Steiner Minimal Trees on the Union of Two Orthogonal Rectangles

R.S. Booth* and J.F. Weng**

Abstract

Suppose R is a union of two subsets R_{1} and R_{2} whose Steiner minimal trees $\operatorname{SMT}\left(R_{1}\right)$ and $\operatorname{SMT}\left(R_{2}\right)$ are known. The decomposition question is when the Steiner minimal tree $\operatorname{SMT}(R)$ for R is just the union of two Steiner minimal trees on R_{1} and R_{2} respectively. In this paper a special case is studied, that is, $R_{1}=b c d a$, $R_{2}=d e f g$ are two non-overlapping rectangles with a common vertex d so that a, d, e lie on one line. We conclude that $S M T(R)$ has only two possible structures. We also give two sufficient conditions for the required decomposition $\operatorname{SMT}\left(R_{1} \cup R_{2}\right)=$ $S M T\left(R_{1}\right) \cup S M T\left(R_{2}\right)$, and prove that under suitable assumptions of randomness, the probability of such a decomposition is 0.9679 .

1. Introduction

The Steiner problem for a given set R of points (called regular points) in the Euclidean plane is to construct a shortest network interconnecting these given points, with some additional points (called Steiner points) [2]. The shortest network is a tree, called the Steiner minimal tree for R, and denoted by $\operatorname{SMT}(R)$. If the degree of every regular point is one, then the tree is called full. All angles in Steiner minimal trees are no less than 120°. This is called the angle condition of Steiner minimal trees.

As in other fields of mathematics, the following decomposition question also can be raised in this shortest network problem: If R is a union of several simple subsets $R_{i}, i=1,2, \ldots, k$, whose Steiner minimal trees are known, then when do we have

$$
S M T(R)=S M T\left(\bigcup_{i=1}^{k} R_{i}\right)=\bigcup_{i=1}^{k} S M T\left(R_{i}\right) ?
$$

[^0]Clearly, we should give some restraints on the subsets. In this paper we study a special case: $i=2$ and R_{i} are rectangles. More specifically, suppose $R=R_{1} \cup R_{2}$ where $R_{1}=b c d a, R_{2}=\operatorname{defg}$ are two rectangles with a common vertex d so that a, d, e lie on one line. (For convenience, we assume that the line is horizontal.) Then R is called a union of two orthogonal rectangles (Fig. 1).

Figure 1
In this paper we prove that, up to symmetry, $S M T(R)$ has only two possible structures. Then we give two sufficient conditions for the required decomposition $S M T\left(R_{1} \cup R_{2}\right)=S M T\left(R_{1}\right) \cup S M T\left(R_{2}\right)$, and finally, prove that under suitable assumptions of randomness, the probability of such a decomposition is 0.9679 .

2. Steiner minimal trees for R

By the topology we mean the structure of the network. It has been proved that we need only consider full Steiner topologies in order to determine Steiner minimal trees [3]. Usually the vertices of an angle or a polygon are written in counterclockwise order. Following Cockayne [1], we denote by $(a g)$ the third vertex of the equilateral triangle $\triangle(a g) a g$. Hence, the point $(a g)$ is on the left side looking from a to g. Note that by Melzak's construction [4], the Simpson line of a full Steiner tree can also be expressed by this notation.

A path $p s_{1} s_{2} \ldots s_{m} q$ is called a left- (or right-)turn path (starting with edge $p s_{1}$) if it always turns left (or right) at every vertex $s_{i}, 1 \leq i \leq m$, on the path. It is called a Steiner path if all s_{i} are Steiner points. Suppose $p s_{1} s_{2} \ldots s_{m} q$ is a convex polygon and point a is outside it and on the same side of $p q$ as all s_{i}. Then we call the path $p s_{1} s_{2} \ldots s_{m} q$ convex to a. The following general lemma is easily seen.

Lemma 1. Suppose two lines l_{1} and l_{2} meet at a regular point a at a right angle.
(1) Then no one edge of the Steiner minimal tree can intersect both l_{1} and l_{2}.
(2) If there is a Steiner path which is convex to a and intersects l_{1} and l_{2} at p and r respectively, then there is one and only one Steiner point s between p and r.

