since G is (m,k)-critical, Xk(G- v) ::: m - 1. If v is 

not a cut vertex there is nothing to prove. Now let v be a cut vertex 

of G and let HI ,H2 , ... ,Ht ,be the components of G - v. If Xk(H.) ::: 

Xk(H2) ::: ... ::: Xk(H t ) then the lemma follows from the criticality of G. 

Otherwise, let t be an integer, l~ t ~ t, such that Xk(H,) ~ m 2. From the 

criticality of G it follows that G - Ht is (m-l ,k)-colourable. Consider any 

(m-l,k)-colouring of the vertices of G - Ht using colours 1,2, ... ,m - l. 

Without loss of generality we can assume that m - I is the colour 

received by the vertex v. Now consider an (m-2,k)-colouring of the 

graph He using the colours 1,2,.. m-2. Note that this is possible since 

Xk(H,) ~ m - 2. This produces an (m-l,k)-coIouring of G, which 

contradicts the hypothesis and proves the lemma. 0 

Lemma 2 : Let G be a graph of order p with vertex disjoint stars S] , 

S2 .... ,Sa of order k + 2 each. Then 

Proof: Clearly V(Si ) is a k-independent set in a, for each i . Now 

consider the following colouring of a: The vertices of Sj are assigned 

colour i, 1 ~ i ~ a; and the remaining p - (k + 2)a vertices are coloured 

using f
p

-(k+2)al new colours. This is a k-defective colouring of a 
k+l 

which uses fp-al colours. Thus Xk(a) ~ fp-al 
k+l k+l 
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Theorem 2 : Let G be a P 4 -free graph of order p ~ 3. Then 

XI(G) + XI (0) ~ l~J+ 2. 

Moreover this bound is sharp. 

Proof: We prove the theorem by induction on p. It is clearly true for p 

== 3 and 4 and hence let p ~ 5. Assume that the theorem holds for P4 -free 

graphs of order < p. We first observe that for every pair of vertices x. 

and y of G, 

X,(G - x. - y) XI(G) or XI(G) - 1, 

and 

XI (G - x. - y) == XI or X/G) 1. 

Suppose there are vertices x and y such that 

or 

In this case 

Using the induction hypothesis we have 

X.(G) + XI(O) lp;2 J + 2 + 1 == l~J + 2. 
Henceforth we assume that for all x and y E V(G), 

XI (G) == XI (G - x - y) + 1 

and 
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Since 0 is P 4 -free. it follows from Theorem I that either 0 or G is 

disconnected. Let us assume without loss of generality that G is 

disconnected. Let 0 I be a component of 0 with the largest value of XI 

and 02 be the union of all other components of O. Note that XI (0 1) :: 

XI (0). Clearly 02 has exactly one vertex, for otherwise, we have a 

contradiction to (1) . Hence let V(G2) = { w }. Since G 1 is connected 

and P 4 -free, it follows from Theorem that 0'1 is disconnected. Let Fl 

, F2, ... , Ft be the components of such that Xl (F 1 ) ~ XI (F2 ) 

~ ... ~ XI(Ft ). If XI(Fl ) :: 1 then XI(G) ~ 2. In this case 

XI(0)+XI(O')~XI(01)+2~ rp
;11+2 ::l~J+2. 

Henceforth we will assume that XI (Ft) ~ 2. Let U == u F3 u ... u Ft ' 

IV(F 1)1 = a, and IV(U)I :: b. Note that XI (U) :: XI (F2)' The graph G is 

depicted in Figure I . 

Figure 1: 0' 

We now consider two cases depending on the value of XI(U). 

Case I: XI(U) ~ 3. 

Since U is P 4 -free, by the induction hypothesis we have 

XI(D) ~ l~J + 2 - XI(U) 
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~ l~J - 1. 

Also note that 

XI(G) ~ XleF,) + X1(U) 

and 

Therefore 

XI(G) + X/G) ~ XI(Fl ) + XICi~;I) + XI(U) + 1 

Case 2: XI (U) ~ 2 

Observe that XI ( 

~ la~bJ+2=lpTJ+2. 

