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tor each integer k 2: 3. His graphs are a special case (p = 3) of the following more 
general definition. 

Definition 1 For each odd integer p 2: 3 and k 2: p the graph (k, p )-0 P consists of 
(2k - 4l~J + 3)-cycle C and one path of the length p - 1 for each edge of C J where 
the path joins the ends of the edge. 

For example, the graphs (k, 3)-OP for k 3,4,5 are depicted in the Fig. 1. 

(3,3)-OP: (4,3)-OP: (5,3)-OP: 

Fig. 1 

Plesnik asked whether other outerplanar (k,3)-minimal graphs exist and posed 
the problem of describing all outerplanar (k,3)-minimal graphs. In this paper we 
characterize all outerplanar (k,p)-minimalgraphs for odd p 2:: 3 and k 2: i-¥l- 2. 
Moreover, we prove that there exists no outerplanar (k,p)-minimal graph for even 
p 2: 4 and k 2: f-¥l - 2. For p 3 this solves Plesnik's probleIIl. 

2 Main results 

First, we present some necessary definitions. A planar graph is outerplanar if it can 
be embedded in the plane so that all its vertices lie on the same face; one usually 
chooses this face to be exterior. The edges which determine the exterior face are called 
exterior edges; the remaining edges are interior edges. A walk which starts at the 
vertex VI, ends at the vertex Vn and passes in order through vertices V2, V3, .. ,Vn-I is 
denoted by <VI, V2, . .. , Vn-I, vn>. Accordingly, an edge e = uv is sometimes denoted 
by <U,V>. 

We first deal with outerplanar graphs with no cutvertex. Obviously, any such 
outerplanar graph G on n 2: 3 vertices is hamiltonian and then one can label its 
vertices VI, V2, ... ,Vn , such that <VI, V2, ... ,Vn , VI> is the "exterior" hamiltonian 
cycle. Now, for each interior edge e = ViVj, i < j, define its tolerance t( e) as 
min{J - i-I, n - j +i -I} and each vertex either from the set A = {Vi, Vi+I, ... , Vj}, 

if t(e) = j - i-I or from the set B = {Vi,Vi-I,'" ,Vj}, if t(e) n - j + i-I we 
call tied vertex with the edge e. Similarly, each edge e' = UkUZ, where Uk and u/ are 
tied vertices with the edge e and e' is different from the edge e, is called tied edge 
with the edge e. If j - i-I = n - j + i-I, then all vertices of G will be tied with 
e according to the above definition. In this case it will be advantageous (in proofs) 
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c) t(e') is odd and dG(c, a; e') =I- dG(d, b; el
); Suppose that dG(c, a; e l

) < dG(d, b; e') (see 
Fig. 2 b)). This implies that dG(a,d;e /):::; dG(b,d;e') and dG(a,c;e'):::; dG(b,c;e'). 
Consider the subgraph H = G-<u, v>, where u and v are tied with el and dG(b, u) = 

l ~ J and dG ( a, u) dG ( a, v) r~l. Similarly, as in the previous case, one can 
observe that dH(x, y) :::; k, where both x and yare either tied with e or are not. From 
the existence of the edge e', it follows that dH(x, y) k, where x is tied with e but 
it is not tied with e' and y is not tied with e. Lastly, we show that dH ( x, y) :::; k, 
where x is tied vertex with the edge e' and y is not tied with e. Obviously, each 
such x - y path must contain either or d (or both these vertices). Evidently, 
dG(x, ai <u, v» = dG(x, a) for all x which are tied vertices with e'. Recall that 
dG(a, d; e') :::; dG(b, d; e') and dG(a, C; e') :::; dG(b, C; e'). Now it is immediately clear 
that dH(x,y):::; k for all X,y E H. This contradiction proves the Lemma. 0 

The following Corollary can be proved methods similar to the previous proof. 

Corollary 1 Let G be a minimal outerplanar graph of diameter k with no cutvertex. 
Let G contain an interior edge e with t( e) k 1. Then t( e) must be odd. 0 

Lemma 2 Let G be an outerplanar 2-connected graph with every edge in a p-cycleJ 

where p 3 and is minimal of diameter k - 2. Then G cannot contain any 
interior edge e with t( e) > p - 2. 