Moreover, the angle between l_{1} and $s p$, as well as the angle between l_{2} and $s r$, are both less than 30°.

The length of an edge or a tree is denoted by $|\cdots|$.
Corollary 1. In the Steiner minimal tree T of R, the degree of d is no more than two, and the degree of all other regular points is one.

Proof. If there are two edges at b (or f), the angle between them is less than 90°. If there are two edges at a (or c, e, g), then the angle between them is less than 120° by Lemma 1. In both cases the angle condition of Steiner minimal trees is contradicted. Suppose the degree of d is three. By the angle condition we may assume without loss of generality that one Steiner point of d lies in $\angle a d g$ and the other two Steiner points lie in R_{1}, R_{2} respectively. Then the tree T must be $S M T(a d g) \cup S M T(b c d) \cup S M T(d e f)$. Since the three angles at d are all equal to 120°, it is easy to see that $|a d|=|d e|,|c d|=|d g|$. It follows that $|T|>\left|T_{1}\right|, T_{1}$ as in Figure 1. T is not minimal.

Among the different trees, we consider in particular the Steiner trees T_{1}, T_{2}, T_{2}^{*} given by (see Fig. 1)

$$
\begin{gathered}
T_{1}=S M T\left(R_{1}\right) \bigcup S M T\left(R_{2}\right), \\
T_{2}=(b a)((g f) d) \bigcup(c d) e, \\
T_{2}^{*}=(d a) g \bigcup(c b)((d f) e) .
\end{gathered}
$$

Clearly, the topology of T_{2}^{*} is symmetric to the topology of T_{2}. Define

$$
f(x, y)=\sqrt{x^{2}+x y \sqrt{3}+y^{2}}
$$

Lemma 2. $f(x, y)>x \sqrt{3} / 2+y$, for $x>0, y>0$.
Proof. It can be verified directly.
Theorem 1. Up to symmetry, the Steiner minimal tree for R, is either T_{1} or T_{2}.
Proof. Suppose T is a Steiner minimal tree for R. Let the path from b to a be $b s_{1}^{\prime} \cdots s_{k_{1}}^{\prime} a$ with k_{1} Steiner points, the path from b to c be $b s_{1} \cdots s_{k_{2}} c$ with k_{2} Steiner points. By Corollary $1, s_{1}=s_{1}^{\prime}, k_{1} \geq 1, k_{2} \geq 1$, and at most one of k_{1}, k_{2} equals one. So $k_{1}+k_{2} \geq 3$. Since there are 5 Steiner points in a full Steiner tree
for R and the Steiner point adjacent to f must lie in $R_{2}, k_{1}+k_{2} \leq 5$. Without loss of generality assume $k_{1} \leq k_{2}$. There are just 5 cases to consider.
(1) $k_{1}=1, k_{2}=2$. By Lemma 1 the third edge of s_{2} can neither intersect $c d$ and $a d$, nor end in R_{1}. Hence, s_{2} joins d, and consequently, $T=T_{1}$.
(2) $k_{1}=1, k_{2}=3 . s_{3}$ lies in $\triangle e d c$ and the third edge of s_{3} meets de at a point, say p. Again by Lemma 1 the third edge of s_{2} can neither intersect $a d$, nor end in R_{1}. It cannot end in $\Delta e d c$, otherwise one of the right-turn paths starting with the third edge of s_{2} and s_{3} ends nowhere. Hence, s_{2} joins d or $s_{2}=d$. In the former case let q be the intersection of $s_{2} s_{3}$ and $c d$, and let q^{\prime} be the point on $d c$ such that $|d q|=\left|q^{\prime} c\right|$. Then

$$
|((b a) d)(p c)|=|(b a)(d q)|+|S M T(p q c)|>\left|(b a)\left(q^{\prime} c\right)\right|+\left|S M T\left(p d q^{\prime}\right)\right|
$$

Hence, T is not minimal. In the latter case, $|a d| \geq|d p|$ since $\angle s_{3} d s_{1} \geq 120^{\circ}$. By Lemma 2 using Melzak's construction

$$
\begin{aligned}
|S M T(a b d)|+|S M T(d c p)| & =f(|a b|,|a d|)+f(|d c|,|d p|) \\
& \geq \frac{\sqrt{3}}{2}|a b|+|a d|+\frac{\sqrt{3}}{2}|d c|+|d p| \\
& =|S M T(a b c d)|+|d p| .
\end{aligned}
$$

