The Minimum Size of a Maximal Strong Matching in a Random Graph

A. El Maftouhi

Laboratoire de Recherche en Informatique. Université de Paris Sud, Centre d'Orsay. Bât. 490, 91405 Orsay Cedex, FRANCE.

Abstract

Let $G_{n,p}$ be the random graph with fixed edge probability p, 0 . Astrong matching <math>S in $G_{n,p}$ is a set of vertex-disjoint edges $\{e_1, e_2, \ldots, e_m\}$ such that no other edge of the graph connects an end-vertex of e_i with an end-vertex of e_j , $e_i \neq e_j$. We show in this paper, that there exist positive constants c_1 and c_2 such that, with probability tending to 1 as $n \to \infty$, the minimum size of a maximal strong matching in $G_{n,p}$ lies between $1/2\log_d n - c_1\log_d\log_d n$ and $1/2\log_d n + c_2\log_d\log_d n$ where d = 1/(1-p).

1 Introduction

Let $G_{n,p}$ denote the random graph on n vertices with edge probability p fixed, 0 . Throughout this paper, we set <math>d = 1/(1-p). By the expression: "almost always", we mean: with probability tending to 1 as $n \to \infty$.

A strong matching of $G_{n,p}$ is a set $\{e_1, e_2, \ldots, e_m\}$ of vertex-disjoint edges such that no other edge of the graph connects an end-vertex of e_i with an end-vertex of e_j , $i \neq j$.

In [2] we proved that, almost always, the maximum size of a strong matching in $G_{n,p}$ achieves only a finite number of values. More precisely, we established the following theorem.

Theorem 1 There exist positive constants c_1 and c_2 depending only on p and not on n, such that:

1) Almost always, $G_{n,p}$ contains a strong matching of size m for each m satisfying $m \leq \log_d n - \frac{1}{2} \log_d \log_d n - c_1$.

2) Almost always, $G_{n,p}$ does not contain a strong matching of size m for each m satisfying $m \ge \log_d n - \frac{1}{2} \log_d \log_d n + c_2$.

Australasian Journal of Combinatorics 12(1995), pp.77-80

The purpose of this paper is to evaluate the minimum size of a maximal strong matching in $G_{n,p}$. We shall prove the following theorem.

Theorem 2 There exist positive constants c_1 , c_2 , c_3 and c_4 depending only on p and not on n, such that :

1) Almost always, $G_{n,p}$ has a maximal strong matching of size m for each m satisfying $1/2\log_d n + c_3\log_d \log_d n \le m \le \log_d n - \frac{1}{2}\log_d \log_d n - c_1$.

2) Almost always, $G_{n,p}$ has no maximal strong matching of size m for each m satisfying $m < 1/2 \log_d n - c_4 \log_d \log_d n$ or $m \ge \log_d n - \frac{1}{2} \log_d \log_d n + c_2$.

We shall make use of the following lemma concerning the tail of the binomial distribution, which can be deduced from Chernoff bounds.

Lemma 1 Let $S_{n,p}$ denote the binomial random variable with parameters n and p. Then, for any $\epsilon > 0$ sufficiently small, we have

$$P(|S_{n,p} - pn| \ge \epsilon pn) < 2e^{-\epsilon^2 pn/3}.$$

2 Proof of Theorem 2

Let X_m denote the number of maximal strong matchings of size m contained in $G_{n,p}$. Clearly, we have

$$E(X_m) = \binom{n}{2m} \binom{2m}{2,\ldots,2} \frac{1}{m!} \pi \sim \frac{n^{2m}}{m!2^m} \pi$$
(1)

where π is the probability that any fixed matching of size m is a maximal strong matching in $G_{n,p}$.

Let S be a fixed strong matching of size m. We denote by N(S) the set of vertices which are not adjacent to any vertex of S. Then, one can easily verify that S is maximal if and only if N(S) is either empty or an independent set.

Moreover, we observe that |N(S)| is a binomial random variable with parameters n - 2m and $(1-p)^{2m}$.

2.1 The case $m < \frac{1}{2} \log_d n - \alpha \log_d \log_d n$

We need to prove here that, if $m < \frac{1}{2}\log_d n - \alpha \log_d \log_d n$, where α is a positive constant which will be specified later, then $E(X_m)$ tends to 0 as $n \to \infty$.

