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Abstract

Let Gy, p be the random graph with fixed edge probability p, 0 <p <1. A
strong matching S in G, is a set of vertex-disjoint edges {ej,es,...,en}
such that no other edge of the graph connects an end-vertex of e; with
an end-vertex of e;, e; # e;. We show in this paper, that there exist
positive constants ¢; and ¢, such that, with probability tending to 1 as
n — oo, the minimum size of a maximal strong matching in G, lies
between 1/2logyn — c;logylogyn and 1/2logyn + c; logglogyn where
d=1/(1-p).

1 Introduction

Let G,, denote the random graph on n vertices with edge probability p fixed,
0 < p < 1. Throughout this paper, we set d = 1/(1 — p). By the expression:
“glmost always”, we mean: with probability tending to 1 as n — co.

A strong matching of Gy is a set {e1, e, ..., e} of vertex-disjoint edges such that
no other edge of the graph connects an end-vertex of e; with an end-vertex of e,
In [2] we proved that, almost always, the maximum size of a strong matching in G, p
achieves only a finite nurnber of values. More precisely, we established the following
theorem.

Theorem 1 There exist positive constants ¢; and c; depending only on'p and not
on n, such that:

1) Almost always, G,, contains a strong matching of size m for each m satisfying
m < loggn — 1logylogyn — c1.

2) Almost always, G,, does not contain o strong matching of size m for each m
satisfying m > logyn — 1 log,logyn + c.
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Lhe purpose of this paper 1s to evaluate the minimum size of a maximal strong
matching in G, ,. We shall prove the following theorem.

Theorem 2 There ezist positive constants ¢y, c;, c3 and cq depending only on p
and not on n, such that :

1) Almost always, G, has o mazimal strong matching of size m for each m satisfying
1/2loggn + c3loggloggn < m < logyn — >logylogyn —c;.

2) Almost always, Gnp has no mazimal strong matching of size m for each m satis-
fying m < 1/2logyn — cylogyloggn or m > logyn — logylogyn + .

We shall make use of the following lemma concerning the tail of the binomial distri-
bution, which can be deduced from Chernoff bounds.

Lemma 1 Let S,, denote the binomial random variable with parameters n and p.
Then, for any € > 0 sufficiently small, we have

P(|Snp — pn| > epn) < 2e~<Pn/3,

2 Proof of Theorem 2

Let X,, denote the number of maximal strong matchings of size m contained in Grp.

Clearly, we have
n 2m 1 n?m
B(Xn) = (Zm) (2,‘..,2) H!W - ’m!Z”"ir (1)

where 7 is the probability that any fixed matching of size m is a maximal strong
matching in G, .

Let S be a fixed strong matching of size m. We denote by N(S) the set of vertices
which are not adjacent to any vertex of S. Then, one can easily verify that S is
maximal if and only if N(S) is either empty or an independent set.

Moreover, we observe that |[N(S)| is a binomial random variable with parameters
n—2m and (1 —p)*™.

2.1 The case m < %logdn — alogglogyn

We need to prove here that, if m < tloggn — alogylogyn, where o is a positive
constant which will be specified later, then E(X,,) tends to 0 as n — oo.

In this case, the expectation of |[N(5)]| satisfies
E(IN(S)) = (n = 2m)(1 — p)*™ > (loggn)** — o(1). (2)

Let A and B denote respectively the events “N(S) is stable” and
{(1 — €)(loggn)* < |N(S)| < n}. Clearly, we have
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7 < Pr|Gn, contains S| (Pr[A/B]+ Pr(B). (3)
By Lemma 1 and relation (2), we have, for any € > 0 sufficiently small
&2
PriB] < exp{~——3~(10gd n)**}. (4)

On the other hand

Pr[A/B] = 3 Pr[U is stable |Pr[N(S) = U] (5)
where the sum 1s taken over all subsets U/ such that
(1 = €)(loggn)* < [U| < n.

If U is a fixed subset of vertices with cardinality & then

Pr[U is stable ] = (1 —-p)ﬂkT_u‘

Thus, for sufficiently large n and for any k > (1 — €)(logy n)%*, we have
2
Pr[U is stable | < exp{——%(logd n)**}.
Using (5) together with the last inequality, we get, for sufficiently large n
2
Pr{A/B] < exp{~-(logym)**}. (6)

From (3), (4) and (6), we obtain

2
m €
T<2 (P(l - P)z(m_l)) CXP{"g(lOgdn)za}y (7
and thus
n2m p(l _p)Z(li) m &2 2e
E(X,) < 2—'”:!— (-———-——5———————- exp{—~3—(logdn) 1.
Finally

B(Xn)<(1- p)~ §oBan)* (1+o(1))+0((oga ).

Therefore, if & > 1 then E(X,,) = o(1), and Markov’s inequality concludes the proof
of this part.
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<.« dhe case l/Z2logyn+ Ologyloggn < m < logyn—
%1ogd loggn — ¢;

By using Chebyshev’s inequality we shall prove here that, almost always, G, , con-
tains a maximal strong matching of size m for each m satisfying the above inequali-
ties.

Let M,, denote the number of strong matchings of order m. Let S be any fixed
strong matching of size m. Clearly,

E(Xm) 2 E(Mn)Pr(|N(S)|=0]. (8)

As |N(S)| has a bimomial distribution, we have

n-—2m

PrN($)|=0] = (1-(1-p)™)
~ exp{—(1 — p)mleEan},
Therefore, for any constant 8 > 0, we get
Pr[|N(S)| = 0] =1 — o(1).
On the other hand, since E(X2) < E(M?2), we obtain
E(X2) _ B(MZ)

< .
1< E*(X) ~ Ez(Mm)(l +0o(1))
2 2
In [2] we have shown that 52((11‘{41)) — 1 as n — co. Thus, 52(();:)) tends also to 1

as n — o0.

1
Finally, the case m > log,n — 3 logylogyn + ¢, follows imediately from Theorem 1.
O
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