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Abstract

Let [n] denote an n-set. A subset S of [n] separates ¢ from j if 1 € §
and j & S. A collection of k-sets R is called a (n, k) completely separating
system if, for each ordered pair (i, ) € [n] x [n] with ¢ 5 j, there is a set
S € R which separates ¢ from j.

Let R(n, k) denote the size of a smallest (n, k) completely separating
system. Amongst other things, it will be shown that R(n,k) = [2n/k]
for n > k?/2, except when n = (“;1> — 1, and R(n,k) = k+ 1 for
(’;) < n < k?/2. These results build on and extend those in Ramsay et
al [8].

1 Introduction

In 1961 Rényi [9] raised the problem of finding minimum separating systems in the
context of solving certain problems in information theory. Subsequently, several
variants have been treated in the literature. (See, for example, [1, 2, 3, 4, 5, 10,
11, 12].) Completely separating systems were introduced by Dickson [4]. It is the
purpose of this paper to extend the results of Ramsay et al in [7] and [8]. Basic
notation and definitions are included in this section.

Definition 1 Let [n] denote the set {1,2....,n}. A set A C [r] separates i from
jifie Aand j € A. A collection S of subsets of [n] is a separating system if, for
each 1,7 € [n] with ¢ # J, there is a set A in § that separates ¢ from j or a set B
that separates j from ¢. If, for each ¢, € [n] with ¢ 3 j, there is a set A in & that
separates ¢ from j and a set B that separates j from ¢, then & is called a completely
separating system.
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Observe that any complete separator is a separator, but not vice-versa. For example,
in {{1,2},{1,3}}, 1 is separated from 2 by {1, 3}, but 2 is not separated from 1.

The generic problem is to find separators of smallest size; that is, containing the least
number of sets. This paper will be concerned exclusively with completely separating
systems, abbreviated by CSSs. Let R(n) denote the size of a smallest CSS on [n].
Dickson [4] showed that R(n) ~ log, n. Spencer [10] obtained the sharper result that

R(n) = min{r: <[7T/2_|) > n}

by exploiting the connection between CSSs and Sperner families (antichains).
Notation (1) (n,k)CSS denotes a CSS of k-sets on an n-set.

(2) (n,a,k)CSS denotes a CSS of sets on an n-set where each set A in the system
has a < |A| < k.

Definition 2 Let S be an n-set and let C be the collection of all completely sepa-
rating systems on 5 in which no set occurs more than once. Then:

(1) R(n, k) = mingec{|R| : |A4| = k,YA € R}. That is, R(n,k) is the minimum
number of k-sets that completely separate n elements.

(2) R(n,a, k) = mingec{|R] : a < JA| < k,VA € R}. That is, R(n,a, k) is the min-
imum number of sets of cardinality between @ and & (inclusive) which completely
separate n elements.

Example R(6,3) = 4, since R = {{1,2,3}, {1,5,6}, {2,4,6}, {3,4,5}} is a
(6,3)CSS and uo fewer number of 3-sets will completely separate 6 elements. For
k # 3, R(6,k) = 6. Note that any collection of k-subsets of {n] that is a superset of
a (n, k)CSS is also a (n, k)CSS.

Note 1 (1) The definitions above consider only the number of sets in the CSS. An-
other notion of minimality which is relevant to a variant of the R(n,a, k) problem is
the notion of strong minimality. Here, the number of sets is required to be minimised
and then the sum of the cardinality of the sets is also required to be minimised. In
general it is possible to have one but not the other of these numbers achieving a
minimum amongst their possible values.

(2) The definition of C is for formal convenience, to ensure that only finite collections
are considered. If a set A occurs more than once in a CSS R then R cannot be a
minimal CSS as the removal of one occurrence of A would produce a smaller CSS.
(3) Definition 2.2 is of particular interest in this paper in the cases when a = 1 or
2. Only when a =1 can an element of [n] occur once only in a CSS, and then as a
singleton set.

(4) Cai [2] shows that

R(n,1,k) = [2n/k], ifn>k/2>2

(5) The main focus of this paper is on R(n,k), and, unless otherwise stated, all
material refers to the consideration of the R(n, k) problem.
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(6) 1t is easily seen that R(n,1) = R(n,2) = nfor all n. Henceforth, unless otherwise
stated, it will be assumed that k& > 2.

It is obvious that R(n) < R(n,1,k) < B(n,2,k) < -+ < R(n,k — 1,k) < R(n, k).
Combining this observation with the result of Spencer, the following lower bound on
R(n, k) is obtained.

Lemma 1 R(n,k) > min{r: ( >n}.

LT/Z})
Definition 3 (1) Given a CSS R of R k-sets on an n-set S with 2n < Rk < 3n
define £ = Rk — 2n. F is called the excess. E is the maximum number of elements
of S which can occur more than twice in R and n — E is the minimum number of
elements which must occur at most twice in R. For k > I, “at most twice” may be
read as “exactly twice”.

(2) A CSS R on an n-set S is said to be fair if there exists an integer p, such that
every element of S occurs in either p or p + 1 sets of R. That is, a CSS R is fair if
each element of S is used, as far as is possible, the same number of times in R.

Where no confusion arises, collections of sets are denoted in an abbreviated form,
omitting the braces and the commas of the contained sets. Thus, the example given
earlier can be written R = {123,156,246,345}. Elements greater than 9 are some-
times represented using the letters A, B, ...

In [8] it was shown that R(n,k) > [2n/k], & > 1, and that this bound can be
achieved for n > k(k — 1). It was also shown that, in general, R(n,1,k) # R(n,k).
Here, these results are extended to show that R(n,k) = [2n/k] for n > k?/2, except

when n = (k?) — 1. The solution to the R(n,k) problem is also extended to include

all n > (];) The proofs of these results are constructive, thus example minimal
(SSs are included for each value of n and k. Constructive examples and values for
R(n,2,k) are also included in the proofs.

2 Review

In this section, required results from [7, 8] are presented, with a brief discussion.
Lemma 2 The symmetry R(n,k) = R(n,n — k) holds for all 1 <k < n.

Proof By taking complements, a (n, k)CSS becomes a (n,n — k)CSS. 0

The importance of this result lies in the fact that one normally need only consider
values of k < n/2.

Lemma 3 For all2 <k <mn,

R(n,k) > [?72—1} . (1)
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Proof For k > 2 every element of [n] must appear in at least two k-sets of any
(n, k)CSS. Thus k- R(n, k) > 2n, from which (1) follows. D
This important lower bound is a consequence of the fact that every element of [n]
must oceur at least twice in a (n, k)CSS, when &k # 1. The main result in [8] was

Theorem 1 Ifn > k(k— 1), | <k < n, then

=[]

The proof of this is based on the construction of a matrix, the rows of which form a
CSS. See [8] for the details.