However, if a tree contains $S M T(a b c d) \cup d p$ as its part, then either the degree of d is three or the degree of e is two. Hence, Corollary 1 is contradicted either for d or for e. This means that $S M T(a b d) \cup S M T(d c p)$ is not a minimal tree spanning $\{a, b, c, d, p\}$, and hence, T is not minimal either.
(3) $k_{1}=2, k_{2}=2$. Since the third edge of s_{2}^{\prime} and s_{2} are parallel, one has to meet $a d$ and another has to meet $d c$. Hence, one of them contradicts Lemma 1.
(4) $k_{1}=1, k_{2}=4$. By the angle consideration it is easy to see that one of s_{1}, \ldots, s_{4}, and in fact s_{3}, should collapse into d. It follows that s_{2} lies in $\triangle a d g$ and s_{4} lies in $\triangle e d c$. There are two possibilities. If s_{2} joins g and s_{4} joins another Steiner point s_{5} which is adjacent to both ef, then it is easily seen that the tree $T=S M T(a b d g) \cup S M T\left((d c e f)\right.$ is longer than T_{1}. If s_{4} joins e and s_{2} joins another Steiner point which is adjacent to both g and f, then $T=T_{2}$.
(5) $k_{1}=2, k_{2}=3$. If no Steiner point of s_{1}, s_{2}, s_{3} collapses into d then $\angle s_{2}^{\prime} a b+\angle b c s_{3}=270^{\circ}$ by considering the sum of the interior angles of $a b c s_{3} s_{2} s_{1} s_{2}^{\prime}$.

Lemma 1 is then contradicted. However, if $s_{2}=d$, then the subtree spanning $a b d p=(a p)(d b)$ is longer than $(b a)(p d)$ where p is the intersection of $d g$ with the third edge of s_{2}^{\prime}. So T is not minimal.

3. Two sufficient conditions for $S M T(R)=S M T\left(R_{1}\right) \cup S M T\left(R_{2}\right)$

Let the widths and heights of R_{i} be w_{i} and $h_{i}(i=1,2)$ respectively. Because the Steiner minimal tree is only concerned with in the relative position of two orthogonal rectangles, we may assume without loss of generality that w_{1} is the largest of $w_{1}, h_{1}, w_{2}, h_{2}$. Let s_{2} be the Steiner point in T_{2} which lies in $\triangle a d g$.

Lemma 3. T_{2} exists, i.e., the Steiner point s_{2} does not collapse into d, if and only if $h_{1} / w_{1}<h_{2} / w_{2}$. By symmetry, T_{2}^{*} exists if and only if $h_{1} / w_{1}>h_{2} / w_{2}$.

Proof. Let $\phi_{1}=\angle(b a) d a, \phi_{2}=\angle g d(g f)$. We need to prove that $\phi_{1}+\phi_{2}<30^{\circ}$ if and only if $h_{1} / w_{1}<h_{2} / w_{2}$. Let $\gamma_{1}=\angle b d a, \gamma_{2}=\angle g d f$. It is easily shown that

$$
\cot \phi_{1}=2 \cot \gamma_{1}+\sqrt{3}, \quad \cot \phi_{2}=2 \cot \gamma_{2}+\sqrt{3} .
$$

Then $\phi_{1}+\phi_{2}<30^{\circ}$ if and only if

$$
\begin{aligned}
\cot \left(\phi_{1}+\phi_{2}\right) & =\frac{\cot \phi_{1} \cot \phi_{2}-1}{\cot \phi_{1}+\cot \phi_{2}} \\
& =\frac{\left(2 \cot \gamma_{1}+\sqrt{3}\right)\left(2 \cot \gamma_{2}+\sqrt{3}\right)-1}{2 \cot \gamma_{1}+2 \cot \gamma_{2} \sqrt{3}} \\
& >\sqrt{3}
\end{aligned}
$$

This inequality is equivalent to $\cot \gamma_{1} \cot \gamma_{2}>1$, i.e., $h_{1} / w_{1}<h_{2} / w_{2}$.
Since only one of T_{2} and T_{2}^{*} can exist by Lemma 3, by symmetry, we assume that T_{2} exists, (i.e., $h_{1} / w_{1}<h_{2} / w_{2}$) from now on.

