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Abstract 

Suppose G connected graph on p vertices that contains perfect 
Then G is said to have property n) if p 2: 2(m + n + 1) 

and if for each pair of disjoint independent M, N E( G) of m, n 
there exists a perfect matching P in G such that M S;;;; P and 

0. We discuss the circumstances under which E(m, n) =? E(x, y), 
and prove that (surprisingly) in general E(m, n) does not imply E(m, n-1). 

1 Introduction 

In this paper we consider finite, simple graphs. An m-matching is a set of m 
independent of a graph. For a graph 0 with 2n perfect matching 
is an in O. Let 0 be a connected graph on p vertices which contains 
a perfect matching. 0 is said to be n-extendable, for positive integer n, if p 
2 ( n + 1) and every n-matching can be extended to is contained in) a perfect 
matching in O. 

Plummer first introduced the concept of n-extendable graphs [4]. Since then 
there has been amount of study into relationships between n-extendability 
and other graph parameters, such as connectivity, and genus. For an 
excellent survey we refer the reader to [7]. 

Generalizing this idea of n-extendability, Liu and Yu introduced the concept 
of (m, n)-extendability [3]. For a graph 0, let M be an m-matching of 0 and 
U = {U 1, ... , 'Un} be a set of n distinct vertices of 0 such that Ui (1 :S i :S n) is 
not incident with any edge of M. A matching extension of (M, U) is a perfect 
matching M* in 0 such that !vi ~ M* and UiUj t/:. M* for any Ui, Uj E U. A graph 
o is called (m, n)-extendable if it contains a perfect matching and for arbitrary 
M and U described above, there exists matching extension of (M, U). Liu 
and Yu studied the properties of (m, n)-extendable graphs and, in particular, 
relationships between (m, n )-extendability and graph products. 
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It is clear from the definition of (m, n )-extendability that every matching ex-
tension of (M, U) must necessarily exclude any e E E( (U)), a poten-
tially number of edges asnbecomes (IE((U))I:s IE(Kn)l= n(n-I)/2). 
In this paper we present an alternative generalization of n-extendability that 
avoids this with what we call the E( m, n) property and study the 
nrnnnrr,,,,,,, of E(m, n) 

Motivation for this alternative comes from analogous study of path and cy­
cle properties in graphs. Wilson, Hemminger and Plummer [9] introduced the 
P( m, n) property of graphs. A graph on p vertices is said to be P( m, n) 
inally (m,+,n-)-connected) if p m + n,m ~ n 0, and for any 
{'ttl, ... ,Urn, Vl,' ., vn } ~ V(G) there is path in G 1tl,· .. , Urn, and 
avoiding Vh' . 1 Vn- Holton and Plummer [2] a similar definition in the 

case an extension to Dirac's Theorem. A graph G on p vertices said to 
be C(m, n) if P Tn + n and given arbitrary disjoint N ~ V(G) of sizes 
Tn, n there exists a C* in G that contains each vertex 1t E M 
and avoids each vertex v E N. 

In each of these properties the structure of the avoided elements/set is the 
same as that of the included set. With this in mind, we define the E(m, n) 
property of Let G be a connected graph OIl p vertices that contains a 
perfect matching. Then G is said to have property E(m, n) ifp ~ 2(m+n+I) and 
given arbitrary disjoint independent sets Ai, N ~ E( G) of sizes m, n respectively, 
there exists a perfect matching P in G such that M ~ P and N n P 0. We 
say that P an (11,1, N)-extension. In the case M we refer to an (e, 
extension and similarly for the case I NIL 

Note the similarities between the definitions for C(m, n) and E(m, n). Also 
we see that the properties E(m, 0) and (m,O)-extendability are both equivalent 
to m-extendability. As examples of these properties, we have the Petersen graph 
which has property E(1, 1) but not E(I, 2) or E(2, 0), and C 2n which has property 
E(I,O) but not E(I, 1). 

The following preliminary result due to Plummer combines theorems from 
[4] and [5]. Notice that part (a) induces a hierarchy upon the set of graphs 
admitting a perfect matching. As we shall see, the E(m, n) property further 
refines this hierarchy. 

Theorem 1.1 Let G be a graph on p vertices that contains a perfect matching, 
and let n be such that p ~ 2(n + 1) and let e E E(G) If G is n-extendable, then 

(a) G is (n - I)-extendable, for n ~ 2, 

(b) G is (n + I)-connected, for n ~ 1. 