Theorem 1 says that the lower bound on R(n, k) can be achieved for sufficiently large
n compared to k. The following lemma says that it is not possible to achieve the
bound on R(n,k) in Lemma 3 for sufficiently small n compared to k, in the case
where k| 2n. That is, at least one element of [n] must be used more than twice in a

CSS.

Lemma 4 [fn < (kjl), Il <k <mn, and k|2n, then R(n, k) > [2n/k].
Proof As k|2n, [2n/k] = 2n/k. If R(n,k) < 2n/k then, by Lemma 3, R(n,k) =
2n/k. Thus each clement of [n] occurs exactly twice in a separator. Without loss of
generality it can be assumed that {1,...,k} is a member of a (n, k)CSS. To separate
these elements, using each only once more, each element of [k] must appear in a set
by itself and so there are at least k 4 1 sets in the (n, £)CSS. As each element of [n]
occurs twice, 2n > k(k + 1), as required. a
The next two lemmas show how one can use a (n, k)CSS to construct separators for
larger values of n and k.

Lemma 5 If R(n, k) <k+1, 1 <k<n, then R(n +k+ 1,k +1) <k +2.

Proof Let R = {Ry, Ry, ..., Riy1} bea (n, k)CSS in k+1 sets. Note that a (n, k)CSS
can be extended as necessary, whilst maintaining the complete separation property,
by adding arbitrary k-subsets of [n]. Consider the set system C = {Cp, C1,...,Crs1}
where Co ={n+1,n+2,...,n+k+1}and C; = R, U{n+i}fori=1,2,... k+ 1.
It is easy to verify that Cis a (n +k + 1,k + 1)CSS, in k+2 sets. o

Lemma 6 If R(n,k) > k+ 1,1 <k <n, then R(n+k+1,k+ 1) <1+ R(n,k).

The proof of this involves a similar construction to that of Lemma 5, but here it has
to be shown that one can extend all the k-sets to (k + 1)-sets, using elements from
{n+1,...,n+k+1}, whilst maintaining complete separation. See [8] for the details.
These results are examples of a number of similar results that allow one to sharpen
the upper bounds on R(n, k) from the trivial bound of n. To see that n is an upper
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bound, consider the collection R = {{1,...,k},{2,...,k+1},....{n, 1, .., k—1}}
Lemmas 5 and 6 will be important in the proofs in Sections 3.3 and 3.6.

A complete solution of the R(n, k) problem is given for the cases k = 1,2,3,4 & 5 in
[8]. If k =1 or 2 then R(n,k) = n. See Table 1 for the solutions for £ = 3, 4 and 5.
By Lemma 2, this also gives a complete solution for the k =n —z, 1 <1 <5, cases.
The results in this paper allow this complete solution to be extended to the k = 6
and k =n — 6 cases.

3 Results

The main result of this paper is the following theorem.

Theorem 2 For k < n:

(1) Ifn> (%), k > 2, then R(n. k) = [2n/k];

2) Ifn= (H;) — 1, k>3, then R(n, k) =k+2=[2n/k} +1;

(3) If K*/2 < n < (HZ'I) — 2,k >5, then R(n, k) =k + 1, with R(n, k) = [2n/k]
cxcept for n = k*/2;

() If (£) < n < k)2, k =5, then R(n,k) = k+1> [2n/k].

Theorem 2 is a compilation of several lemmas and theorems. These results, and their
proofs, are presented in Sections 3.1-3.5. Section 3.6 presents a recursive construction
for parts (3) & (4) of Theorem 2, using Lemma 5.

3.1 Bounds on n for R(n,k) <k

In this section it is shown that, if n > ('2“) —k/3, then R(n,k) > k. This lower bound
on R(n, k) is used in the proof of Theorem 2.4 and is also an improvement on [2n/k]
for n < k*/2.

Assume that R is a minimal (r, k)CSS and that |R| = R < k. Consider a matrix M

with R rows, with the rows forming the sets in R. Assume, without loss of generality,
that row 1 is [k].

Note 2 (1) All elements in a minimal (n,k)CSS R on [r] occur at least twice in R,
as k # 1.

(2) To completely separate the elements of [k], not all elements of [k] can occur
exactly twice in M else they could not be completely separated in R — 1 < k sets.

Lemma 7 Let M be a matriz whose rows form a minimal (n, k)CSS, with R(n, k) =
R <k, k>6. Then at most R(k — 5)/2 elements of [n] occur ezactly twice in M.
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Proof  Assume the R rows of a matrix M form a minimal (n, k)(SS. It will be
shown that, if R < k, then every row of M contains at most k — 5 elements which
occur exactly twice in M. Once this is shown, then the number of positions in M
filled by elements which occur exactly twice in M is at most R(k — 5). Hence, at
most R(k — 5)/2 distinct elements of [n] occur exactly twice in M.

Consider any row of M with p > k — 4 of its elements occuring exactly twice in M.
Then, without loss of generality, it can be assumed that this row is the ordered set
[k] and [k — p] is the set of elements of [k] which occur more than twice in M. To
completely separate the elements of [k] which occur twice only in M, p elements of
[k] must occur in rows of M with no other element of [£]. Then there are at most
R—p=—1rows of M which can be used to completely separate the elements of [k —p].
By assumption, in these rows each element of [k — p] must occur at least twice.

As . <k and p > k —4, it follows that k —p <4and R —p ~1 < k —p. It is
not difficult to check, by exhaustion if necessary, that if each element must occur at
least twice, it is impossible to completely separate 7 elements in less than i sets, for
» < 4. Hence, the elements of [k — p] cannot be completely separated in the number
of sets available. This analysis is valid for each choice of row in M and the result
follows. 0

Lemma 8 If R(n,k) <k, k > 6, then n < R(3k —5)/6 < (£) — k/3.

Proof Given R and k. the theoretical maximum value of n occurs when as many
as possible elements are used twice in the Rk total elements of a CSS, with the
other elements being used three times. If B < k, the previous lemma shows that
there are at most R(k —5)/2 elements of [n] which occur exactly twice in M. If this
bound is attained, and the remaining elements are used exactly three times, then
5R/3 elements of [n] occur three times in M. Combining these two bounds gives
the first inequality. The second inequality follows upon substitution of k for R and
rearrangement of the expression. a

Incorporating the results for the k <5 cases and applying Lemma 8 yields,

Lemma 9 [fn > (’;) —k/3, then R(n,k) > k.