Lemma 4. $f(x, y)+x>\sqrt{3} x+y$, for $x>0, y>0$.
Proof. It can be verified directly by the definition of $f(x, y)$.

$$
\left|\mathcal{T}_{2}\right|=f\left(h_{1}+h_{2}, w_{1}+w_{2}\right)+f\left(h_{1}, w_{2}\right)
$$

Theorem 2. If $h_{2} \leq w_{2}$, then $\left|T_{1}\right|<\left|T_{2}\right|$.

Proof. First we assume $h_{2}=w_{2}$. By Lemma 4 we have

$$
\begin{aligned}
\left|T_{2}\right| & =f\left(h_{1}+h_{2}, w_{1}+w_{2}\right)+f\left(h_{1}, w_{2}\right) \\
& >f\left(h_{1}+h_{2}, w_{1}+w_{2}\right)+\left(h_{1}+w_{2}\right) \\
& >\sqrt{3}\left(h_{1}+h_{2}\right)+\left(w_{1}+w_{2}\right)=\left|S M T\left(R_{1}\right)\right|+\left|S M T\left(R_{2}\right)\right|=\left|T_{1}\right|
\end{aligned}
$$

Now suppose $h_{2}<w_{2}$. Let s_{5}, s_{4} be the Steiner points incident to f, e respectively (Fig. 1(2)). We shrink de and $g f$ till $w_{2}=h_{2}$. Note that both $\angle s_{5} f g$ and $\angle s_{4} e d$ are less than 30° by Lemma 1(2).

$$
\begin{aligned}
\frac{\partial\left|T_{2}\right|}{\partial w_{2}} & =-\left(\cos \angle s_{5} f g+\cos \angle s_{4} e d\right) \\
& <-1=\frac{\partial\left|T_{1}\right|}{\partial w_{2}}
\end{aligned}
$$

Hence, by the variational argument [5] we have $\left|T_{2}\right|>\left|T_{1}\right|$.

Lemma 5.

$$
f(x, y) \geq\left(\frac{x+y}{2}\right) \sqrt{2+\sqrt{3}}, \text { for } x>0, y>0
$$

The equality holds if and only if $x=y$.
Proof. Put $x^{\prime}=y^{\prime}=(x+y) / 2$. Then $x^{\prime} y^{\prime}=(x+y)^{2} / 4 \geq x y$, and equality holds if and only if $x=y$. So,

$$
\begin{aligned}
f(x, y) & =\sqrt{x^{2}+x y \sqrt{3}+y^{2}} \\
& =\sqrt{(x+y)^{2}-(2-\sqrt{3}) x y} \\
& \geq \sqrt{\left(x^{\prime}+y^{\prime}\right)^{2}-(2-\sqrt{3}) x^{\prime} y^{\prime}} \\
& =\sqrt{x^{\prime 2}+x^{\prime} y^{\prime} \sqrt{3}+y^{\prime 2}} \\
& =x^{\prime} \sqrt{2+\sqrt{3}}=\left(\frac{x+y}{2}\right) \sqrt{2+\sqrt{3}} .
\end{aligned}
$$

Theorem 3. Suppose $h_{2}>w_{2}$. Then $\left|T_{1}\right|<\left|T_{2}\right|$ if

$$
\begin{equation*}
\frac{h_{1}+w_{2}}{w_{1}+h_{2}}>\frac{2-\sqrt{2+\sqrt{3}}}{2(\sqrt{2+\sqrt{3}}-\sqrt{3})}(\approx 0.17) . \tag{1}
\end{equation*}
$$