(c) if n 1, G - e has a perfect matching. 

(d) if n ~ 2, G - e is (n - I)-extendable. 
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It is interesting to note that whilst it is trivially clear that C(m, n) =} C(m, n-
1) and similarly for the P( m, n) property, it is not true that a graph which has 
property E(m,n) necessarily has property E(m,n - 1). We present the graph 
0 1 5K2 + f{s in 1 as an example of this surprising result (for proof, see 
Lemma 

+ 
• • • • • • • • 
Ul U2 U3 U4 U5 U6 U7 U8 

FIGURE 1: G1 has property E(l, 7) but not E(1,6) 

2 E(m, does not imply E(m, n - 1) 

We have seen that the property E(m, 0) is just m-extendability. Our first theorem 
says that in general, the E(m, n) property is a reasonable generalization of n­
extendability. 

Theorem 2.1 If a graph G has property E(m,n), then G has property E(m,O). 

Proof: Suppose a graph G on p vertices has property E(m, n). Then there ex­
ists a perfect matching P in G and p ~ 2(m + n + 1). Thus IPI 2: m + n + 1. 
Now consider an arbitrary independent set M ~ E( G), of size m. Then certainly 
IP n (E(G)\M)I 2: n + 1. So there exists a set N ~ P n (E(G)\M) of size n. 
Then M, N are independent disjoint sets and so, since G has property E(m, n), 
there exists an (M, N)-extension P, a perfect matching containing M. It follows 
that G is m-extendable and thus has property E(m, 0). II 

Notice that we require the vertex bound of p ~ 2(m + n + 1) in the definition 
of E( m, n) for this proof. When n = ° we see that this restricton collapses to that 
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of Plummer in Theorem 1.1. It is clear also that (if we relaxed the restriction on 
p) no graph on p = 2(m + 1) vertices would have property E(m, 1) since for any 
perfect matching P we could take disjoint M, N ~ E( G) of m and 1 such 
that M U N = P thus disallowing an (M, N)-extension. 

From Theorems 1.1 and 2.1 we obtain the following corollary_ 

Corollary 2.2 If a graph G has property E(m, n), then 

(a) G has property E(q, 0) for all 0 :::; q :::; m; and 

(b) G (m + I)-connected. 

Proof: Suppose G has property E(m, By Theorem 2.1, G has property 
E(m,O) and thus m-extendable, and so by Theorem 1.1 

G has property E( q, 0) for all 0 :::; q m; and 

(b) G is (m + 1 )-connected. 

We have seen in the introduction that although Theorem 
true that E(m, n) =} E(m, n as one might 

to show that for m and n 6m + 1, the 
..:;,-;--"----

in 2 property E( m, n) but not 

holds, it is not 
We generalize 
(n - 2m)K2 + 

ill en-2m l1li 

3n-2m bn-2m 

l1li 

U2(n-3m) 

G2 = (n-2m)K2 + K2(n-3m) 

FIGURE 2: G2 has property E(m, n) but not E(m, n - 1), for m 2: 1, n - 1 2: 6m 
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Lemma 2.3 For m ;::: 1 and n ;::: 6m+ 1, there exists a graph G that has property 
E(m, n) but not E(m, n 1). 

Proof: Let m 2:: 1 and n ;::: 6m + 1. We will show that the graph G2 

(n - 2m)K2 + in Figure 2 is E(m, n) but is not E(m, n - 1). Let 
E {el,' .. ,en -2m}, = {all' .. ,an -2m}, B {b l , .. , bn - 2m }, U = {Ul' 
... ,Un -3m}, V = {Un-3m+l, ... ,U2(n-3m)} and let F = E(G2)\E (the 
between Au Band U U V). 

Firstly note that G2 contains p = 2( n - 2m) + 2( n 3m) = 4n 10m uar'rl,""C>" 

so any perfect matching in G2 contains 2n - 5m 2 ( n - 3m) + m edges. Therefore 
the perfect matching must include exactly m of the (n 2m) edges in E (and 
2(n 3m) edges in 

Claim: does not have property E(m, n). 
We have p 4n - 10m = 2(m + n + 1) + 2(n (6m + 1)) ;::: 2(m + n + 1). 

