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Abstract 

Upper bounds are determined for the Ramsey number ](m,n), 2 :; 
m n. These bounds are attained for infinitely many n in case of m 3 and 
are fairly close to the exact value for every m if n is sufficiently large. 

1 Introduction 

For complete bipartite graphs G and H only few exact values of the Ramsey number 
r(G, H) are known. determined the numbers r(I<l,t, I{I,n)' .Parsons [7,8,9] 
and Stevens [10] investigated the numbers r(I<I,t,I{m,n)' Parsons determined an 
upper bound for the case m = 2, which is attained if n is small relative to t and 
certain regular graphs exist. Stevens completely solved the case when n is sufficiently 

depending on t and m. In [3] it was shown that r(I<2,n, K2,n) 4n - 2 with 
equality for infinitely many n. Moreover, Chung and Graham [1] derived a general 
upper bound for r(Km,n, But up to now, besides r(I(~,3' K3,3) 18 determined 
in [3], no exact values of r(1(,.t, Km,n) are known when s, t, m, n ~ 3. 

Here we focus on the numbers r(K2,2, Km,n) = r(04' Km,n)' The case m = 1 was 
already studied by Parsons. He showed that r( C4 , KI,n) :::;: n + r fol + 1 with equality 
for infinitely many n. Here we will derive corresponding upper bounds for the case 
m 2: 2. These bounds are attained for infinitely many n in case of m :::;: 3 and are 
fairly close to the exact value for fixed m and sufficiently large n. 

As usual, the vertex set of a graph G is denoted by V and the edge set by E. 
Na( v) denotes the set of neighbors of a vertex v E G in G and da( v) the degree of v 
in G. The minimum degree of the vertices in G is denoted by oa and the maximum 
degree by ~a. In a 2-coloring of the complete graph Kn we always use green and 
red as colors. The green sub graph is denoted by G(g) and the red subgraph by G(r). 
We write Ng(v), dg(v), Og and ~g instead of NG(g)(v), da(g)(v), oG(g) and ~a(g) and 
use the corresponding notations for G(r). If A and B are two sets of vertices from 
K n , g(A, B) denotes the number of green edges from A to B. If A consists of a single 
vertex u, we write g( u, B). A 2-coloring of Kn is said to be a (G, H)-coloring if there 
is neither a green subgraph G nor a red subgraph H. 
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2 Properties of (C4,Km ,n)-colorings 

The following lemmas will be used later to establish upper bounds for r(C41 Km,n)' 

Lemma 1. Let X be a (C4 , Km,n)-coloring of Kp and v E V. Then the following 
assertions hold. 
(i) 

L g(v" Nr(v)) S p - dg(v) - L (1) 
uENg(v) 

(ii) If dg(v) 2: m and if 8 is an m-element subset ofN.q(v) then 

(2) 
uES uES 

(iii) If dg ( v) ~ m - 1 and if S' is an (m - }-eleIUeIH subset of Ng(v) then 

Lg(u, Nr(v)) :2 p - n - dg(v). (3) 
uES 

Proof. Since no green C 4 occurs in X, each vertex in N r ( v) can be joined by at 
most one green edge to Ng(v) and this yields (1). Moreover, there is no red Km,n in X. 

in Ng(v) there are no m vertices with n common red in Nr(v)UNg(v) 
and no m - 1 with n common red neighbors in Nr(v). This implies (2) and (3). II 

Lemma 2. Let X be a 
1, n + m 2 

- m - I}. Then 
Km,n)-coloring of KPl m ~ 2 and p ~ max{ n + m + 

r
p - n - 11 l p - n J m + 1 S; 6.g S; m + (m + n - 1) / U --;;;-1 - 1) . (4) 

Furthermore, 

dg ( v) S; m - 1 + (n - 1)/ r 1 l p-n dg(v) J 
m -1 

(5) 

for every v E V with m 1 S; dg ( v) S p - n - 1. 