Proof. Since $h_{2}>w_{2},\left|T_{1}\right|=1+h_{2}+h_{1} \sqrt{3}+w_{2} \sqrt{3}$. Then

$$
\begin{aligned}
\left|T_{2}\right|= & f\left(h_{1}+h_{2}, w_{1}+w_{2}\right)+f\left(h_{1}, w_{2}\right) \\
\geq & \left(\frac{h_{1}+h_{2}+w_{1}+w_{2}}{2}\right) \sqrt{2+\sqrt{3}}+\left(\frac{h_{1}+w_{2}}{2}\right) \sqrt{2+\sqrt{3}} \\
= & \left(w_{1}+h_{2}\right)\left(\frac{\sqrt{2+\sqrt{3}}}{2}\right)+\left(h_{1}+w_{2}\right) \sqrt{2+\sqrt{3}} \\
= & \left(w_{1}+h_{2}\right)+\left(h_{1}+w_{2}\right) \sqrt{3} \\
& \quad+\left(h_{1}+w_{2}\right)(\sqrt{2+\sqrt{3}}-\sqrt{3})-\left(w_{1}+h_{2}\right)\left(1-\frac{\sqrt{2+\sqrt{3}}}{2}\right) \\
& >\left(w_{1}+h_{2}\right)+\left(h_{1}+w_{2}\right) \sqrt{3}=\left|T_{1}\right|,
\end{aligned}
$$

where the first inequality comes from Lemma 5 and the last inequality comes from the condition (1).

4. The probability that $S M T(R)=S M T\left(R_{1}\right) \cup S M T\left(R_{2}\right)$

Since we have assumed before that w_{1} is the largest of $w_{1}, h_{1}, w_{2}, h_{2}$, therefore, all h_{1}, w_{2}, h_{2} will be no more than one by a further assumption $w_{1}=1$. Remember that we have assumed by symmetry that $h_{1} / w_{1}<h_{2} / w_{2}$. It follows that $h_{2}>h_{1} w_{2}$. On these premises, the whole space of possible parameters is

$$
E=\int_{0}^{1} \int_{0}^{1} \int_{h_{1} w_{2}}^{1} d h_{2} d w_{2} d h_{1}=0.75
$$

To evaluate the probability that T_{2} is minimal, we may assume by Theorem 2 that $h_{2}>w_{2}$. Hence, $\left|T_{1}\right|=1+h_{2}+h_{1} \sqrt{3}+w_{2} \sqrt{3}$. Let

$$
\begin{align*}
g\left(h_{1}, w_{2}, h_{2}\right) & =\left|T_{2}\right|-\left|T_{1}\right| \\
& =f\left(h_{1}+h_{2}, 1+w_{2}\right)+f\left(h_{1}, w_{2}\right)-1-h_{2}-h_{1} \sqrt{3}-w_{2} \sqrt{3} . \tag{2}
\end{align*}
$$

Clearly, $g(0,0,0)=0, g\left(0,0, h_{2}\right)<0$ and $g(1,1,1)>0$.
Lemma 5. $f\left(x+x^{\prime}, y+y^{\prime}\right) \leq f(x, y)+f\left(x^{\prime}, y^{\prime}\right)$.
Proof. From the triangle inequality

$$
\sqrt{\left(x+x^{\prime}\right)^{2}+\left(y+y^{\prime}\right)^{2}} \leq \sqrt{x^{2}+y^{2}}+\sqrt{x^{\prime 2}+y^{\prime 2}}
$$

it follows that

$$
\begin{aligned}
f\left(x+x^{\prime}, y+y^{\prime}\right) & =\sqrt{\left(x+x^{\prime}\right)^{2}+\left(x+x^{\prime}\right)\left(y+y^{\prime}\right) \sqrt{3}+\left(y+y^{\prime}\right)^{2}} \\
& =\sqrt{\left(\left(x+x^{\prime}\right)+\frac{\sqrt{3}}{2}\left(y+y^{\prime}\right)\right)^{2}+\left(\frac{1}{2}\left(y+y^{\prime}\right)\right)^{2}} \\
& \leq \sqrt{\left(x+\frac{\sqrt{3}}{2} y\right)^{2}+\left(\frac{1}{2} y\right)^{2}}+\sqrt{\left(x^{\prime}+\frac{\sqrt{3}}{2} y^{\prime}\right)^{2}+\left(\frac{1}{2} y^{\prime}\right)^{2}} \\
& =\sqrt{x^{2}+x y \sqrt{3}+y^{2}}+\sqrt{x^{\prime 2}+x^{\prime} y^{\prime} \sqrt{3}+y^{\prime 2}} \\
& =f(x, y)+f\left(x^{\prime}, y^{\prime}\right) .
\end{aligned}
$$

Lemma 6. $g\left(h_{1}, w_{2}, h_{2}\right)$ is convex and monotonically increasing in h_{1}, w_{2} and decreasing in h_{2}.