Proof. The proof consists of a number of ceses and subcases. To avoid any confusion 
of the reader we first outline the proof. We will consider by way of contradiction that 
there exists an interior edge e with minimum t( e) > p 2. The main strategy in the 
proof is then to consider all cases of the existence of edges which are tied with the 
edge e and to find an edge e' for which diam( G) diam( G - e'), a contradiction. 
Let e = ab be an interior edge of G with minimum t( e) > p - 2. Since each edge of 
G must lie in a p-cycle, an interior edge e' = uv which is tied with e must exist. In 
case that each vertex of G is tied with e, we choose that set A or B (see definition 
of tied vertex) to be the set of tied vertices with e, which contains the vertices u and 
v. From the minimality of t( e), it follows that t( e') :::; p 2 < k 1 and so, from 
Lemma 1 it follows that no interior edge which is tied with e' exists in G. So, each 
tied vertex with e is tied with at most one other interior edge which is tied with e, 
as well. By Corollary 1, t( e') is odd. We shall distinguish two cases. 

a) Either some interior edge e' which is tied with e has t( e') < p 2 or some exterior 
edge which is tied with e is not tied with any other interior edge e' which is tied 
with e. Since each edge must lie in a p-cycle, a shortest a b path P exists on the 
tied vertices with e of the length at most p - 1. It is immediately clear that P must 
contain each interior edge which is tied with e and each exterior edge which is tied 
with no interior edge tied with e. We can assume that dG ( u, a; e') :::; d( v, b; e'). We 
shall distinguish the following subcases. 

(i) dG(u, ai e') < d(v, bi e' ); Let e" = UIVl, where Ul and Vl are tied with e' and 

d(Vl'V) = l~J and d(Ul'U) = d(ul,v) = r~l. Let H = G - e". We claim 
that diam(H) k. It follows from the existence of e' that dH(x,y) :::; k, where 
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bi and there exists no other interior edge which is tied with 
> p - 2, it follows that t( e') = p 2 and the of the P is 

- L This that t( e) ::; 2p 4. Let H G - e'. We claim that 
k. To see let x and y be vertices which tied with Obviously, 

p - 1 < k. If the vertices x and yare not tied with e, then y) ::; k. 
if x is tied with and y is not, then we use the methods of the case b) in the 

Each interior which is tied with e has tolerance to p 2 and each 
exterior which is tied with e is tied with some interior edge which tied with 

well. From these it follows that only certain values are possible for t( e). 
one can observe that t( e) = (p - l)i - 1 for i 2. We distinguish two 

subcases. 

(i) We show that the assertion of this Lemma holds if i = 2 or 3. Firstly, let i = 2 
and let el = ac and e2 cb be two interior edges which are tied with e (see Fig. 3 a) 
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where the case p 7 is depicted). Consider the subgraph H = G - e' , where e' = uv, 
where u and v are tied with el and dG(v,a) dG(u,a) and dG(u,c) lP;2J. 
The fact that the distance dH ( x, y) ::; k for x and y which are (are not) tied with el 

is clear. Similarly, it follows that dH(x, y) k, if x v. And finally, one can easily 
check that dH ( x, y) ::; k, if x v (using the same ideas as above). The case = 3 can 
be handled similarly if we take the edge e' uv, where u and v are tied with el and 
dG(u,a) dG(v,a) ip ;2l and dG(u, c) lP;2J (see Fig. 3b)wherethecasep=5 
is depicted). So, we have proved that no interior edge with the tolerance 2p - 3 and 
3p - 4 exists in G. 

b~-----------:Aa 
e 

c u c 

a) b) 

Fig. 3 

(ii) In this case suppose that i 4. We distinguish between two cases according to 
the value i. 

aa) i 2:: 4, evenj Let <Ck, Ck+l>, k 0,1, ... ,i - 1, be interior edges which are tied 
with e (see Fig. 4 where the case i = 6 and p = 7 is depicted). 