Proof. No red Km,n implies green edges in X. Take m vertices at least two of them 
adjacent in green. They have at least p-m m6.g +2 and at most n 1 common red 
neighbors. This implies 6.g 2: m - 1. Consider now a vertex v with dg(v) = 6.g • Let 
lV.q( v) = {Ul' ... , U6. g } and gi = g( Ui, Nr ( v)). We may assume that gl S; g2 S; ... S g6.g 
Using inequality (3) and gi S; 6.g - 1 we obtain that (m - 1)(6.9 1) ~ 2::::~1 gi :2 
p - n - 6.g • This yields the first inequality in (4). To prove the second inequality 
in (4) note that 6.g ~ m. Moreover, I n::l Nr(Ui) n Ng(v)1 ~ 6.g 2m since each 
11i can have at most one green neighbor in Ng ( v). Now inequality (2) implies that 
2:::1 gi 2: p - n - 2m which yields gm 2: r(2::7~1 gi)/m1 2: np - n)/m1 - 2. Using 
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that gm :::; gmH :::; ... :::; 

m) ( r (p n) / m 1 2):::; 
(4). 

and inequality (1) we obtain that p n 2m + (D.g 

g, :::; p - - 1 and this yields the second inequality of 

To prove inequality (.5) consider a vertex v with d = dg(v) .2: m 1 and d :::; 
p-n-l. Let Ng(v) {uh ... ~ud}andgi g(ui,Nr(v)). Again we may assume that 
gl :::; ... :::; gd· Then inequalities (3) and (1) imply that p n - d + (d (m 1) H(p-
n d)j(m l)l p d 1 yielding inequality (5). II1II 

3 Erdos-Renyi and Moore graphs 

Here we consider two classes of graphs which will be useful to establish lower bounds 
for r( C4~ 

For a prime power q the Erdos-Renyi graph E R( q), first constructed by Erdos 
and Renyi in [2], defined to be the graph whose vertices are the points of the 
projective plane PG(2, q) where two vertices y, z) and ~ y', are adjacent iff 
xx' + + zz' O. The Erdos-Renyi was studied in detail Parsons in [9]. 
Here we will use the following properties of E R( q). 

(0:) ER(q) has q2 + q+ 1 "fl"""~~~ 
((3) ER(q) does not contain subgraph 
(,) In ER(q) there are no two vertices of degree q. 
(8) In E R( q) no vertex of degree q belongs to a subgraph 

Lemma 3. Let q be a prime power; G ER(q), G the complement of G and let 
{VI. V m } C V V(G). Then 

Proof. Let T V\S and, for v E let Tv NG ( v) n T and 
Then I Nc(v)1 -I UVES 7~1 and, by property (0:), ITI 
Thus, inequality (6) is proved if we can show that 

IU 
vES 

(m2')' .2:qm 

Let M {(i, j); 1 S; i < j m}. Trivially, 

ITvl - 2::= ITvi n Tv} I· 
(i,j)EM 

Let Ml {(i,j) E M;{Vi,Vj} E E(G), min{dG(vi),dG(v;)} 
{(i,j) E M; ISVi n Svjl I}. By properties ((3) and (8), 

(i,j)EM 

(;) -IN111-INI21· 
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(6) 

NG(v) n S. 
q2 + q + 1 - m. 

(7) 

(8) 

q} and }\l12 = 

(9) 



Let S' {v E S; dG(v) q} and S" = S\S'. By property (,), IMII = LVES1 ISvl. 
Furthermore, by property (13). IM21 = ZVES (ISvl) Thus, inequalities and (9) 
imply 

Note that dG(v) and, by property (a), the vertices in S" have degree 
q + 1. Thus, every summand of the two sums in (10) at least q. This proves (7) 
and the proof of Lemma 3 is complete. III 

For integers /j 3 and 9 2: 3 a (/j, g)- Moore graph is defined to be a 
regular of /j with girth 9 and p(/j, g) vertices where 

_ { 1 + 5~Z {( 8 - 1 
p((5,g) - 5~2{((5 _1)g/2 I} 

- I} if 9 is odd 
if 9 IS even. 

(11 ) 

It is well kno'wn that every graph with minimum 8 and 9 has at least 
p( /j, g) vertices. 

In the following section we will use a result of Hoffman and Singleton [6] concerning 
(/j,5)-Moore graphs. They showed that there are no such graphs with (5 2: 3 and 
(5 rf. {3, 7, 57} whereas (3,5)- and (7,5)-Moore do exist (the Petersen graph 
and the so-called Hoffman-Singleton graph). Up to now it is unknown whether a 
(57, 5)-Moore graph exists. 