+ w) ~ Xl (U). Firstly if equality occurs in this 

Consequently there are two vertex disjoint paths Ql and Q2 of length 

two in FI and respectively. Applying Lemma 2 to the graph at 

(of order p - 1) we have Xl(Gt) ~ rp~31· Now X1(G) = X1(Gl) ~ 

r
p 

2
3
1. Since X/G) ~ XI(Fl) + 1 = 3, we have 

XI(G) + XI(a) s r p~31 + 3 l~J + 2. 

Henceforth we will assume that Xl ( F 1 + w) > XI (U). 

We will now prove that XI (G) = XI (FI + w). Firstly observe that Xl (a) ~ 

Xl (F 1 + w), since F 1 + w is a subgraph of G . Consider a I-defective 

colouring of FI + w using XI(FI + w) colours. Since XI(U) < XI(Fl + w) 

it is possible to colour an the vertices of U with the colours used in the 
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above mentioned I-defective colouring of F 1 + w except the one given to 

the vertex w. This provides a I-defective colouring of G with Xl (F I + w) 

colours. Thus XI(G) = XI(Ft + w). Now IV(U)I = I. for otherwise, we 

have a contradiction to (2). Let V(U) = { z }. 

Since F I is connected and P 4 -free, it follows that PI is 

disconnected. Let HI, H2 .... , HA be the components of PI . Define 

Y == H2 v H3 v ... v HA and let IV(HI )1 = c and IV(Y)I = d. Note that c 

+d=p-2. 

Figure 2: G 

We observe that G - w is critical, for otherwise, if Xl (G w - u) = Xl (G -

w) for some vertex u then we have a contradiction to (I) since Xl (G - w) 

= Xl (G) . Now from Lemma 'I we have, 

(3) 

Firstly let X\(Y) ~ 3. Since Y is P4 -free we have 
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Incorporating this inequality in (3) we have 

XI(G) + XI(G) ~ l~J + l%J + 3 

This proves the theorem in the case XI (Y) ~ 3. Henceforth let us assume 

that XI (Y) ~ 2. Note that Xl (Y) ::: XI (H 1) ::: XI (H2) :: ... ::: XI (H,), 

If XI(Y)::: 1 then clearly XI(G) ~ 2. Let U E V(Hl) and v E V(H2 ). 

Then G[{u,v,z}] contains a path of length Again by Lemma 2, XI(G) ~ 

IP
2

11 l~J ThusXI(G)+XI(G)~ l~J+2inthiscase. 
Finally let Xl (Y) ::: 2. Clearly XI (0 I) 3. Since Xl (Hi) ::: 2 for 

each i, Hi contains a path Qi of length 2. Note that V(QI) and V(Q2) u 

{z} are I-independent in G. Now colour 1 to the vertices of 

V (Q I), colour 2 to the vertices of V(Q2) u {z} and I p; 71 new colou rs 

to the remaining p - 7 vertices of G. This is a I-defective colouring of G 

which uses I p 2 31 colours. Thus XI (G) I p 2 31· Combining this with 

the inequality XI (G) ~ 3 we have the required upper bound. 

To prove the sharpness let G == K(l ,p-l). Clearly XI (0) ::: 2 and 

Xl (G) ::: l ~J . This completes the proof of the theorem. 0 

Recall the following conjecture of Maddox [8] concerning the 1-

defective chromatic number: 
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For a graph G of order p. 

Xt (G) + Xt ( G) ~ r p ~ 11 + 2. 

Theorem 2 verifies this conjecture for the subclass of P 4 -free graphs of 

order p. 

Next we establish a weak upper bound for Xk(G) + Xk(G) for all 

k ~ 1. 

Theorem 3: Let G be a graph of order p. Then 

+2k+4 
Xk(G) + Xk(G) ~ -"----

k+2 

Proof: Consider a partition of V(O) into k-independent sets VI, V2 , ... 

constructed as follows: 

- V 1 is the largest k-independent set of O. 