Now consider arbitrary disjoint independent M, N E( G2 ) of sizes m, n 
respectively. Now IN n EI ::; (n - 2m) - 2m = n 4m, leaving at least 2m 
in E\N. Suppose that 1M n (E\N)I q, where 0 q m. Since IMI m. 
there are at least m edges in E\ N independent of so choosing m - q of these 
and an arbitrary matching between the remaining M-llncovered vertices in AU B 
and vertices in U U V (of which there are 2(n 3m) (m q) of each) we have 
an (JIll, N)-extension. 

Claim: G2 is not E(m, n - 1). 
Consider the following disjoint independent sets M, N E(G2 ). Let N con­

tain n 4m + 1 (n 2m) - (2m-I) edges in and 4m - 2 = 2(2m -1) edges 
in adjacent to the remaining N-uncovered vertices in AU B. Let M contain 
m (2m - 1) - (m - 1) edges in F such that each M -edge is incident with a 
distinct edge in E\N. Clearly INI = n -1 and I JIll I m. Further, it is clear that 
any (JIll, N)-extension P must avoid [(n- 2m) - (2m -1)] + [(2m 1) - (m -1)] = 
(n 2m) - (m - 1) edges in E, i.e., all but m -1 edges in E. Thus P can contain 
at most m - 1 in E, a contradiction as P is a perfect matching. It follows 
that there does not exist an (M, N)-extension 'Emd thus G2 does not have property 
E(m,n -1). I11III 

In contrast to the above, the following theorem states that when n is small 
enough with respect to m, the implication E(m, n) => E(m, n - 1) does hold. 

Theorem 2.4 If a graph G has property E(m, n) then G has property E(m, n-
1), for n ::; 2m + 2. 

Proof: Suppose a graph G on p vertices has property E( m, n) with n ::; 2m + 2. 
Assume that G is not E(m, n - 1) and let M, N ~ E(G) be disjoint independent 
sets of sizes m, n - 1 respectively such that there does not exist an (M, N)­
extension. Let M = {mI' m2, ... , mm} and let N = {nl' n2, ... , nn-I}' Let I = 
V(G)\ V( (JIIIUN)) be the set of vertices in G not incident with an edge in MU N. 
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Now since G has property E(m, n) we know that no e E (E(G)\(M UN)) 
is independent of else there exists an (M, N U { e} )-extension which is also an 
(M) Thus every uv with 'I.l E I has vertex v incident with an 

in N. 
We now consider the two 

(a) Suppose n 1 m. 

Asp +n+1) 2rn+2(n-1)+4,we IIi 4. 
G has property E(n - 1,0) since n 1 m, and so there a perfect 
LUC"','.·.LUUl)"., P in G containing N. However, this isolates each vertex in I, a 
contradicbon. 

(b) Let m + 1 n 2m+ 1. 

Let q (71, 1) m, so that 1 q m+ 1. Let x be the number of in 
11/[ independent of N and let c be the number of vertices incident with both 

in !vI and in N so that c As p + n + 1) 
c) + 1) + (4 + then III + m - x + 2. By The-

orem 2.1, G has property E(m,O), and so there a perfect m<:ttctuflg 
pi in the independent set of { rl. q+ 1,. . ,nq+m } . Thus 
pi must rnatch every vertex in 1 to vertices incident 
with + 2 mCleD'en(lellt 

N ow consider 
,nm } and 

. Now IMll m and 
1) x + (m x + 2) n. Thus there exists an (MI' 
in G. p} must match every vertex v E V ( G) \ V ( (N)) to 

vertex u { nm+ 1, . .. , that is (at + 2) vertices to 
a contradiction m + 1. This completes the proof. II 

This us the following immediate corollary. 

Corollary 2.5 If a gmph G has '11rr171prhl E(m, n) with n ~ 2m + then it has 
property p) for all p n. II 

Given m 1, there is gap between n 2: 6m + 1 for which 
Lemma 2.3 shows us that G has property E(m, n) G has property E(m, n-1), 
and n 2m+ for which Theorem 2.4 shows us that G has property E(m,n) =? 

G has property E(m, n - 1). The following theorem resolves showing that 
Theorem 2.4 is in fact a best possible retmlt. (The proof is several pages so is 
omitted here we refer the reader to for full details.) 

Theorem 2.6 For m 2: 1 and n 
property E(m, n) but not E(m, n-

2m + 3, there exists a graph G that has 
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U2m-2 
e2m-2 

v2m-2 

u2m-l 
e2m-l 

v2m-l 

u2m 
e2m 

v2m 

u2m+l 
e2m+l 

v2m+l 

.. 