4 Ramsey numbers r(C4 , Km,n) 

We will determine bounds and values for r( C4 , I<m,n) which depend in case of 2 :S 
m :S 4 on the difference s between nand (ffol - 1)2, the square less than 
n (1 :S .5 2 - 1). 

Theorem 1. Let n 2: 2, q = hlnl, s = n - (q - 1)2 and j\ll = {2, 5, :37, :n37}. 
Then 

(12) 

Proof. Suppose first that we have a (C4 , I<z,n)- coloring of I<p where p = n + 2q 
and 1 :S s :S q - 1. The two inequalities in (4) imply 6:.g = q + 1 for 1 :s; s :S q - :j, 
q + 1 :S 6:.g :S q + 2 for q - 2 :S s :S q - 1, q 2: 3, and q + 1 :s; 6:.g :s; q + 3 for q 2, i. e. 
n = 2. Inequality (5) yields that dg(v) =1= q+ 1 for all v E V. Moreover, 6:.2 = q+3 for 
n = 2 would immediately lead to a green C4 or to a red I<2,2. Thus. only 6:.g = q + 2 
and s q :2 or s = q - 1 remains. Consider a vertex v with dg ( v) q + 2. Let 
Ng(v) {1£1 ..... U q+z} and gi = g(Ui' Nr(v)). Inequality (3) implies that gi 2: q - 2. 
We may assume that g1 :S '" :S gq+2' Then gq+2 2: q - 1 in case of s = q - 2 would 
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yield a contradiction to (1) and the same holds for gq+1 ~ q 1 or gq+2 ~ q in case 
of s q - 1. Thus, g1 ... = gq+2 q - 2 if = q - 2 and gl = ... gq+1 q 2, 
q - 2 ~ gq+z ~ q - 1 if q 1. Note that there must be vertices Ui and U J in 
Ng(v) with q common red neighbors in iVAv). But then (2) implies gi + gj ~ 2q 2. 
a contradiction, and the second case of inequality (12) is proved. 

To prove the first case consider now n ~ 10 with = 1. Suppose that we have a 
(C41 I<z.n)-coloring of Kp with p = n + 2q - 1 (i. e., p = q2 + 1). Because of q 4. 
inequality (4) implies that q ~ .6.g ~ q + 1. 

First assume that .6.g = q + 1. Let v be a vertex with dg ( v ) q + 1, Ng ( v ) 
{UI, "'j uq+d and gi = g( Ui, iVr { v)). By (3), gi ~ q - 2. We may assume that 
91 ~ ... gq+!' Then (1) yields gl = ... = gq q - 2 and q 2 gq+J ~ q 1. 
Moreover, there must be two vertices in {Ul' "'1 u q } with q - 1 common red neighbors 
in NgCo), and we obtain a contradiction to (2). 

It remains that q. Assume that lig ~ q 1 and let 11) be a vertex with 
dg(w) If lig ~ 1, inequality (3) yields g(u, Nr(w)) q for every U E Ng(w), 
contradicting.6.g q. If 0, 11) and any other vertex have more than n common 
red neighbors and a red would occur. Thus, the green subgraph of I<p must 
be regular of q. Moreover, its girth 9 must be at least ,5 since no green 

occurs and since a green C~~ would immediately lead to a red K2,n' A girth 
9 ~ 6 is impossible since then at least p(q,g) vertices would occur in Kp (compare 
section 3) and p(q,g) > q2 + 1 p if 9 ~ 6. Since q2 + 1 p(q,5), it remains 
that the green sub graph is a (q, 5)-Moore graph. But this yields a contradiction for 
q ~ 4, q 7, q ::I 57 (i. e., n # 37, n # 3137) since such Moore graphs do not 
and the first case in (12) is proved. 

To prove the remaining third case, suppose that for q ~ s ~ 2q - 1 we have 
a (C 4, I< 2.n )-coloring of K p with p n + 2q + 1. Then inequality (4) implies that 
6.9 q + 1 for q ~ 2q - 3 and q + 1 ~ .6.9 :::; q + 2 for 2q - 2 s ~ 2q - 1. By 
inequality (5), dg ( v) # q + 1 for all v E V, Moreover, dg ( v) = q + 2 is only possible if 
s 2q - 1. Thus, only 2q - 1 and .6..g q + 2 remains. Consider a vertex v with 
dg(v) q+2. Let {Ul, ... ,Uq+:z} andgi =g(ui,Nr(v)). By (3),gi q-1. 
Then (1) implies that gl = ... = gq+2 = q 1. But this yields a contradiction to (2), 
since there must be two vertices in Ng(v) with q common red neighbors in Ng(v), and 
the proof of Theorem 1 complete. II 

Coronary. For n = 3137, equality in (12) is attained (i.e. r( C4 , K 2•n ) 32.51) iff 
there is a (57,5)-Moore graph. 