3.2 Proof of Theorem 2.1

The first step is to show that the lower bound of [2n/k] can be achieved for n >
'Hz']) “xample constructions of minimum CSSs for n > k';'l) appear at the end of
this section. Once the construction is known it is straightforward to obtain a CSS

for each value of n and k, n > (kgl).

Unfortunately, the proof that the construction works is not simple. This section
provides the rules for the construction and, through a series of technical lemmas and
notes, eventually proves the validity of the construction for all n > (k'gl)
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In the process, constructions for minimal (n,2,k)CSSs are provided for each n >

2
result appears as Theorem 4.

(“1) In this case the constructions also provide strong minimal (n, 2, k)CSSs. This

The proof requires a matrix construction, several lemmas and Theorem 4, which is
extended to a (n, k)CSS. The initial step in the proof of Theorem 5 is given below
as Construction M.

Construction M Assume n > (kgl) and let R = [2n/k]. An R x k matrix M will
be constructed where the R rows of M form a (n, k)CSS. Let m;; denote the element
of M in row ¢ column j. Initialise all elements of M to zero. Note that with the

given assunptions, R =k + 1 only when n = (k‘;l), and KB > k + 2 otherwise.

For each m € [n] initially include m in M in exactly 2 positions as follows. For each
m, in lexicographic order, include m in turn in the two positions of M defined by:

minmin{m,; : my = 0},
7 ©

min min{m;; : m;; = 0},
i

That is, m is placed in the first row of M containing 0, in the first 0-valued place
in that row. m is then also placed in the first column of M containing 0, in the
first O-valued place in that columun. Clearly M is sufficiently large to do this. This
concludes Construction M.

Now consider the special case when n = (k;1>, k > 1. This is the only case when
R=k+1.

Theorem 3 Ifn = (k.j;]), k> 1, then R(n,k) = [2n/k] =k + 1.

Proof Using Construction M note that m;; = mjyq,; for all 1 < 4,7 < k, and that
there are no 0-valued elements left in M. Hence each element of [r] appears in
exactly two positions in M and, given any pair of elements (m.;, my) occurring in
the same row 1 of M, m;; and m; occur once more in two different rows. Hence the
rows of M form a minimal (n, k)CSS. O

Corollary 1 Ifn = (kgl), k> 1, then R(n,2,k) =k + 1.

kgl) The following notes and technical lemmas are needed

and concern M after the above replacement of 0-valued elements has occurred.

Henceforth assume n >

Note 3 The elements of M in a given row may be partitioned into 3 parts, allowing
for some of these parts to be empty. For a given row r let H or H, denote the set
of consecutive integers in row r which are the first occurrence of those integers in M
using Construction M. Let D or D, denote the set of integers in row r which are the
second occurrence of those integers in M using Construction M. Let B or B, denote
the 0-valued elements of row r. Let h, denote the least element of H,.
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Note 4 |B| = 0 for any row above a row which contains a non-empty set H. This
follows immediately from the construction. Hence there is in M at most one row

with both |H|, |B] > 0.
Note 5 |H,| < |H,_1|for all ¥ > 1. This follows immediately from the construction.

Lemma 10 Forn > (kgl)
(1) in row r, and in terms of column order, all elements of D, occur before all
elements of H, which occur before all elements of B,;

(2) |Hpl = 0.

Proof (1) For any row r and any mn € D, with m € H, for some s < r, it must be
that m occurs in row r before any element of H,.

Assume r < K. In Construction M, if an element 2 of H, is included in M at
m.;, then m, 4y ; 1s 0 at this stage. Therefore, the latest occurrence of the second
occurrence of i in M is in column j. Hence no second occurrence of an element of
H, can occur in row r after H,. Hence all elements of D, occur before all elements
of H,.. 1t is clear that no 0O-valued element can occur in row r before a non-zero
element. The case r = R is dealt with in (2).

(2) Assume |Hg| > 0. By Note 4, |Br_i| = 0. By Note 5, |Hr_4| > |Hg|. By
Construction M, if hp_q is mp_1; then mp_y ;1 is non-zero and equal to an element
of Dr_1. Hence the first column in row K where an element of Hr_; can be placed
the second time is at least column j — 1. Therefore the elements of Hg_q1, when they
have been placed for the second time, leave at most one 0-valued element in row R of
M. This contradicts the choice of the size for M as it then leaves insufficient places
in M for the insertion of elements of Hg in at least 2 positions in M. It follows that
[Hr| = 0 and that part (1) of the lemma is true for r = R. o

Note 6 Hence, in construction M, the rows of M in numeric order can be partitioned
into non-empty collections with parts H, DH, DHB, DB or H, DH, DB where,
for example, the collection H represents the set of rows in M with |H| > 0 and
|D} = |B| = 0. DH represents the set of rows of M with |D|,|H| > 0 and |B| = 0.

The next lemma is pivotal to the proof. It shows that in each row i of M there are
at least |H;| rows below row 1.

Lemma 11 Forn > (k;”), in each rowi of M, |H;| < R— 1.

Note 7 This lemma implies that if h; is in column j then h;y; is in column j or
J+ 1

Proof of Lemma 11 The proof involves four claims.
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Claim 1 If such a row ezists, the first row of M with |H,| > R — v is not the first
row 1 of M for which h; 1s m;; with j <.

Proof of claim 1 Note that M has a sequence of rows for which h; = m;; with
i = j. Let r be the first row for which j < ¢. By Note 5 |H,| < |H,_;| for all . As
R > k+1, row r — 1 has at least |H,_;| + 1 rows below it in M. Therefore row r
has at least |H,| rows below it. O

Claim 2 If such a row exists, the first row of M with |H,| > R — r is not a row t
in M with Dy, H,, B; each non-empty.

Proof of claim 2 Assume row ¢ has each of D, H and B non-empty and suppose
that row ¢ is the first for which |H,| > R —¢. By Note 5 H; < [H;_1|. By Note 4
|Bi_1] = 0. By assumption |By| > 0. Therefore |Hy| < |H;_,|. Hence, as row ¢ — 1
has at least |H, ;| rows below it, row ¢ has at least |H,| rows below it. )

Claim 3 Each row r with |D,|,|H,| > 0 and |B,| = 0 has at least |H,| rows below
it in M.

Proof of claim 3 Assume row 7 is the first row of M with |H,.| > R—r, |D,| > 0.
|B,| = 0. Assume h, = m,;.

