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Abstract 

Let be the random graph with fixed p 1. A 
strong matching S in Gn,p is a set of {el, e2, ... I em} 
such that no other of the connects an end-vertex of with 
an end-vertex of ej, ei ej. We show in this paper, that there exist 
positive constants Cl and C2 such that, with probability tending to 1 as 
n --+ 00, the minimum size of a maximal strong in Gn,p lies 
between 1/21ogdn c1logd1ogdn and logdn + c21ogdlogdn where 
d 1/(1 p). 

Let denote the random graph on n vertices with edge probability p fixed, 
o < p 1. Throughout this paper, we set d 1/(1 p). By the expression: 
"almost always", we mean: with probability tending to 1 as n --+ 00. 

A strong matching of Gn,p is set {ell .. ,em} of vertex-disjoint edges such that 
no other edge of the graph connects an end-vertex of ei with an end-vertex of ej, 
ii-j. 
In [2] we proved that, almost always, the maximum size of a strong matching in Gn,p 
achieves only a finite number of values. More precisely, we established the following 
theorem. 

Theorem 1 There exist positive constants Cl and C2 depending only on p and not 
on n I such that: 

1) Almost always, Gn,p contains a strong matching of size m for each m satisfying 
m :::; logdn - ~ logd1ogdn - Cl' 

2) Almost always, Gn,p does not contain a strong matching of size m for each m 

satisfying m ~ logd n ~ logd logd n + C2. 
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The purpose of this paper is to evaluate the minimum size of a maximal strong 
matching in Gn .p . We shall prove the following theorem. 

Theorem 2 There exist positive constants Cl) C2, 

and not on n, such that 
and C4 depending only on p 

1) Almost always} Gn,p has a maximal strong matching of size m for each m satisfying 
1/21ogdn + c31ogdlogdn m::; logdn - ~ logd1ogdn Cl 

2) Almost always} 
fying m < 1/21ogd n 

has no maximal 
c410gd logd n or m 

size m for each m satis­
logd logd n + C2' 

We shall make use of the following lemma the tail of the binomial distri-
bution, which can be deduced from Chernoff bounds. 

Lemma 1 Let Sn,p denote the binomial random variable with parameters nand p. 
Then} for any E 0 sufficiently small} we have 

P(ISn,p - pnl ~ Epn) 

2 Proof of 2 

Let Xm denote the number of maximal 
Clearly, we have 

E(Xm) = ( n ) ( 2m 
2m 2, ... ) 

m contained in 

where 7T' is the probability that any fixed UJ.(:!ov"'.LUiJl)':, of size m is a maximal 
matching in Gn,p' 

Let S be a fixed strong matching of size m. We denote N(S) the set of vertices 
which are not adjacent to any vertex of S. one can easily verify that S is 
maximal if and only if N(S) is either empty or an set. 
Moreover, we observe that IN(S)I is a binomial random variable with parameters 
n - 2m and (1 _ p)2m. 

2.1 The case m < ~ logd n - a logd logd n 

We need to prove here that, if m < ~ logdn alogd1ogdn, where a is a positive 
constant which will be specified later, then E(Xm) tends to 0 as n -t 00. 

In this case, the expectation of IN(S)I satisfies 

E(IN(S)I) (n - 2m)(1 - p)2m ~ (logdn?a - 0(1). 

Let A and B denote respectively the events "N(S) is stable" and 
{(I - E)(logdn)2a S; IN(S)I S; n}. Clearly, we have 
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7r :::; Pr[Gn,p contains S](Pr[A/B] + Pr[BC]). (3) 

By Lemma 1 and relation (2), we have, for any E 0 sufficiently small 

(4) 

On the other hand 

Pr[A/B] Pr[U is stable] Pr[N(S) U] (5) 

where the sum is taken over all subsets U such that 

(1 - E)(1ogd n )2a lUI n. 

If U is a fixed subset of vertices with cardinality k then 

( )
k(k-1) 

Pr[U is stable) 1 - P :I • 

Thus, for sufficiently large n and for any k (1 €)(1ogd n)2a, we have 

2 

Pr[U is stable] :::; exp{ -~(logd n )2CX}. 

Using (5) together with the last inequality, we get, for sufficiently large n 

E2 

Pr[A/B] :::; exp{ -3(logd n)2CX}. (6) 

From (3), (4) and (6), we obtain 

(7) 

and thus 

E(Xm) ::; 2- exp{ --(logdn)2CX}. 
n2m (P(l _ p)2(m-l))m €2 

m! 2 3 

Finally 

Therefore, if a > 1 then E(Xm) = 0(1), and Markov's inequality concludes the proof 
of this part. 
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2.2 'l'he case 1/21ogd n + ,B logd logd n ::; m logd n-
~ logd logd n - cl 

By using Chebyshev's inequality we shall prove here that, almost always, Gn,p con­
tains a maximal strong matching of size m for each m satisfying the above inequali­
ties. 
Let Mm denote the number of strong matchings of order m. Let S be any fixed 
strong matching of size m. Clearly, 

(8) 

As IN(S)I has a bimomial distribution, we have 

Pr[lN(S)1 = 0) (1 _ (1 p) 2m ) n-2m 

exp{ -(1 _ p)2m-logd n}. 

Therefore, for any constant f3 > 0, we get 

Pr[lN(S)1 = 0) = 1 0(1). 

On the other hand, since E(X!) :::; E(M!), we obtain 

E(M:n) 
E2(Mm) (1 + 0(1)). 

E(X2 ) 
Thus, E2(X:) tends also to 1 

as n ---t 00. 

Finally, the case m > logd n - ~ logd logd n + C2 follows imediately from Theorem 1. 
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