Proof. Note that

$$
\frac{\sqrt{3}}{2}<\frac{\partial f}{\partial x}=\frac{2 x+\sqrt{3} y}{2 f(x, y)}<1
$$

and

$$
\frac{\sqrt{3}}{2}<\frac{\partial f}{\partial y}=\frac{\sqrt{3} x+2 y}{2 f(x, y)}<1 .
$$

It follows that

$$
\frac{\partial g}{\partial h_{1}}>0, \quad \frac{\partial g}{\partial w_{2}}>0, \quad \frac{\partial g}{\partial h_{2}}<0
$$

Moreover, by Lemma 7 we have

$$
\begin{aligned}
g\left(\frac{h_{1}+h_{1}^{\prime}}{2}, \frac{w_{2}+w_{2}^{\prime}}{2}, \frac{h_{2}+h_{2}^{\prime}}{2}\right)= & f\left(\frac{h_{1}+h_{1}^{\prime}+h_{2}+h_{2}^{\prime}}{2}, 1+\frac{w_{2}+w_{2}^{\prime}}{2}\right) \\
& +f\left(\frac{h_{1}+h_{1}^{\prime}}{2}, \frac{w_{2}+w_{2}^{\prime}}{2}\right) \\
& -1-\frac{h_{2}+h_{2}^{\prime}}{2}-\frac{h_{1}+h_{1}^{\prime}}{2} \sqrt{3}-\frac{w_{2}+w_{2}^{\prime}}{2} \sqrt{3} \\
\leq & f\left(\frac{h_{1}+h_{2}}{2}, \frac{1+w_{2}}{2}\right)+f\left(\frac{h_{1}^{\prime}+h_{2}^{\prime}}{2}, \frac{1+w_{2}^{\prime}}{2}\right) \\
& +f\left(\frac{h_{1}}{2}, \frac{w_{2}}{2}\right)+f\left(\frac{h_{1}^{\prime}}{2}, \frac{w_{2}^{\prime}}{2}\right) \\
& -\frac{1}{2}\left(1-h_{2}-h_{1} \sqrt{3}-w_{2} \sqrt{3}\right) \\
& -\frac{1}{2}\left(1-h_{2}^{\prime}-h_{1}^{\prime} \sqrt{3}-w_{2}^{\prime} \sqrt{3}\right) \\
= & \frac{1}{2}\left(g\left(h_{1}, w_{2}, h_{2}\right)+g\left(h_{1}^{\prime}, w_{2}^{\prime}, h_{2}^{\prime}\right)\right) .
\end{aligned}
$$

This proves the convexity of $g\left(h_{1}, w_{2}, h_{2}\right)$.
Now we can calculate the probability of the event that T_{2} is minimal. The space of the event is $E_{2}=\iiint_{\omega} d h_{1} d w_{2} d h_{2}$ where ω is bounded by $h_{1}=0, w_{1}=0, h_{2}=1$ and the surface $g\left(h_{1}, w_{2}, h_{2}\right)=0$ by Lemma 8 . Taking cylindrical coordinates, let $h_{1}=r \cos \theta, \quad w_{2}=r \sin \theta$. Hence,

$$
E_{2}=\iiint_{\omega} d h_{2}(r d r) d \theta
$$

Since we have proved that $g\left(h_{1}, w_{2}, h_{2}\right)$ is convex and monotonically decreasing in h_{2}, the interval of integration with respect to h_{2} is from $h_{2}^{*}(\theta, r)$ to 1 where $h_{2}^{*}(\theta, r)$ is the root of $g\left(h_{1}, w_{2}, h_{2}\right)=g\left(\theta, r, h_{2}\right)=0$. Put

$$
p(\theta)=\cos \theta+\sin \theta, \quad q(\theta)=\sqrt{1+\sqrt{3} \cos \theta \sin \theta}
$$