v 

Fig. 4 

Consider the edge e' = uv, where u and v are tied with <Ci, Ci._l> and d(ci.,u) = 
2 2 2 

lP;2J and d(ci._l'v) d(Ci,V) = iP;2l. Let H = G - e'. We claim that diam(H) = 
2 2 

k, which contradicts the minimality of G. Since the edge <Ci, Ci_1 > exists and has 
2 2 

the tolerance p - 2, it follows that dH(x,y)::; k, where x,y =f. v. Now we show that 
dH ( x, v) ::; k for all x from H. Suppose, by way of contradiction, that a vertex x 
exists here, such that dG ( x, v) ::; k < dH ( x, v). We distinguish two cases. 
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Case 1. x is not tied with e; But dG( a, v) da( a, Vi e') and dG(b, da(b, v; e') 
and this case cannot occur. 

Case 2. x is tied with If x is tied with one of the <Ck, Ck+1 k 0,1, 
then v) = dG(x, v; If is tied with then since the tolerance of 

2 k, it follows that dG(x, Vj suppose that x is 

<C!, C!+1>, l + 1,. . 1; say <Ck, Ck+l Since 
t«Ck,Ck+l» is odd, we can assume that x) da(Ck,X). From this fact a 

such that it is tied with <Ck,Ck+1> and dG(Ck+1,Y) dG(Ck,y) 
,y). Since I v) 1, the length of the 

shortest x--v must be k and it must contain the . Let 

be vertex tied with 

Since diam( G) k, shortest x z and y 
It be checked that and 

other hand, they must contain the vertices Ck+1, Ck+2, 
From it follows that dG ( x, z) 
and so dG(x, Vi e') 

bb) i 5, odd; This case can be handled 'H.L!.UHULjI nT'~'U1t,1"" case if we take the 
e' uv, which is tied with the 

The proof is 0 

Now we consider with a cutvertex. For any 
subset 
y 

LHJ1",LU.~IU by the set H is denoted by (H) If and 

A and 
IS a 

rp(,nprh1rp!!u then the connecting of the 
(A U B) \ ((A n B) U {UCi }), where Ci 

result. 

Theorem 1 There exists no minimal graph of diameter k which is 2-edge-connected 
and has a cutvertex. 

Suppose for a contradiction that G is a minimal 
2-edge-connected and contains a cutvertex w. 

5 

of diameter k which is 

Let Bi be a connected component of G w and B~ ((V(G - w)) V(BD). Now 
let (V(G) - V(B~)) and B2 (V(G) - V(BD). Since G does not contain any 
bridge, each of its edges lies in a cycle. And since w isa cutvertex, a cycle C1 which 
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contains W exists in B1 and a cycle O2 which contains W exists in Suppose that 
0 1 and G2 are minimal such cycles (see Fig. 5). 
From the minimality of Gi , i = 1,2, it follows that no other edge exists between the 
vertices of 0 1 and O2 ) respectively. Consider the edges <Ul) vl>E 0 1 and <U2) 

O2 ) where d(UilW) = d(v,;,w) = ll~;lJ if 10il is odd or d(Ui,W) -1 = d(Vi'W) 
10il is even, for i 1,2. We distinguish two cases. 
a) An x - y path of the length at most k which does not contain the edge <Ul, VI> 

exists in BI for all X, y E B l . Obviously, deleting <Ul, VI> does not affect the lengths 
of the shortest x - y paths, where x E B2 and y E B2 . From the minimality of 0 1 , 

it follows that d(Ul,W) = d(Ul,W;<Ul,Vl» d(VI,W) = d(VI,Wj<Ul,Vl» if 1011 
is odd, and d(UI,W) -1 d(Ul,Wj<Ul,VI» -1 = d(VI,W) = d(VI,W;<Ut,Vl» if 
IGll is even. From these facts, for x E B1 and y E B2 the shortest x y path can be 
chosen such that it contains either one of the vertices ul, VI or neither of them and 
so, d(x,y) = d(x,y; <Ul,VI». But this contradicts the minimality of G. 