Xo YO 

+ 
• 
z'O 

• 
xr 

fr 
• 
Yr 

.. 
z'r 

FIGURE 3: G3 has property E(m, 2m+3+r) but not E(m, 2m+2+r) for m:2: 1 
and r :2: 0 
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Outline of proof: The proof is of similar nature to that of Theorem 
showing that the graph G3 in Figure 3 has property E( m, 2m + 3 + r) but not 
E(m, 2m + 2 + r) for m 1 and r ~ O. Define A {Ui, Vi, Xj, Yj 1 
2rn+l,O j r}andB V(G3 )\A. 

It is easy to sce that it is not 2m + + r), by co:nSlGenng 
AI = {kl , ... , and N {el, ... ,e2m+l,jo, ... ,fr}' Any (M, 

between vertices in set A (with the remaining 
outside of M between the sets A and B). This is not IJV,eXH,U.lv whilst 
avoiding set N. 

The of the proof arises 
property 2m + 3 + r), i.e. 
dent sets M, N of sizes m, n there 

to show that G3 has 
of dlSlO1l1t lIiGCpCJ1-

vVe have seen that the n) property behaves for some 
with n 2: 2m 3. The ncxt two results however show that in some senscs this 

minor aberration. The first result on Theorem 2.1 for 
with respect to m. The sccond shows that for 

m, n, the which have property n) but not n - 1) 
Therefore for any m, n there are finite number of such 

Theorern 2.7 Let a graph G have property E(m, with n m. Then G has 
property p) for all p nt. 

Proof: Let G on p vertices have property E(rn, n) with n rn, so that 
p n + 1). We first note that Corollary 2.5 we need only show that 
has propcrty m). Consider then arbitrary disjoint indepcndent AI 
Emd N each of size m. By Theorem 2.1 G has property E(m, 0) so certainly set 
N extends to perfect matching P. This matches all the remaining so 
there must be exist at least (rn + n + 1) - m = n + 1 in G independent of 
N. 

Sincp IMI m. there are at least n + 1 m independent of N that 
are not in AI. Choose n - m of these together with the m in N to form 
an independent Nl of size n that is disjoint of lvI. It follows that there 
exists (AI, N1)-extension which mUBt also be an (M, N)-extension. Thus G 
has property m). III 

Theorem 2.8 If a graph G has property E(m, n) but not E(m, n - 1) then 
IV(G)I - 1) - 2m, where m ~ 1. 

Proof: Consider a graph G on p vertices that has property E(m, n) but not 
E(m, n - 1). Take disjoint independent edgesets AI and N of sizes m, n - 1 
respectively such that there exists no (M, N)-extension in C. From Theorems 2.4 
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and 2.7 we have n 2 2m + 3 and G has property E(m, m) so we may choose 
NIl N to of size m and let NI M so that there exists an (Mil NI)­
extension 

Since G has property E( m, n) but not n 1) it follows that there are 
no independent of set N outside of M. Therefore the matching Pl which 
avoids the set NI ]'\11 must match every vertex that is not N -covered to a 
distinct vertex in the graph induced by the e N\M1. Thus we have 
IV(G)I 1) + - 1 - m) 4(n -- 1) - 2m. III 

3 Other n) implications 

We now present some other reiationBhips that hold the n) 
Firstly we state a to Theorem 1.1 ( c) and (d). 

Corollary 3.1 If a graph G has property E(m, 0)) then G has property E(m -
1, 1) for mIll 

Theorem 3.2 If a graph G has property n) J then G has property E ( m 
l,n+l) m 1. 

Proof: If n 0 then the theorem follows from Corollary 3.1, so we may suppose 
that n l. 

Let G be graph on p vertices that has property E(rn, n). Now consider 
",hi,e ... ,,,",, disjoint independent sets M, N ~ of sizes m-l, n+ 1 rCf'mectlveJlv 

By Corollary G has property E (m 1, 0), and there exists 
matching P in G containing M. Further since p 2 2(m + n + 1), we have 
IPI 2 m + n + 1. Then IP n (E(G)\(l\1 U N))I 2 1, so we may choose e E 
P n (E(G)\(M UN)). Then e is independent of M as it to the same 
perfect matching P, so let MI = M U {e}. 

Now consider two possibilities: 

(a) There exists an edge fEN adjacent to M l . 

N I = N\{f} then there exists an (MI' NI)-extension Pl in G. Fur­
f ¢:. PI it is adjacent to an MI edge. Thus PI is an (M, N)-extension. 

(b) Otherwise N is independent of MI. 