It is easily deduced from (2) that

$$
\begin{aligned}
h_{2}^{*}(\theta, r) & =\frac{(r \cos \theta)^{2}+(1+r \sin \theta)^{2}+\sqrt{3} r \cos \theta(1+r \sin \theta)-(1+\sqrt{3} r p(\theta)-r q(\theta))^{2}}{2(1+\sqrt{3} r p(\theta)-r q(\theta))-2 r \cos \theta-\sqrt{3}(1+r \sin \theta)} \\
& =\frac{r^{2}\left(2 \sqrt{3} p(\theta) q(\theta)-3 p^{2}(\theta)\right)+r((2-2 \sqrt{3}) \sin \theta-\sqrt{3} \cos \theta+2 q(\theta))}{r(\sqrt{3} \sin \theta+(2 \sqrt{3}-2) \cos \theta-2 q(\theta))+2-\sqrt{3}} .
\end{aligned}
$$

Furthermore, the interval of integration with respect to r is from 0 to $r^{*}(\theta)$ where $r^{*}(\theta)$ is the positive root of the equation $h_{2}^{*}(\theta, r)=1$, i.e., the quadratic equation

$$
\begin{equation*}
r^{2}\left(2 \sqrt{3} p(\theta) q(\theta)-3 p^{2}(\theta)\right)+r((2-3 \sqrt{3}) p(\theta)+4 q(\theta))-2+\sqrt{3}=0 . \tag{3}
\end{equation*}
$$

Finally, the interval of integration with respect to θ is clearly from 0 to $\pi / 2$. Due to the symmetry of $p(\theta), q(\theta)$ with respect to θ, equation (3) is also symmetric. Its root have extremes at $\theta=0$ and $\theta=\pi / 4$. Hence, it is easy to obtain

$$
\min r^{*}(\theta)=r^{*}\left(\frac{\pi}{4}\right)=0.241, \quad \max r^{*}(\theta)=r^{*}(0)=0.286
$$

Since $g\left(\theta, r, h_{2}\right)$ is convex, we obtain the bounds of E_{2} as

$$
\begin{aligned}
0.0152 & =\frac{1}{3} \cdot \frac{\pi\left(\min r^{*}\right)^{2}}{4}=\int_{0}^{\pi / 2} \int_{0}^{\min r^{*}(\theta)} \int_{0}^{1} d h_{2}(r d r) d \theta \\
& <E_{2} \\
& <\int_{0}^{\pi / 2} \int_{0}^{\max r^{*}(\theta)} \int_{0}^{1} d h_{2}(r d r) d \theta=\frac{\pi\left(\max r^{*}\right)^{2}}{4}=0.0642 .
\end{aligned}
$$

Using a mathematical software like Maple or Mathematica we get the accurate value of this integral:

$$
E_{2}=\int_{0}^{\pi / 2} \int_{0}^{r^{*}(\theta)} \int_{h_{2}^{*}(\theta, r)}^{1} d h_{2}(r d r) d \theta=0.0241
$$

Hence the probability that T_{2} is minimal is $E_{2} / E=0.0241 / 0.75=0.0321$.
Theorem 4. The probability of

$$
S M T(R)=S M T\left(R_{1} \cup R_{2}\right)=S M T\left(R_{1}\right) \bigcup S M T\left(R_{2}\right)
$$

is $\left(1-E_{2} / E\right)=0.9679$.

References:

[1] E.J.Cockayne, On the efficiency of the algorithm for Steiner minimal trees, SIAM J.Appl. Math., 18(1970), pp.150-159.
[2] E.N.Gilbert and H.O.Pollak, Steiner minimal trees, SIAM J. Appl. Math., 16(1968), pp.1-29.
[3] F.K.Hwang anf J.F.Weng, The shortest network under a given topology, J. of Algorithms, 13(1992), 468-488.
[4] Z.A.Melzak, On the problem of Steiner, Canad. Math. Bull., 4(1961), pp. 143-148.
[5] J.H.Rubinstein and D.A.Thomas, A variational approach to the Steiner network problem, Ann. Oper. Res. 33(1991), 481-499.
[6] J.F.Weng, Variational approach and Steiner minimal trees on four points, Discrete Math., 132(1994), 349-362.

[^0]: * School of Information Science and Technology, The Flinders University of South Australia, SA 5042
 ** Department of Mathematics, The University of Melbourne, VIC 3052, supported by a grant from the Australian Research Council