b) Vertices x, y exist in Bll such that each x y path of the length at most k contains 
the edge <U1,VI>' Consider the shortest x -wand y W paths PI, respectively. 
By the methods similar to those used in case it can be observed that PI and P2 

can be chosen such that they contain at most one of the vertices Ul and U2' 

P PI (Jj P2 does not contain the edge <Ul, VI> and so the length of P must be more 
than k. From this, the length of PI or P2 must be more than ~. Since diam( G) k, 
the length of an x - W shortest path must be less than ~ for all x E Recall that 
each of these shortest paths can be chosen such that it does not contain the 
<U2, V2>' SO, for B2) a) holds. 0 

Note that no assertion similar to Theorem 1 holds for minimal graphs with a 
bridge, because one can see that any graph obtained from the graph (k, p )-0 P, where 
p 3 and k ~ P, by adding a new vertex for each vertex of (k,p)-OP and the edge 
connecting these two vertices is a minimal graph, as welL On the other hand, it 
can be proved (using methods similar to those used in the previous proof) that any 
minimal graph of given diameter cannot contain two blocks which contain at least 
three vertices. Now we improve Lemma 2. 

Lemma 3 Let G be an -outerplanar graph with every edge in a p-cycleJ where p 3 
and is minimal of diameter k ~ - 2. Then the tolerance each of its interior 
edges is equal to p - 2. 

Proof. Suppose that G has an interior edge e, with tolerance different from p - 2. 
From Theorem 1, it follows that G cannot contain any cutvertex. Further, it follows 
from the previous Lemmas that each interior edge of G has tolerance at most p - 2, 
and each exterior edge is tied with at most one interior edge. Thus, the tolerance 
t( e) < p 2. In the case that each vertex of G is tied with e we obtain diam( G) k, 
which is impossible. Since each exterior edge tied with e must lie in a p-cycle and 
since t( e) < p - 2, a cycle 0, which consists of all interior edges and all exterior 
edges which are tied with no interior edge has length at most p - 1. Estimate the 
upper bound of diam( G). Let x, y be vertices of the maximum distance in G. If 
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x and y lie on 0, then d(x,y) lP;lJ < k. If lies on C and y does not, then 
d( x, y) + k. Finally, if neither x nor y lies on C, then we have: 

a) if p is odd: 

d(x,y) +2 2 

b) if p even; then 1, the tolerance of each interior is less than 
p and so 

d(x,y) + + 

In all diam( G) k, which a contradiction. 

We to prove the main results of the paper. The 
from the Lemma. 

.·ne:Oflem 2 There exists no p )-rninirnal 1'l1l.1·P'r'Illn.1'l.n.r 
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p 4 and 

each n?l.t.P'Y·7Jif1.7J.rr.T (k, p )-minimal 

where 3, 
and diam( G) least one interior If 

an exterior e is tied with no interior of the cycle, which 
~,VLJlOL"V" of all interior and all tied with no interior 
is p. From diam( G) Now we have that 
G consists of cycle C by all interior and one path of the length p 1 
for each of C, where the path the ends of the edge. Consequently, if C has 
more than 2k - 4l~J + 3 then either is not minimal or diam(G) > k; if C 
has fewer than 2k - 4 then either G is not minimal or diam( G) k. 

it can be easily checked that the cycle C (of all interior edges) of the graph 
(k,p)-OP has 2k 4l~J + 3 the graph (k,p)-OP is minimal of diameter k 
and each its edge lies in p-cycle. So, G is to (k,p)-OP. The Theorem 
is proved. 0 
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The following problem arises. 
Problem. Describe all outerplanar (k, p )-minimal graphs, for p 2:: 3 and k - 2. 

This problem seems to be more difficult. For example, if k 2:: 4, then it can be 
verified that all graphs (k, l)-OP, where I 3,5, ... ,t, where k 1 ~ t ~ k, t is 
odd, have each edge in a 2k + I-cycle and are minimal of diameter k. Moreover, a 
2k + I-cycle is such graph, as well. 
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