The following assumptions may be made:

1. |H.| > 1. This follows from the assumption that |H,| > O and || # 1 as r # R
by Lemma 10.2. Hence there is at least one row below row rin M.

2. m, -1 is equal to an element of H; for some ¢ < r — 1. This follows from the
construction and the assumed position of o, in M.

3. |H,| = |H,_1|. This follows from Notes 4 & 5, Lemma 10 and our choice of 7.

This means that row r — | has exactly |H,_| rows below it. Thus m, j_; must be
equal to an element of H,._; and m,_; ;-1 must be equal to an element of H,_,.
Therefore the first occurrence of an element of H._; below row r — 1 1s at m, j_;.
That is, h,_1 occurs at m, j_y for the second time.

4. h,_, occurs at m,_y ;1. To see this, suppose h,_; is at m,_5;. If [ > j, this
contradicts Note 5. If [ = j, then by the above discussion, the element at m,_y ;3
is an element of H,_, while the element at m,_5 ;-1 is an element of H,_5. This
implies that |H._;] = 1, contradicting Assumption [ and Note 3. If it is assumed
that [ < j — 1, then |H,_3| > R — (r — 2), contradicting the choice of r. Thus, k,_;
is at my_g ;1.

The proof of Claim 3 needs Claim 4.

Claim 4 With the assumptions stated immediately above for each 1 < r, row ¢ has
ezactly |H;| row below it in M.
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Claim 4 immediately leads to a contradiction as |H,| = k and R > k + 1. That
is, row 1 has more than k rows below it. Thus Claim 3 is proved, once Claim 4 is
proved. 0
Proof of claim 4 Induct on 7. The claim is true for ¢ = » — 1 by Assumption 3.
Assume that the claim is true for all 7, p <7 <r — 1. Assume h,4y is at mypq,.

It is clear that m,qq 41 is not equal to an element of H,yy, and as H, has exactly
[H,| rows below it, my,4q 41 must be equal to an element of H,. Further, m,,_; is

not an element of H,. Assume |H,_;| = |H,|. Then my_y,_» is not an element of
H, ..

Therefore the first ocurrence of an element of H,_y below row p — 1 is in column
q — 2 at or below row p. As |H, 1| = |H,| and my 4 is an element of H,, the first

occurrence of an element of H, below row p is at mg 4o or at My 4-1.

If the first occurrence of an element of H, below row p is at mp,_», then the first
occurrence of an element of H,yq is at mp,.1. As each row ¢, p < ¢ < r — 1, has
exactly |H;| rows below it, h,_y is at mp ;2. This contradicts Assumption 3.

If the first occurrence of an element of H, below row p is at m, 41 ,_1, then the first
occurrence of b,y is at m,;. Again this contradicts Assumption 3.

Thus |Hy—1| > |Hyp|. U |Hp—q| > |H,| + 1 then H,_; has less than |H,_;| rows below
it, contradicting our choice of r. Hence |H,.1| = |H,| + 1 and Claim 4 is proved. O

This completes the proof of Lemma 11. |
Theorem 4 For n > (k.";l) the rows of M in the construction M, ignoring the
O-valued elements, form a minimal (n,2,k)CSS.

Proof Consider the rows of M as being sets consisting of the non-zero valued ele-
ments in the rows. Each element of [n] occurs exactly twice in M, and R = [22].

By taking n = pk +r, 0 < r < k, it is easily seen that the number of 0-valued
elements of M are at most Rk — 2n <k — 2. Therefore M has no singleton set, and
it can be concluded that R(n.2,k) > [2%]. It needs to be shown that the rows of
M, ignoring the 0O-valued elements, form a completely separating system. For any
D;, each element of D; is separated from each element of H; as each element of D;

occurs above row 7 and no element of H; occurs above row 1.

By Lemma 11 the elements of D; will each occur in different rows above row 7 as
members of different H sets. By Lemma 11 the elements of H; appear in different
rows of M below row i. Therefore each of these are separated from one another. The
elements of H; are also separated from all elements of D; as no element of D; appears
below row 4 in M. Thus the rows of M from a completely separating system. O
Lemma 12 Assume n > (k'gl .

(1) Each row of M containing a non-empty H has the least element of H in position
mg; where j < e.

(2) Let t <k be the last row in M with |H| # 0. Then the least element of H; is in
position my; where j < 1.
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Proof (1) Note that by Lemma 11, if h._y is m,_y; then h, is m,; or m, j41. Hence
as hy is in column 1 the result is true for all subsequent rows.

(2) Assume the conditions of Lemma 12.2. By part (1), j < ¢. To show that j < ¢.
assume j = t. Then by Note 7 and Lemma 12.1 |H,.| = k— 7 + 1 for all » < ¢.
Therefore n = !, [Hi| < 5 i = (k’;l) This contradicts n > (l”;l) 0
Lemma 13 Let n > (kjl) Let row t be the last row t of M with |H,| > 0. Then

Proof Let row ¢ be as in the statement of the lemma. Lemma 11 ensures that the
second occurence of elements in a given H do not occur in adjacent positions in the
same row. Hence if h; is at my; then hyyy is at mipq; or at myyq j49. This, together
with Lemma 12.2, implies that |Dy| <t—2 whent < k. If ¢ > k then as | D] < k—1,
|Dy| <t —2. 0

Lemma 14 Ifn > (k“ZH) and k|2n then the rows of M are a minimal (n, k)CSS.

Proof If k|2n then M has no 0-valued elements at this stage. Hence, as shown in
Theorem 4, the rows of M form an appropriate completely separating system. O

Lemma 15 Ifn > ("ﬁl) and k [2n then the 0-valued elements in M can be replaced
by elements of [n] to form a minimal (n,k)CSS.

Proof The 0-valued elements of M need to be replaced whilst ensuring that the
complete separation property is maintained. This is done in numeric order of the
rows. Consider two cases, with ¢ defined as in Lemma 13 to be the last row of M
with |Hy| > 0.

(i) Assume that row ¢ of M has |H:| # 0 and |B] # 0. By Note 4 there is at most
one of these rows. Each element of D; occurs in exactly one row above row ¢. No
element of H; occurs in a row above t. By Lemma 13 there are at least | D] +1 rows
above row ¢. Hence there is a row r above row ¢ which contains no element of row t.
The elements of row r will be used to fill B;.

It must be ensured that the elements of row r used in B, are already separated from
the elements of row ¢. Note that at this stage any two elements of row r are already
completely separated in M.