- Having defined the ith k-independent set Vi, the (i + 1)th set V i+ 1 

is defined as the largest k-independent set in the su bgraph induced on 
i 

VeO) u", 
1=) 

- Repeat the above process until we can not proceed any further. 

Clearly this procedure produces a partition of V(G) into, say m, k­

independent sets VI, V 2 ' ... , V m with the following properties: 

and 

(ii) IVm-11 ~ k + 1. 

Observe that Xk(G) ~ m and we will now prove that 

(0) p+k+2-m 
Xle ~ k+ 1 . (4) 
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Let xi E Vi for i ~ 2. Note that G[Vi-l U { xi }] contains a star Si 

== K( t,k+ I). for otherwise, V i-I U {xi } is a k-independent set, 

contradicting the maximality of IV i-II . Now we define r to be the 

smallest positive integer i such that IV il :::;; k + 1. If no such r exists 

then let r = m. Note that IV r-II ~ k + 2. We consider two cases. 

Case 1: r = m 

Since IVil ~ k + 2 for 2:::;; iSm - I, the stars Si == K(1,k+l), i = 

2,3, ... ,m of G can be chosen to be vertex disjoint. Using Lemma 2 we 

have 

x (0) ~ rp (m -1)1 ~ 
k k+ 1 

This establishes (4) in this case. 

Case 2 : r :::;; m - 1 

-m+k+2 

k+l 

Note that in this case IVil = k + 1 for r S i:::;; m - 1. Since IV ml ~ 1 we 

m 
have I UVj I ~ (m r)(k + 1) + 1. 

i=r 

m _ m 
Clearly UVi is k-independent in G, for otherwise. G[ UVj has a 

i=r i=r 

star S K(l,k + 1) and thus V(S) forms a k-independent set of 

cardinality k + 2 in G, contradicting the maximality of IV rio Again as in 

Case I, since 1Vi I ~ k + 2 for i = 1,2, ... ,r-l, the stars S2 ,S3 ' ...• Sr can 

be chosen to be vertex disjoint. Now we provide a k-defective 

colouring of G as follows: 

- colour the vertices of Si with colour i, 2 :::;; i ~ r. 
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m m 
- colour the vertices of U Vi - Sr with colour 1. Note that I UVi - Sr I 

~r ~r 

~ (m - r)(k + I). 

- colour the remaining a vertices of G arbitrarily, using r~l new 
k +1 

m 
colours where (l = P - (r - l)(k + 2) - I UVj - Sr I. 

i=r 

Note that a :$; p - (r - l)(k + 2) - (m - r)(k + 1). 

Thus 

G) :$; r p - (r - 1)( k + 2) - (m - r)( k + 1) 1 + r 
Xk( k + 1 

:$; p+k+2-m 

k+l 

This proves (4). 

Now from (4) and the inequality Xk(G) :$; m, we have 

(k + 1)Xk(O) + Xk(G) :$; p + k + 2. 

Now reversing the roles of G and (i, we get 

Xk(G) + (k + l)Xk(G) :$; p + k + 2. 

Combining these two inequalities we have the required inequality. 0 

3. Counter example to the conjecture of Maddox 

In this section we will construct a graph G of order p such that 

Xk(G) + Xk(G) = rp-1l + 3, thus disproving the conjecture of 
k+l 

Maddox[8] which states that for a graph G of order p, 

Xk(G) + Xk(G) :$; rp
-

11 + 2. 
k+l 

Lemma 3 : Suppose k ~ 2 and m ~ 0 are integers. Let G be a graph of 

order (m + 3)(k + 1) shown in Figure 3, where G[A 1] == Kic ' G[A2l == 
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A 
4 AI 

Figure 3: G 

Proof. Firstly Xk(G) ~ m + 3, since G has (m + 3)(k + 1) vertices. 