For any edge g E N, let N2 = N\{g}. There exists an (MI' N2)-extension 
in G. If P2 avoids g also then P2 is an (M, N)-extension. Else since 

IN21 n 2 1, there exists an edge h E N 2 . This edge is avoided by P2 but 
since is a perfect matching h must be adjacent to some q E P2 . Further, 
since h E N2 ~ N, a set independent of M, it follows that q ¢:. M and so 
q is independent of M. Now let M2 = M U {q} and N3 = N\{h}. Then 
there exists an (M2' N3)-extension P3 with h ¢:. P3 . Thus P3 is an (M, N)­
extension. III 
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The following corollary to Theorem 3.2 ensures that if £(m, n) = {G : G is 
an E(m, n) graph} we have 

+ n, 0) ~ £(m, n) £(m,O) 

and thus relatf~s numbers of E(m, n) to numbers of k-extendable graphs. 

Corollary 3.3 If a graph G has property 0) then G has property n). 

Proof: The result follows from applications of Theorem 3.2 to G. III 

Our final theorem in this section confirms what we expect. 

Theorern 3.4 If a graph G has property 
1, n). 

n)! then G has property E ( m 

G on p vertices 
mCleDenl:lcrl{, sets N ~ 

G has property 1, 0). 
P in G that contains 1\;1. Further since p 
Then n (E(G)\(M U N»I ~ so we may choose 
The e is independent of iI/I it to the same 
with M U then there exists an (Ml, 
is also an 0\1[, and the result follows. 

matching P, so 
in G. Clearly H 

III 

We present the (2m + n)K2 + in 4 to show that 
the resultfl of Theorems 3.2 and 3.4 are in some senses best possible. It can be 
easily seen using arguments similar to those in the proof of Lemma 2.3 that 
has E(m, but not E(m + 1, n), n + 1) or E(m I, n + 2). 

As summary of the between the E( m, n) properties we obtain 
the following corollary which extends to the result in Corollary 3.6 in the special 
case when n :::; 2m + 2. 

Corollary 3.5 If a graph G has property E(m, n) then G has property E(r, s)) 
for r n r + s m + n. 

Proof: E(m, n) E(m 1, n + 1) {from Theorem 3.2} 
... =>E(m (s-n),n+(s-n)) E((m+n) s,s) 

{from Theorem 3.2} 
=> E((m + n) - s - 1, {from Theorem 3.4} 
. . => E (r, s), since r m + n - s 

{from Theorem 3.4}. 
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+ 

FIGURE 4: G4 has property E(m, n) but not E(m + 1, n), E(m, n + 1) or E(m 
1, n + 2) 

Corollary 3.6 Suppose n ::; 2m + 2. Then if a graph G has property E(m, n) 
then G has property E(r, for 0 ::; r ::; m and 0 ::; r ::; m n. 

Proof: E(m, n) ::::;:. E(m - 1, n + 1) {from Theorem 3.2} 
... ::::;:.E(m-(m I),n+(m ,))=E("m+n-r) 

{from Theorem 
::::;:. E(" m + n - I - 1) {from Theorem 2.4} 
. .. ::::;:. E ( I, s), since ::; m + n I 

{from Theorem 2.4}. III 

4 Two More Results 

We have seen that the property of E(m, n) is basically a refinement of the widely 
studied property of n-extendability. There has already been some progress made 
using this to improve results obtained during the study of n-extendability in 
graphs. The last two results presented here give the flavour of this research. 

In [6] Plummer showed that if G is a (2n + I)-connected even claw-free graph 
with n 2: 0 then G is n-extendable. This has been improved with the follow­
ing theorem, which in particular tells us more about claw-free graphs with even 
connectivity. 

Theorem 4.1 [1] If a graph Gis (2m+n+ I)-connected even and claw-f,ee with 
IV(G)I 2: 2m + 2n + 2, then G has property E(m, n). III 
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Corollary 4.2 (1] Let G be an even, In?,,_TTlOP graph. If G is 

(a) L.:n-Ci.ln'fl~tC,~tU. then 'it has property E(n - 1,1) unless G 

(b) (2n + then it has property 0) III 

The final result here concerns HHl,lJ,,"HlHI", extension in bipartite 

Theorem 4.3 [1] ff G is a regular (2n + I-V(t.t(,"-("(I((.'((.f~('lf'(( bipartite graph with 
IV(G)I 2(n + 1) + then G has E(1, n). III 
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