The elements of D, appear in exactly |D;| rows of M above row ¢. Hence they occur

with at most |D;| different elements of row r. These elements of row r cannot be
used to place in By as this would destroy the complete separation property.

It is necessary to ensure that the elements of H; are separated in a row below row
t from the set of elements of row r used to replace B;. To do this note that the
elements of H; occur in exactly |H,| different rows below row t. Hence at most | H,|
elements of row r occur with elements of H, in these lower rows.

139



Thus there are at least k — |D;| — |Hy| = | B:| elements of row r that can be used to
replace the 0-valued elements in row #, whilst maintaining the complete separation
property.

(ii) Consider any row s of M with |H,| =0 and |B,| > 0. Then s > t by Note 4. By
Lemmas 11 and 13, |Ds| < D¢+ 1 <¢—1. Then if |B,] = 0 there is at least one
row 7 at or above row ¢ which contains no element of row s. Fach element of row s
occurs in at most one row at or above row ¢ and hence with at most |D,| elements of
row 7. Hence there are at least k — |D,| = | B,| elements of row  which can be used
to replace the elements of | B;| whilst maintaining the complete separation property.
Note that |D,| = |D;| + 1 if and only if D, contains an element of H,. Therefore, if
IB;| > 0 and D, contains no element & of H,, then |D,| < |D;|. If |B;| > 0 and D,
contains an element i of H; then |D, —{h}| < |D,|. Note that in this case & does not
occur above row ¢ in M. Therefore, in either case, by applying Lemma 13, there is at
least one row r above row t which contains no elements of D,. Each element of row
D, occurs in at most one row above row ¢ and hence with at most |{D,] elements of
row 7. Hence there are at least k — |D,| = | B,| elements of row r which can be used
to replace the elements of |B,| whilst maintaining the complete separation property.

This completes the proof of the lemma. O
Theorem 5 Ifn > (k';l), k> 1, then R(n,k) = [2n/k].

Proof Combine Theorem 3 and Lemmas 14 & 15. v 0
As an example of this construction, consider the following three matrices, the rows
of which are minimal separators for the (10,4), (13,4) and (16,5)CSS cases. The
elements used to fill the 0-valued positions of M have been offset for clarity.

1 2 3 4 1 2 3 4 1 2 3 4 5
1 6 6 7 1 68 6 7 1 6 7 8 9
2 5 8 9 2 7 8 9 2 710 11 12
3 6 810 3 8 10 11 3 8 12 13 14
4 7 910 4 9 12 13 4 9 13 15 16
5 10 12 2 5 10 14 16 6
6 11 13 2 6 11 15 i 3

Note that this construction is not fair in general. In the second example above, 2
occurs four times and there is no other possible choice with the given construction.

3.3 Proof of Theorem 2.2

One of the open questions posed in [7] was whether or not the values of R(n,k) are
monotonic with n, for fixed & # 4,5 and n > 2k. This question is answered in the
negative, by showing that the lower bound of [2n/k] = k + 1 cannot be achieved
k1 k+1
2 2
n = ("’;]) Note that the R( (kjl) -1,k) = R(M’C—;'—ll — 1, k) values are related by the

(n',k") = (n+k + 1,k + 1) construction method of Lemma 6.

for n = ( ) — 1, whilst it is achieved for n = ( ) — 2 and, as seen above, for
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Lemma 16 [f k > 3 then R((*}') — 1,k) =k + 2= [2n/k] + 1.

Proof The proof is by induction, with the base case being the result that R(5,3) =
R(5,2) = 5. Note that, if & > 3, then the lower bound [2n/k] is k + 1.

Assume that the result holds for all values of k < k', for some k' > 3. Let k = k' + 1
and assume that R(n,k) = k+ 1, with n = (k(k + 1)/2) — 1. If this is the case,
then one element of [n] occurs 4 times or two elements of [n] occur 3 times in the
separator, with all other elements occuring exactly twice. That is, the excess is 2. It
can be assumed, without loss of generality, that {1,...,k} occurs in the separator.
There are four cases for the other k sets in the separator.

(a) If each of I,...,k occurs only once more then, to be separated, they must occur
singly in the remaining sets. Thus, the k (k — 1)-sets formed by removing each
of 1,...,k from these sets must form a (n — k,k — 1)CSS in k sets. That is, a
((k—1)k/2 — 1,k — 1)CSS. This is not possible, by the inductive hypothesis.

(b) Assume that 1 occurs twice and each of 2,...,k occur once in the remaining k
sets. To separate 2,... k, with only one occurence of each, they must appear in
k — 1 separate sets of the k available. Since the 1’s cannot be in the same set, at
least one of 2,..., k must occur with 1 and thus cannot be separated from it.

(c) Assume that 1 occurs three times and each of 2,.. ., k occur once in the remaining
k sets. To separate 2,...,k, with only one occurence of each, they must appear in
k — 1 separate sets of the k available. Since the 1’s cannot all be in the same set, at
least two of 2,..., k must occur with 1 and thus cannot be separated from it.

(d) Assume that 1 and 2 each occur twice and each of 3,... k occur once in the
remaining k sets. If 1 or 2 occur singly in the remaining two sets then at least one
of 3,...,k must occur with 1 or 2 and thus cannot be separated from it. If 1 and
2 occur together in the remaining two sets then they are not separated from each
other. If 1 and 2 occur in the k — 2 sets with 3,...,k then at least one of 3,...,k is
not separated from at least one of 1 and 2.

Thus, in all cases there is a contradiction, so R(n,k) > k + 1. That R(n,k) =k + 2
follows from the inductive hypothesis and the base case of n = 5,k = 3, via the
construction of Lemnma 6. D
As an example of the construction provided by Lemma 6, consider the following four
matrices, the rows of which are minimal separators for the k = 3,4,5,6 cases. Note
that these separators are fair.

1 2 3 1 2 3 8 1 2 3 610 1 2 3 610 16
2 3 4 2 3 4 6 2 3 4 610 2 3 4 6 10 15
3 4 6 3 4 5 7 3 4 6 711 3 4 5 71116
4 5 1 4 6 1 8 4 5 1 812 4 5 1 812 17
5 1 2 5 1 2 9 5 1 2 .9 13 5§ 1 2 ¢ 13 18
6 7 8 9 6 7 8 9 14 6 7 8 9 14 19

10 11 12 13 14 10 11 12 13 14 20

16 16 17 18 19 20

1



3.4 Proof of Theorem 2.3

Lemma 17 [fk?/2 <n < ('”2'1) -2, k> 1, then:
(1) R(n,2,k) > k+1;
(2) R(n, 1,k) > k+1.