If possible let Xk(G) ~ m + 2 and consider a partition of V(G) into m + 2 

k-independent sets VI, V 2 , ... , V m+2 such that V 1 is a largest set. 

Since IV 11 k + 2 and the elements of A5 are adjacent to every other 

vertex of G, it follows that AS n VI = 0, AS n Vi ;f. 0 for i ~ 2 and 1Vi I 

$; k+l for i 2:: 2. Thus IVII ~ 2k + 2 and VI ~ Al u A2 u A3 uA4' Now if 

A2 n VI = 0, then V I = A I u A3 u A4. which is not k-independent, and 

therefore a contradiction. On the other hand, if A2 n VI ;f. 0 then 

IVI n (AI U A2 u A3)1 ~ k + I, so that IVII $; k + 3. Thus we have 2k 

+ 2 $; I V 1 I $; k + 3 which implies k $; 1, a contradiction to our assumtion 

that k 2:: 2. This completes the proof of the lemma. 0 

Lemma 4: Suppose k ~ 1 and t ~ 0 are integers. Let G be a graph of 

order (t + 3)(k + 1) shown in Figure 4, where G[A 1] == G[A4] == Kic ' 

G[A21 == Kk. G[A3J == K2 and G[Asl == Kt(k+l)+i • Then X,,(G) = t + 3. 
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AI 4 

Figure 4: G 

Proof: The proof of Lemma 4 is identical to that of Lemma 3, except that 

A2 n VI;:; 0 impies I V 1 (\ (A 1 u A3) I ~ k + 1 which in turn implies that 

I V I I ~ 2k + 1, contradicting the inequality I V 11 ~ 2k + 2. 0 

Lemma 5 : Let G == K2m+l + Cs Then XI(G) = m + 3. 

Proof: Since the order of G is 2m + 6, it follows that XI (G) ~ m + 3. 

If possible let Xl (G) $ m + 2 and consider a partition of V(G) into 

I-independent sets VI, V 2 ' ... , V m+2 . Without loss of generality 

assume that IV l' ~ IV 2' ~ ... ~ IV m+21. Since G == Cs U K2m+l , any 

I-independent set of G has cardinality at most 3. Therefore IV l' $ 3. 

Again if IV 2' = 3 then G would have two vertex disjoint paths of length 

2 each, which is impossible. Therefore IV 2' ~ 2. Thus 
m+2 

2 m + 6 = IV (G) 1 = L IVi I ~ 2m + S, 
i=1 

which is absurd. This proves XI(G) ~ m + 3, completing the proof of the 

lemma. o 
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We will now present a graph which disproves the conjecture of 

Maddox [8]. 

Theorem 4 : Let k ~ 2, t ~ 0 and m ~ 0 be integers and G a graph of 

order (t + m + 3)(k + 1) + 1 shown in Figure 5, where O[A I]:: KII: • 

Kt(k+I)+I' Then 

AI 4 

Figure 5: G 

Proof: It is easy to see that Xk(G) 5; m + 3, since the vertices of A2 u 

A3 u A5 can be arbitrarily coloured with m + 2 colours and all the 

vertices of Al u A4 u A6 can be coloured with a new colour. Since G 

contains the graph of Lemma 3 as a subgraph it follows that X,,(G) ~ m + 

3. Thus Xk(G) = m + 3. 

Note that G is the disjoint union of the graph of Lemma 4 and a 

Km(k+I)+I' Thus from Lemma 4, we have 
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Theorem 5 : Let G be the graph of Figure 6 where G[X] - K2t+I' G[Y] 

== K2m+1 and G[Z] == Cs . Then 

XI (G) + X/G) = m + t + 6. 

x y Z 

Figure 6: G 

Proof: Firstly colour the vertices of Y using m + I colours. Now the 

vertices of X u Z can be coloured with two new colours. This is 

possible since there are no edges between X and Z and XI(C5 ) = 2. 

Thus X1(G) $; m + 3. Also Xl(G) ~ XI (G[Y u Z]) = m + 3 (by Lemma 5). 