Proof. The proof of Theorem 1 shows that a (57,5)-Moore graph must exist if 
equality is attained. Furthermore, the existence of such a graph leads to equality, 
since a 2-coloring of a K3250 where the green subgraph is isomorphic to a (57, 5)-Moore 
graph contains no green C4 a.nd no red K 2 ,n' II 

The next theorem shows that the bounds derived in Theorem 1 are attained in certain 
cases. 
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Theorem 2. Let n 2 2, q = f fol, = n (q - 1)2 and M' {2,.5, :n}. If q is 
a prime power then 

and 

{ 

n + 2ffol 1; 
n + 2rfol; 
n+2ffol+1; 

5 1 and n 1:. lvI' 
n EM' or q 
5 q 

122 ( 13) 

n + 2rJnl-1 :::; r(C4 ,Kz,rJ :::; n + 2fFnl; 
If q + 1 is a prime power then 

.5 :::; q 2. (14) 

K 2,n) = n +2fFnl + 1: s 2q -1 (i. e. n (15) 

Proof. First suppose that q is a prime power. In view of Theorem 1 it suffices to 
prove" "for (13) and the left inequality of (14). 

Consider a 2-coloring of Kp with p q2 + q + 1 where the 
isomorphic to the Erdos-Renyi graph ER(q). Then, by property 
green C4 occurs and, by Lemma 3, no red K z,qLq+1' This implies 
case of (13), i.e. for 5 = q, since then n q2 q + 1 and p n + 

suhgraph is 
of ER(q), no 
for the third 

To settle the second case of (13): first consider 5 q - L i. e. 11 q2 q. Delete 
from J(p a vertex U with dg(u) = q (which exists by property of ER(q)) and a 
green neighbor v of u. The remaining contains no green Assume that a 
red K 2,n occurs. Then there are vertices x and y with n common red neighbors. By 
Lemma 3, x and y cannot have more than n common red neighbors in J{-po Thus, 1L 

and also v must be joined green to one of the vertices x and y. property (8) of 
ER(q), we may assume that u is joined green to x and red to y and that v is joined 
green to y and red to x. Then the edge {x, y} must be red since otherwise a green 

would occur. Moreover, by properties (0:') and (,), has q green neighbours in 
J{n+2q-l and y at least q L No green implies that in J{n+2q-l there are at least 
2q - 2 vertices joined green to x or y. But this yields at most n - 1 common red 
neighbors of x and y, a contradiction, and" "follows for s = q - 1. Note that 
n = 2 is included for q = 2. To establish " for n 5 and for n 37. consider 
a 2-coloring of Kq2+1 where the green subgraph is isomorphic to the Petersen graph 
respectively to the Hoffman-Singleton graph, the two special (8. Moore graphs 
descri bed in section 3. 

To prove" 2 " for the first case in (1:3) and the left inequality in (14) delete from 
J(p a vertex 1L with dg( 1l) = q and q s + 1 of its green neighbors where 1 ::; s :::; q - 2. 
The remaining J{n+2q-2 contains no green C4 . Assume that a red K 2,n occurs and 
consider two vertices x and y with n common red neighbors. Since x and y have at 
most q2 q = n + q - 5 - 1 common red neighbors in KPl there are at least three 
among the deleted vertices joined green to x or to y. Thus, x or y must be joined 
green to two of the deleted vertices, contradicting one of the properties (/3) and (8) 
of ER(q). and the proof of (13) and (14) is complete. 