Proof (1) Assume the conditions of the lemma. Assume R(n,2,k) < k. In any
(n,2,k)CSS each element must occur in at least two different sets. Therefore, the
number of sets in a minimum (n, 2, k)CSS is at least 2n/k. For n > k?/2 this means
that n > k.

If n = k?/2 then 2n/k = k so at least k k-sets are required in a CSS. If R(n,2,k) = k,
each element must occur in exactly two sets in a R(n, 2, k)CSS. Assume [k] is one of
the sets in the minimal CSS. Then, as each element of [k] must occur exactly once
more without the other elements of [k], at least k& more sets are required in the (ISS,
Hence the minimum CSS requires at least k + 1 sets.

(2) Assume the conditions of the lemma and that, for some n, k, there exists a
(n,1,k)CSS R with |R| < k. By part (1), R must contain a singleton set and
therefore Spen |R| < k(k— 1)+ 1 = k* — (k—1). As 2n > k?, there must be at
least k — 1 elements of [n] which occur in only one set in R and hence must occur in
singletons sets in R. As there are at least £ — 1 such singleton sets and [R] < k, it
is clearly impossible for R to completely separate the remaining elements of [n]. O

Theorem 6 [fk?/2 <n < (k;rl) —2, k> 1, then R(n,k) =k + 1. In each case, a
fair minimal CSS exists.

Proof Assume the conditions of the theorem. The theorem is vacuously true for
k <3 so assume k > 4. By Lemma 9 R(n, k) > kifn > k?/2. An Rxk = (k+1)xk
matrix M will be constructed such that its row vectors form a (n, k)CSS. Note that
the excess E has 4 < F < k and F is always even.

The initial step is to use construction M as given in Section 3.2. This provides a
fair (n,2,k)CSS and a fair (n,1,k)CSS. The fairness and the complete separation
property of the system is clear.

Once construction M has been completed consider the position of the 0-valued el-
ements remaining in matrix M. Consideration of construction M, with the given
size of matrix M, easily leads to the truth of the following statement for all values
of E. With the possible exception of one column, each column in M which now
contains a 0-valued element contains at least three 0-valued elements. The notation
hy, Hy, By as defined in the proof of Theorem 2.1 is used where appropriate in the
remainder of this proof. Assume h; occurs at my. Define the submatrix A of M by
A={my e M :4,j >t if|Bl>0and A= {my € M :4,j >t} if |B = 0.
Assume A is a 7 x (r — 1) matrix with column vectors A;, ¢ = 1,...,7 — 1. There
are four cases to consider.

1) If row t contains no O-valued elements each A; contains at least three 0-valued
elements. Then, in row order, replace the first 0-valued element in A; by my4;; and
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for each remaining 0-valued element in row ¢ and in A; replace it by m;_; ;. Given
that construction M forms a fair (n,2,k)CSS it is easy to see that in this case the
rows of M form a fair (n, k)CSS.

For the remaining cases assume row ¢ contains some (-valued elements.

2) If Aisa 3 X2 matrix set myyq,¢ = my. The remaining columns of A can be dealt
with as in case 1.

3) If Ais a4 x3 matrix and |Hy| = 2 set mpyr = my,. The remaining columns of
A can be dealt with as in case 1.

4) If Ais an r x (r — 1) matrix with r > 3, set my = my for £ < ¢ < k, set
Myt p+1 = my and then set my = 0 for ¢ > 1. Now each column of M which
contains a O-valued element contains at least three such elements. The remaining
0-valued elements can be replaced in a similar way to that outlined in case 1. Let ay;
denote the element in row 7z column 7 of Awithe=¢,...,k+1landj=1,...,7r—1.
For each column vector A; = {a;;} form the column vector C; = {a;;} of elements
in column y of M. In row order, replace the first 0-valued element in A; by the last
element of ('; in the same row as a 0-valued element of A;. For each a;, ¢ > 1,
simultaneously set a;; = ¢,,; where m < ¢ is the row index of the first O-valued
element immediately above a;; in A;.

By the nature of construction M, to show that the rows of M now form a fair
(n, k)CSS, it is only necessary to consider the elements of the matrix A. All elements
of [n] not in A are completely separated from elements of A in some row above row
t. The elements of different A;, other than elements of Hy, are completely separated
from one another in rows above row t. Elements of the same A; are completely
separated from one another in the corresponding sets A; and C}.

The elements of H; are completely separated from one another in A. They are
completely separated from elements of the A; by occurring in row ¢ or, in the case
of h; when |B;| = 0, by occurring three times in A.

The fairness of the system is clear as every element occurs either two or three times
in M. This completes the proof. O

As an example of this construction, consider the following three matrices, the rows
of which are minimal separators for the k = 10, n = 50,51,52 & 53 cases. These
illustrate, respectively, cases 4, 3, 1 & 2 of the proof.
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Proof Lemma 17 ensures that R(n,1,k) > k and R(n,2,k) > k. Construction M,
in Section 3.2, provides a fair (r, 1, k)CSS and a fair (n, 2, k)CSS using k+ 1 sets. O

3.5 Proof of Theorem 2.4

Lemma 18 If (é) <n < k%2, k > 5, then R(n,k) = k+ 1 # [2n/k] and a fair

minimal separator exists in each case.

Proof Assume the conditions of the theorem. Then R(n,k) > k by Lemma 9.

Let R = Fk-+1. An R x k matrix M will be constructed with the R row vectors of M
forming a (n, k)CSS. Initialise all elements of M to zero. Let m;; denote the element
of M in row 7, column j.

Partition M into four parts defined by:

A
B
o
D

i

I

{my 01 <y <k}
{mi:2<j<k+1,1<5<2)
{my; 1 3< i<k 3<y <k}
{mgs1;:3 <5<k}

The elements of these parts are now defined for various cases.

Case 1: Assume n = (1;)
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For part A, set my,; = j for 1 <j <k.

For part B, set mypip=1andfori#k+1,7#2set my; =1+4+j—-2for 1 <7<2
and 2 <j<k+1.

For part ', use the construction M on the set {k + 1,...,n}. At this stage O
has exactly two O-valued elements at my_;; and myi. Set my_yp = my_z53 and
Mg = Mpe1,3-

Part D is filled by setting myq1; = mj;, 3 <7 <k —1and mygq e = myz.