Hence Xl (G) = m + 3. 

Similarly using Lemma S one can show that XI (G) = t + 3. This 

proves that Xl (G) + X/G) = m + t + 6. o 

Recall the conjecture of Maddox [8]: 

For a graph G of order p. 

Xle (G) + Xle (0) ~ r ~: ~ 1 + 2. 

Simple counting shows that the graphs of Theorems 4 and 5 form counter­

examples to the conjecture for k ~ 2 and k = 1, respectively. It is also easy 

to see that these graphs have P 4 as an induced subgraph. A natural 

question that arises is : Does there exist a P 4 -free graph G of order p such 

that XIe(G) + Xk(G) ~ rp-1l + 3 for k ~ 2 ? 
k+l 
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4. Lower bound for the product 

In this section we will provide a sharp lower bound for the product 

Xk(G).Xt./O) in terms of the generalized Ramsey number 

R(K( 1 ,k+ 1 ),K( 1 ,k+ 1 ». 

Theorem 6 (Chartrand and Lesniak[3], p. 315 ) 

Let k be a positive integer. Then 

{

2k + 1, if k is odd 
R(K(1,k+l),K(1,k+l» = 

2k + 2, otherwise. 
o 

For notational convenience we denote R(K(1 ,k+ 1 ),K(l ,k+ 1» by R. From 

the definition of the generalized Ramsey number R it follows that for 

any positive integer t:S; R - 1, there exists a graph H of order t such that 

neither H nor H contains a vertex of degree k + 1 We refer to such a 

graph as a Ramsey graph and denote it by H[t]. 

Lemma 6: Let G be a graph of order p. If Xk(G) = I, then 

Proof: Let X./O) m and consider an (m,k)-colouring of O. Let VI 

,V 2 , .... V m be a partition of V(O) into k-independent sets such that 

IV II = max 1Vil. Note that IV 11 ~~ . Since V 1 is k-independent in both 
i m 

G and a, it follows from the definition of R that IV 11::S; R - 1. 

Thus Xk(G) = m ~ -p- . 0 
R-I 
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Theorem 7 : Let G be a graph of order p. Then 

Moreover this bound is sharp. 

Proof: Let Xk(G) = m and Vl ,V2 , ... , Vm be a partition of V(a) into 

k-independent sets such that IV 11 = max IV il. 
i 

Since V I is k-independent in G we have Xk(G[V 1]) = 1. Thus using 

Lemma 6, 

Xk(O);;:: Xk(O[V I]) ~ M . 
R-l 

Combining the above inequality with the fact that IV 11 ;;:: ~ we have 
m 

We will now establish the sharpness of the above inequality. For 

notational convenience let us write r-p-l = A. Define G to be the 
R-l 

disjoint union of A Ramsey graphs HI. H2 •... ,HA where 

R -I, for i, 1 ~ i ~ A-I, 

I V(Hi) I = R-l, if i = A and R-l divides p, 

p-l-P-J(R -1). otherwise. 
R-l 

It is easy to see that the order of G is p and Xk(G) = 1. From Lemma 6, 

Xk(O) ;;:: A. To prove the reverse inequality, assign colour i to the vertices 

of Hi for i = l,2, ...• }... Since V(Hi) is k-independent in 0, this 

provides a (A,k)-colouring of G . Thus XI.;(O) = A. This completes the 

proof of the theorem. o 
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Remark l' In particular we have, Xl (G). Xl (G) ~ .£ , since 
2 

R(K(l,2),K(l,2») = 3 

5. Realizability problem 

In this section we will address the realizability problem 

associated with the parameter XI over the class of P 4 -free graphs. 

Problem: Given integers x, y and p ~ 3, determine necessary and 

sufficient conditions for the existence of a P 4 -free graph G of order p 

suchthat XI(G) = x andx)(G)=y. 

o 

Let x and y be integers such that x r~l and y r~l Consider 

the following inequalities: 

x+y 2+.£ 
2 

xy ~ .£ 
2 

(5) 

(6) 

From Theorem 2 and Remark 1, it follows that (5) and (6) are necessary 

for the existence of a -free graph G of order p with XI (0) = x and 

X/G) = y. In this section we will establish the sufficiency. 