Now suppose that q + 1 is a prime power and 5 2q - 1, i. e. n = q2. To prove 
(15), again it suffices to show" 2 " in view of Theorem 1. Consider a 2-coloring of 
J(p with p = (q + 1)2 + (q + 1) + 1 = n + 3q + 3 where the green subgraph is isomorphic 
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to the Erdos-Renyi graph ER( q + 1). Delete a vertex u with dg ( u) q + 2 and all 
its green neighbors. property (/3) of ER( q + 1), /{p and also the remaining /{n+2q 

contains no green C4 . Assume that a red occurs in the remaining f{n+2q and let 
x and y be two vertices with n common red neighbors. By Lemma ;3, x and yean 
have at most q2 + q n + q common red neighbors in /{p. This implies that at least 
three of the deleted vertices, i. three of the green neighbors of u, must be joined 
green to x or to y. Thus, x or y has to be joined green to two green neighbors of u. 
But this yields a green C4 in /{Pl a contradiction, and Theorem 2 is proved. III 

The following lemma shows that equality in (12) also holds for n 8 and that 
the lower bound in (14) yields the exact value in case of n = II. 

Lemma 4. 
15. (16) 

Proof. Figure 1 and inequality (12) imply that ,(Gil 15. To prove 
/{2.11) = 18, it suffices to show 18 in view of the left inequality in (14). 

Assume that we have a (C4 , /{2,1l)-coloring of /{18. By 4 6..'] 6. Let v 
be a vertex with d.'](v) D.g and Ng(v) {Ul,''''U.6. g }' We may assume that all 
green edges between vertices of Ng ( v) belong to the edge-set {{ Ui, ui+d: 1 i 

1 i odd}. This n) n Ng(v)1 - 2: and (2) 
N r ( v )) + , Nr ( v) ) Thus, 6 is impossible since otherwise we 

would obtain a contradiction to (1). 

Now suppose that = 5. Then (1) implies that dg ( us) ~ :3. and I5g :3 
follows. Let w be any vertex with dg (w) If < wand one of its green 
neighbors (or any vertex if 8g 0) would have at least eleven common red neighbors. 
a contradiction. Thus,l5g :3. Let Ng(w) {1,2,3} and Nr(w) = {4, .... 1 

5 and (:J) imply dg (l) = dg (2) dg (:3) .J and only red edges between the 
vertices and 3. We may assume that Ng(i) = {w,4iAi + L4i L4i + 
for 1 i ~:J. At most ten common red neighbors of 16 and 17 and no green 
C4 imply g(16,Ng (i)) = g(17,Ng (i)) 1 for 1 ~ i ~ 3, and we can assume that 
{4,8, C Ng (16) and {7,1l,15} C Ng (17). Consider y {5,6,9.10.13,14}. A 
green would occur if dg (y) > 4, and eleven common red neighbors of y and w 
if dg(y) < 4. It remains that dg(y) = 4. This implies red edges {5,6}. {9,10} and 
{VJ, 14}, and, without loss of generality, green edges {2j,2j + I} for:2 ~ j ~ 7. It 
can be shown that dg(z) 5 for every Z E {4. 7, 8.11, 12, 15}. Since every vertex v 
with dg ( v) = 6.g must have green neighbor U with dg ( u) = 3, we obtain that 
dg (16) = dg (17) = ~3, and, as for the vertex w, only red edges between the vertices 
in Ng(x) for x = 16 and x = 17. The interdiction of a green C4 yields red 
{4,13},{8,13}, and {15, 6}. Then dg ( 4) = dg (8) 5 implies that, without loss of 
generality, the edges {4, 14} and {8, 15} are green, which forces {15,4} to be red. But 
then all edges from 15 to 4, 6 and 7 are red and dg (15) = 5 implies that {15,5} is 
green, yielding a green C4 • 

The remaining case is D.g = 4. Then 8g < 4 is impossible as otherwise again 
a vertex w with dg ( w) 8g and one of its green neighbors (or any other vertex if 
8g = 0) would have at least eleven common red neighbors. We obtain that the green 
subgraph must be a graph of order 18 regular of degree 4. Moreover, no green triangle 
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can occur, and it is not difficult to see that no such graph exists. Thus, the proof of 
Lemma 4 is complete. II 

Fig.I. The green edges of a K 2,8)-coloring of f{14. 

The following table summarizes the pf(~celdmg results for ]<2,n) up to n = 21. 

Tab.I. Values and bounds for r(C4, i{2,n) up to n 21. 

Theorem 3. Given n, let q = r fol and s n (q - 1)2. 