The elements of A are completely separated in B and are completely separated in A
from all other elements of [r]. It can be noted that the element n first occurs exactly
at my_sy and hence all elements of [n] occur in a row above row k — 1. The fact
that the elements of (" are completely separated from one another is then easily seen
as a feature of the construction with the only special cases being the separation of
My from my_q 5 at myy1 g and the separation of n—1 from my_33 at mey1 1. The
choice of elements of D other than myy x ensures the separation of the elements of
C' from the elements of B. Hence the row vectors of M form a fair CSS on [n].

Case 2: Assume n = (’;) + 1.

The construction in this case is the same as for case 1, with one modification. For
this case set m, p = n for k —1 < ¢ < k+ 1. It is easier than in case 1 to see that M
is a fair CSS in this case.

Case 3: Assume (’;) +l<n<k/2-1

For this case note that, with the assumed bounds on n, there are less than k/2
elements of [n] greater than (’;) For ease of notation, assume there are r elements

greater than (g) , denoted by dy, ..., d,.

To construet a fair CSS on [n] now proceed as for case 2. Then the remaining
elements not yet included in M are used to replace elements of M as follows: For
2 <o <r, set myy =d; and mypy i = dis Set My = Mg

Given that k > 6 and r < k/2 it is a small matter to check that the rows of M form
a fair CSS on [n]. To check that complete separation is maintained note that the
elements replaced in D are the ones which now occur in the same row as only one
element of [k]. Hence they no longer need to be repeated in D to separate them from
the elements of [k]. The change in value of mgy1, is important to ensure that r is
separated from r+ 1. It is clear that the elements dy, ..., d, are completely separated
from one another with the construction.

Hence the theorem is proven. 0O
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As an example of this construction. consider the following four matrices, the rows of
which are minimal separators for the k = 7, n = 21,22,23 & 24 cases.

1 2 3 4 6 6 7 1 2 3 4 5 6 7
1 2 8 9 10 11 12 i 2 8 910 11 12
2 3 8 13 14 15 16 2 3 8 13 14 15 16
3 4 9 13 17 18 19 3 4 9 13 17 18 19
4 5 10 14 17 20 21 4 5 10 14 17 20 21
5 6 11 16 18 20 10 5 6 11 156 18 20 22
6 7 12 16 19 21 11 6 7 12 16 19 21 22
7 1 8 13 17 20 12 7 1 8 13 17 20 22
i 2 3 4 5 6 7 1 2 3 4 6 6 7
123 8 9 10 11 12 123 8 910 11 12
2 3 813 14 15 16 224 8 13 14 15 16
3 4 913 17 18 19 3 4 9 13 17 18 19
4 5 10 14 17 20 21 4 510 14 17 20 21
5 6 11 15 18 20 22 5 6 11 15 18 20 22
6 7 12 16 19 21 22 6 7 12 16 19 21 22
7 223 13 17 20 22 7 323 24 17 20 22

3.6 An Alternative Construction

Corollary 3 proves an alternative method of constructing a fair (n, k)CSS in k+1 sets,
for (’;) <n< (k§1)~2, based on Lemmab. Note that ((k;rl) — 2)~('2‘) = k—2. The
construction is by induction, with the base cases being the construction of Lemma 18
(for the n = (1;) case only) and some known (n,5)CSSs.

The inductive step is based on the observations that, if (ﬁ) < n then (}”';1) <n-—k,
and if n < kgl —2thenn —k < (’;) — 2. Thus, the construction of Lemma 5 can
be used for the inductive step.

Corollary 3 If (g) <n < (“2"1) -2,k > 5, then R(n,k) < k+1 and a fair
(n,k)CSS in k + 1 sets exists.

Proof Lemuna 18 establishes the result for the case n = g . The collections .
{129AB, 13678, 24578, 345AB, 5689B, 4679A}, {12345, 16ABC, 26789, 389BC,
479AC, 57T8AB}, and {12345, 16789, 26BCD, 37TACD, 48ABD, 59ABC} establish
the result for the remaining cases when k = 5. Together, these form the basis for
the induction, which is on k.

Assume that the corollary is true for some &’ > 5 and consider the case k = k' + 1.
Ifn = ('2‘)7 the result follows from the base case. If (i) < n < (k§l> — 2 then

(ksl) <n-k< (’;) — 2. By the inductive hypothesis the result is true for k —1 = &’
and Lemma 5 can be used to construct a CSS of k-sets in k + 1 sets, from the CSS
of k'-sets in &' + 1 = k sets. Thus R(n, k) <k + 1.

Note that the construction of Lemma 5 adds the new elements exactly twice. Thus,
if the original separator is fair, with all elements occuring two or three times, then
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the new separator is fair. So the inductively constructed CSSs are fair and the result
follows. O

As an example of the construction of Lemma 5, consider the following six matrices,
the rows of which form CSSs. The examples in the top row are, from left to right,
the base cases for R(13,5), R(15,6) and R(21,7). The examples in the second
row, for R(19,6), R(22,7) and R(29,8), are built from the examples above via the
construction in Lemma 5.

i 2 3 4 5 1 2 3 4 5 6 1 2 3 4 6 6 7
i 6 7 8 9 1 2 7 8 910 1 2 8 910 11 12
2 611 12 13 2 3 711 12 13 2 3 8 13 14 15 16
3 7 10 12 13 3 4 8 11 14 16 3 4 9 13 17 18 19
4 8 10 11 13 4 5 912 14 8 4 65 10 14 17 20 21
6 910 11 12 5 6 10 13 16 9 5§ 6 11 15 18 20 10
6 1 7 11 14 10 6 7 12 16 19 21 11
7 1 8 13 17 20 12
1 2 3 4 5 14 1 2 3 4 5 616 1 2 3 4 5 6 722
1 6 7 8 915 1 2 7 8 910 17 1 2 8 910 11 12 23
2 611 12 13 186 2 3 7 11 12 13 18 2 3 8 13 14 15 16 24
3 7 10 12 13 17 3 4 8 11 14 15 19 3 4 9 13 17 18 19 25
4 8 10 11 13 18 4 5 9 12 14 8 20 4 5 10 14 17 20 21 26
5 9 10 11 12 19 6 6 10 13 16 9 21 5 6 11 15 18 20 10 27
14 16 16 17 18 19 6 1 7 11 14 10 22 6 7 12 16 19 21 11 28
16 17 18 19 20 21 22 7 1 8 13 17 20 12 29
22 23 24 25 26 27 28 29
3.7 k=6

Theorem 2, together with the result that R(n,1) = R(n,2) = n and Lemma 2,
provides a complete solution to the R(n, k) problem for all ¥ < 5. Using also Lemma 1
and the results in [8], the only remaining unknown case for k = 6 is R(13,6). The
final result provides a solution for this case.