In this case, the expectation of |N(S)| satisfies

$$E(|N(S)|) = (n-2m)(1-p)^{2m} \ge (\log_d n)^{2\alpha} - o(1).$$
(2)

Let \mathcal{A} and \mathcal{B} denote respectively the events "N(S) is stable" and $\{(1-\epsilon)(\log_d n)^{2\alpha} \leq |N(S)| \leq n\}$. Clearly, we have

$$\pi \leq \Pr[G_{n,p} \text{ contains } S](\Pr[\mathcal{A}/\mathcal{B}] + \Pr[\mathcal{B}^c]).$$
(3)

By Lemma 1 and relation (2), we have, for any $\epsilon > 0$ sufficiently small

$$\Pr[\mathcal{B}^c] < \exp\{-\frac{\epsilon^2}{3}(\log_d n)^{2\alpha}\}.$$
(4)

On the other hand

$$\Pr[\mathcal{A}/\mathcal{B}] = \sum \Pr[U \text{ is stable }] \Pr[N(S) = U]$$
(5)

where the sum is taken over all subsets U such that

$$(1-\epsilon)(\log_d n)^{2lpha} \leq |U| \leq n.$$

If U is a fixed subset of vertices with cardinality k then

$$\Pr[U \text{ is stable }] = (1-p)^{\frac{k(k-1)}{2}}.$$

Thus, for sufficiently large n and for any $k \ge (1-\epsilon)(\log_d n)^{2\alpha}$, we have

$$\Pr[U \ is \ stable \] \leq \exp\{-rac{\epsilon^2}{3}(\log_d n)^{2lpha}\}.$$

Using (5) together with the last inequality, we get, for sufficiently large n

$$\Pr[\mathcal{A}/\mathcal{B}] \le \exp\{-\frac{\epsilon^2}{3}(\log_d n)^{2\alpha}\}.$$
(6)

From (3), (4) and (6), we obtain

$$\pi \le 2 \left(p(1-p)^{2(m-1)} \right)^m \exp\{-\frac{\epsilon^2}{3} (\log_d n)^{2\alpha}\},\tag{7}$$

and thus

$$E(X_m) \le 2rac{n^{2m}}{m!} \left(rac{p(1-p)^{2(m-1)}}{2}
ight)^m \exp\{-rac{\epsilon^2}{3}(\log_d n)^{2lpha}\}.$$

Finally

$$E(X_m) \leq (1-p)^{-\frac{1}{2}(\log_d n)^2(1+o(1))+O((\log_d n)^{2\alpha})}.$$

Therefore, if $\alpha > 1$ then $E(X_m) = o(1)$, and Markov's inequality concludes the proof of this part.

2.2 The case $1/2 \log_d n + \beta \log_d \log_d n \le m \le \log_d n - \frac{1}{2} \log_d \log_d n - c_1$

By using Chebyshev's inequality we shall prove here that, almost always, $G_{n,p}$ contains a maximal strong matching of size m for each m satisfying the above inequalities.

Let M_m denote the number of strong matchings of order m. Let S be any fixed strong matching of size m. Clearly,

$$E(X_m) \geq E(M_m) \Pr[|N(S)| = 0].$$
(8)

As |N(S)| has a bimomial distribution, we have

$$\Pr[|N(S)| = 0] = \left(1 - (1 - p)^{2m}\right)^{n - 2m} \\ \sim \exp\{-(1 - p)^{2m - \log_d n}\}.$$

Therefore, for any constant $\beta > 0$, we get

$$\Pr[|N(S)| = 0] = 1 - o(1).$$

On the other hand, since $E(X_m^2) \leq E(M_m^2)$, we obtain

$$1 \leq rac{E(X_m^2)}{E^2(X_m)} \leq rac{E(M_m^2)}{E^2(M_m)}(1+o(1)).$$

In [2] we have shown that $\frac{E(M_m^2)}{E^2(M_m)} \to 1$ as $n \to \infty$. Thus, $\frac{E(X_m^2)}{E^2(X_m)}$ tends also to 1 as $n \to \infty$.

Finally, the case $m > \log_d n - \frac{1}{2} \log_d \log_d n + c_2$ follows imediately from Theorem 1.

References

- [1] B.Bollobás, Random graphs, 1985, Academic press.
- [2] A. El Maftouhi and L. M. Gordonez, The maximum size of a strong matching in a random graph, Australasian Journal of Combinatorics 10 (1994) 97-104.

(Received 9/9/94)