(i) If n 2: 3 then 

Equality in (17) is attained for s = 1 if q is a prime power. 

(ii) If n 2: 4 then 
r( C4 J<4,n) S; n + 4 r Jnl + 3. 

Furthermore, if q + 1 is a prime power and s = q + 1, then 
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Proof.(i) First suppose that we have a I<3,n)-coloring of I<n+3q in case of 1 ~ 
s ::; q-1 which implies q ;::: 3 because of n ;::: 3. Then (4) yields q+ 1 ~ 6.9 ~ q+4 for 
q = 3, s 2 and q+ 1 ~ 6.g ~ q+3 otherwise. But q+ 1 ~ dg(v) ~ q+3 is impossible 
by (.5) and the remaining case is q 3, s = 2 (i.e. n 6) and.6..g q + 4 7. Let v 
be a vertex with dg (v) 7. Then there must be three vertices 711,712,713 in N 9 ( v) with 
three common red neighbors 11,4,11,5, Us in Ng ( v). By (1), g( {Ul' 11,2. 11,3}, Nr ( v)) a or 
g( {U4, Us, Us}, N r ( v)) a. In both cases a red 1(3,1 occurs, a contradiction, and the 
first case of (17) is proved. 

From (4) and (5) it can be deduced that a (04 ) K3,n)-coloring of cannot 
exist for s ~ 2q 1 and the second case of (17) follows. 

Now let 1, i.e. n = q2 2q + 2, and let q be a prime power. Consider a 
2-coloring of where the green subgraph is isomorphic to ER(q). Then no 
green occurs and, (6). any three vertices have at most q2 - 2q + 1 n 1 
common red neighbors. Thus, r( 0 4 : K 3 ,n) ;::: q2 + q n + 3q and equality in (17) 
follows. 

(ii) Suppose now that we have a (04 , K4.n )-coloring of J{ tram (4) it can 
be deduced that q + 2 6.g q + 5. By (5), q + 3 .6.. q q + 5 is impossible 
and q + 2 is only possible if 2q 1, q2 The remaining case is 

andn q2, Let V be a vertex with dg(v) Ng(v) {Ul" .. ,Uq+2} and 
gi g( Ui, NrCv)). We may assume that gl ~ g2 gq+2. If g:{ ~ q, the vertices 
v, 711,11,2 and u:~ have at least n common red in Nr ( v), a contradiction. 
Taking into account that q + the case is g3 =... gq+2 q + l. 
But if a 0 4 is the vertices v, U1, 712 and one common red neighbor 
of U q+2 in Nr ( v) have n common red among the green neighbors of 
the vertices 11,3, ... , U q+2 in Nr(v). Thus, there is no ((}41 K4,n)-coloring of KriHq+3 and 
inequality (18) is proved. 

Now let s q + 1, i.e. n = q2 q + 2, and let q + 1 he a prime power. Then 
a 2-coloring of 
(04 , K4•rJ-coloring 

where the green subgraph isomorphic to ER(q + 1) is a 
(6) and inequality (19) follows. III 

In addition to Theorem 3 we can show that equality in (19) holds for n = 4. It seems 
to be difficult to decide whether equality holds for all n such that q + 1 is a prime 
power and s q + L The next theorem shows that bounds similar to the preceding 
ones can be obtained for r( C4 ,1<m,n) for all m if n is sufficiently large (depending on 
m). 

Theorem 4. Let 2 m ~ n. Then 

r(04' Km,n) ~ n + (m2 + 3)/2 + mVn+ (m 2 + 2 + 1/m2 )/4 -l/m. (20) 

Moreover, if q (m 1)/2 + y'n - (m2 - 4m + 7)/4 is a prime power (i.e. n = 
q2 _ (m - l)q + (m;l) + 1) then 

r(C4 ,/{m,n) '2: n + m + my'n - (m2 
- 4m + 7)/4. (21) 
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Proof. Inequality (20) is an immediate consequence of (4). Now let q be a prime 
power. Note that q2 + q + 1 = n + 111, 1 + mv:n:=Tm2 4m + 7)/4. Consider a 
2-coloring of J{q2+q+l with the green subgraph isomorphic to ER(q). Then no green 
0 4 occurs and, by Lemma 3, no red Hm"n' This yields inequality (21) and the proof 
of Theorem 4 is complete. II 
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