Lemma 19 R(13,6) =7.

Proof By Lemma 1, R(13,6) > 6. That R(13,6) < 7 follows from consideration
of the collection {12345D, 12345C, 16789A, 2678BD, 369ABC, 479BCD, 58ABCD}.
To prove that R(13,6) # 6, assume C is a (13,6)CSS with |C| = 6.

Here the excess, E = 10 so there are at least three elements, say 1, 2 and 3, which
occur exactly twice in sets in C. If ¢ of these occur in one set A, then to obtain
complete separation there are ¢ other sets which contain exactly one of these elements
of A. This leaves 6 — 1 elements in A to be separated in less than 6 — 1 sets. It is not
difficult to check that this is impossible for ¢ > 1.

Assume all sets of C contain exactly one element which occurs exactly twice in sets
in C. Assume 1 occurs in sets A and B. Let the other sets in C be C, D, E and F.
It can be assumed that 2 € ¢, D and 3 € E, F.
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A contains exactly five elements which occur more than twice in C. None of these
can oceur in B to ensure that 1 is separated from each of the other elements of A. It
can be checked that there is exactly one way, up to labelling of elements, to separate
five elements in no more than four sets; namely, {456, 478, 57, 68}. These four sets
must be subsets of C'; D, E and F. For all possible arrangements of these sets it
is now easy to check that either 2 or 3 cannot now be separated from at least one
element of A other than 1. Hence R(13,6) # 6, and the result follows. 0

4 Final Remarks

Combining the results in this paper with those in [8], the bounds on the values of
R(n, k) shown in Table 1 are obtained. The points where n = 2k are bracketed to
highlight the symmetry due to Lemma 2.

It appears to be increasingly difficult to calculate R(n,k) as n approaches 2k from
above. It is hoped that various methods currently under consideration, including the
close connection between CSSs and antichains as shown by Cal in [2], can be used
to increase the range of known values of R(n,k). A useful result in regard to this
would be a proof of the following conjecture due to Lieby [6].

Definition 4 A family of sets A4 is an antichain if, for all distinct A, Be A, A¢Z B
and B € A. '

Definition 5 An antichain A is said to be flat if there exists an « such that, VA € A,
[Al =z or [A| =z + 1.

Conjecture [Flat antichain (FAC) conjecture]

Let A be an antichain on an n-set S, with 5, 4 |A| = t. Then there exists a flat
antichain A" on S with | A’ = |A| and 3y ur |A'] = 1.

Determining exact values and constructions for minimal (n,a, k)CSSs remains an
interesting open problem. There are many variations of problems on CSSs which
can be formulated by the imposition of additional constraints on the nature of the
systems. There appears potential for applications of CSSs in various disciplines.
The authors would like to thank Paulette Lieby for valuable help whilst preparing
this paper. They also acknowledge the assistance of the School of Information Tech-
nology at the Northern Territory University in providing computer facilities during
the preparation of this paper.
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Ml 14 10 07 7 T [68 7 7 7 10 14 14
515 15 10 8 6 7 69 69 7 6 8 10 15
616 16 11 8 T 7T 68 [6-7] 68 7 7 8 1l

Twro1m o129 7T 7 78 69 69 T8 7 7 9
18 18 12 9 8 7 78 69 [6-10] 69 78 7 8
w1 19 13 10 8 7 8 69 611 611 69 8 7
20020 20 14 10 & & & 79 610 [6-8 610 79 8
otfl20 21 14 11 9 7 & 79 7-10 7-10 7-10 7T-10 79
222 22 15 11 9 & 8 79 7-10 7-11 [7-12] 711 7-10
2023 23 16 12 10 & 8 89 7-10 7T-11 713 7-13  7-11
24|24 24 16 12 10 8 8 89 7-10 T-11  7-12 [7-8] T-12
9 || 25 25 17 13 10 9 8 89 7-10 7-11 7-12  7-10 7-10
2| 26 26 18 13 11 9 8 9 810 7-11  7-12 7-11  [7-12]
27|27 27 18 14 11 9 9 9 810 7-11 712 7-13  7-13
2828 28 19 14 12 10 8 9 810 7-11 712 7-13  7-14
29 |20 29 20 15 12 10 9 9 810 713 7-12 713 7-14
30030 30 20 15 12 10 9 9 9-10 811 712 7-13  7-14
30031 31 21 16 13 11 9 9 910 811 7-12  7-13  7-14
32032 32 22 16 13 11 10 9 910 &1 7-12 7-13  7-14
a3l 33 33 02 17 14 11 10 9 910 811 812 7-13 7-14
34034 34 23 17 14 12 10 9 10 911 812 713  7-14
B | 35 35 24 18 14 12 10 10 10 911 812 714 714
36 36 36 24 18 15 12 11 9 10 9-11 812 8-13  B8-14
7| 37 37 25 19 15 13 11 10 10 9-11 812 813 814
3% | 38 38 26 19 16 13 11 10 10 10-11 9-12 813 814
39039 39 26 20 16 13 12 10 10 10-11 9-12 813 814
40 40 40 27 20 16 14 12 10 10 10-11 9-14 813 814
alf 41 41 28 21 17 14 12 11 10 10-11  9-12  8-13 814
a2l 42 42 928 21 17 14 12 11 10 11 912 913 &-14
43 0| 43 43 29 22 18 15 13 11 10 11 1012 9-13  &-14
44|44 44 30 22 18 15 13 11 11 11 10-12 9-13  &14
451 45 45 30 23 18 15 13 12 10 11 10-12 9-13 814
46 || 46 46 31 23 19 16 14 12 11 11 10-12 9-13  9-14
47047 47 32 24 19 16 14 12 11 11 11-12 10-13  9-14
480148 48 32 24 20 16 14 12 11 11 11-12 10-13  9-16
491049 49 33 25 20 17 14 13 11 11 11-12 10-13  9-14
50 50 50 34 25 20 17 15 13 12 11 11-12 10-13  9-14
5U| 51 51 34 26 21 17 15 13 12 11 11-12 10-13  9-14
52 || 52 52 35 26 21 18 15 13 12 11 12 11-15  10-14
53| 55 53 36 27 22 18 16 14 12 11 12 11-13  10-14
540l 54 54 36 27 22 18 16 14 12 12 12 11-13  10-14
55 56 55 37 28 22 19 16 14 13 11 12 11-13  10-14
56 || 56 56 38 28 23 19 16 14 13 12 12 11-13  10-14

Table 1: Known bounds on R(n, k) for 2 <n <56 and 1 <k < min{13,n —1}.
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