Theorem 8 : Let x S r ~ 1, y ~ r ~ 1 and p ~ 3 be integers such that 

(5) and (6) hold. Then there is a P 4 -free graph G of order p with 

Xl(G) = x and Xl(G) = y. 

Proof: Without loss of generality let x ~ y. From (5) we have 

p ~ 2x + 2y - 4. 
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Case 1 . P :: 2x + 2y - 3 or 2x + 2y - 4. 

Firstly if x :: 1. then y:: p+ 1. In this case the graph Kp is the 
2 

required graph. 

Next let x ~ 2. Consider the graph G == (K2x- 3 + P3 ) U K2y- 4+S ' 

where 0 :: 0 or 1 according as p is even or odd. It is easy to verify that G 

is a P 4 -free graph. XI (G) :: x and XI (0) :: y. 

Case 2 : 2(x + y - I) $ p $ 2xy 

Let a,. ~ .. ,ay be integers satisfying the following conditions: 

a l :: 2x. 

and 

2 $ a i $ 2 x. 2 $ i $ y. 

y 
Lai :: p . 
i=1 

It is easy to check that such integers a l • ~, ... ,ay always exist. For 

example, the numbers defined below satisfy the required conditions. 

((, :: 2x, 

((i :: t + 3. 2 $ i $ s + 1, 

and 

((i :: t + 2 , s + 2 $ i $ y, 

where p - 2(x + y - 1) :: t(y - 1) + s, 0 $ s < Y - 1. 

Now Jet G == K((, uK
U2 

u ... uKay . Note that G is P4 -free. Clearly 

Xl (G) :: XI (Ka) :: x. Since G contains a I-independent set of 
I 

cardinality 2y, from Lemma 6, we have Xl (0) 2: y. Also it is easy to 

check that 0 is (y,l )-colourable. Thus Xl (0) :: y. This completes the 

proof of the theorem. o 

195 



Acknowledgement 

The authors thank the referee for his/her valuable suggestions which 

improved the presentation of the paper. 

REFERENCES 

[l] N.Achuthan, N.R. Achuthan and M.Simanihuruk, On the Nordhaus­

Gaddum problem for the n-path-chromatic number of graphs 

(submitted). 

[2] J.A. Andrews and M.S. Jacobson, On a generalization of chromatic 

number, Congressus Numerantium, 47( 1985), 33-48. 

[3] G. Chartrand and L.Lesniak, Graphs and Digraphs, 2nd Edition, 

Wadsworth and Brooks/Cole, Monterey California( 1986). 

[4] M. Frick, A survey of (m,k)-colourings, Annals of Discrete 

Mathematics, 55(1993), 45-58. 

[5] M.Frick and M.A. Henning, Extremal results on defective colourings 

of graphs, Discrete Mathematics, 126(1994),151-158. 

[6] G.Hopkins and W.Staton, Vertex partitions and k-small subsets of 

graphs, ARS Combinatoria, 22( 1986), 19-24 

[7] D.R.Lick and A.T.White, Point partition numbers of complementary 

graphs, Mathematica Japonicae, 19(1974). 233-237. 

[8] R.B. Maddox, Vertex partitions and transition parameters, 

Ph.D Thesis, The University of Mississippi, Mississippi (1988). 

[9] R.B. Maddox, On k-dependent subsets and partitions of k-degenerate 

graphs, Congressus Numerantium. 66(1988), 11-14. 

[10] E.A.Nordhaus and J.W.Gaddum, On complementary graphs, 

Amer.Math.Monthly 63( 1956), 175 - 177. 

[II] D. Seinsche, On a property of the class of n-colourable graphs, 

J. Combinatorial Theory 16B(1974), 191 - 193. 

(Received 15/3/95) 


