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Abstract

We characterize outerplanar graphs with every edge in a p-cycle for
odd p > 3, which are minimal of diameter k > [%’3] — 2. For p =31t
answers the problem posed by Plesnik in [10]. Moreover, we show that
there exists no outerplanar graph with every edge in a p-cycle for even
p > 4, which is minimal of diameter k > [3] — 2.

1 Introduction and known results

Given a graph G, let V(G) and E(G) denote its vertex-set and edge-set, respectively.
The distance of two vertices u and v in the graph G is denoted by de(u,v), or simply
d(u,v) if it does not cause any confusion. The diameter of G is denoted by diam(G).
A graph G with diam(G) = k is called a minimal graph of diameter k (or diameter-
critical graph) iff diam(G — €) > k for every edge e € E(G). These graphs have
been studied by several authors, see for example [1, 4, 5, 6, 7, 8, 10] and certain
parts of the surveys [2] and [3]. The characterization of these graphs seems to be a
difficult problem and has not been solved completely yet. However, there are some
partial results. For example, those minimal graphs of diameter 2 which are planar
and contain no 3-cycle are completely described in [8]. Moreover, one can analogously
define minimal tournaments, which are characterized in [9].

In contrast with [8], minimal graphs of diameter k with every edge in a 3-cycle
have been studied in [10]. For notational convenience, if a minimal graph of diameter
k has every edge in a p-cycle, we call it (k, p)-minimal graph. Following this notation,
Plesnik [10] presents infinite classes of planar (k,3)-minimal graphs for every k > 2.
Moreover, he deals with outerplanar (k, 3)-minimal graphs, proves that no outerpla-
nar (2,3)-minimal graph exists and describes one outerplanar (k,3)-minimal graph
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for each integer k£ =~ 5. His graphs are a special case (p = 3) of the following more
general definition.

Definition 1 For each odd integer p > 3 and k > p the graph (k,p)-OP consists of
(2k — 4[%] + 3)-cycle C and one path of the length p — 1 for each edge of C, where
the path joins the ends of the edge.

For example, the graphs (k,3)-OP for k = 3,4,5 are depicted in the Fig. 1.
(3,3)-0P: (4,3)-0P: (5,3)-0P:

Fig. 1

Plesnik asked whether other outerplanar (k,3)-minimal graphs exist and posed
the problem of describing all outerplanar (k,3)-minimal graphs. In this paper we
characterize all outerplanar (k,p)-minimal graphs for odd p > 3 and k > [%‘31 - 2.
Moreover, we prove that there exists no outerplanar (k, p)-minimal graph for even
p>4and k> ['37"'] - 2. For p = 3 this solves Plesnik’s problem.

2 Main results

First, we present some necessary definitions. A planar graph is outerplanar if it can
be embedded in the plane so that all its vertices lie on the same face; one usually
chooses this face to be exterior. The edges which determine the exterior face are called
ezterior edges; the remaining edges are interior edges. A walk which starts at the

vertex vy, ends at the vertex v, and passes in order through vertices V2, V3, ..., Up_1 18
denoted by <wy,vs,...,Vn-1,v.>. Accordingly, an edge e = uv is sometimes denoted
by <u,v>.

We first deal with outerplanar graphs with no cutvertex. Obviously, any such
outerplanar graph G on n > 3 vertices is hamiltonian and then one can label its

vertices v1,v,...,vn, such that <vj,vs,...,v,,v;> is the “exterior” hamiltonian
cycle. Now, for each interior edge e = wvw;, i < j, define its tolerance t(e) as
min{j—i—1,n—j+1i—1} and each vertex either from the set A = {vi,vig, .5}

if t(e) = 7 —i—1 or from the set B = {vi,vicy, .. v} ifte) =n—j+i—1 we
call tied vertez with the edge e. Similarly, each edge e’ = uruy, where ug and u; are
tied vertices with the edge e and ¢’ is different from the edge e, is called tied edge
with the edge e. If j —7— 1 =n — j +4 — 1, then all vertices of @ will be tied with
e according to the above definition. In this case it will be advantageous (in proofs)
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to choose only one of the sets A and B to be the set of tied vertices with e. This
restriction will not cause any loss of generality.

For notational convenience, if a path of the length de(u,v) from u to v exists in G
such that it does not contain an edge e, we denote the distance u and v by dg(u,v;e).
We are ready to state and prove the following auxiliary results.

Lemma 1 Let G be a minimal outerplanar graph of diameter k with no cutvertez.
Let (3 contain an interior edge e with t(e) < k — 1. Then G cannot contain any
interior edge tied with the edge e.

Proof. Suppose for a contradiction that e = cd is an interior edge with t(e) < &k — 1
and ¢ = ab is an interior edge which is tied with e with minimum t(e’). In case
that each vertex of G is tied with e, we choose that set 4 or B (see definition of tied
vertex) to be the set of tied vertices with e, which contains the vertices a and b. We
shall distinguish the following three cases.

a) t(e') is even; Consider the subgraph H = G—<u,v>, where the vertices u and v
are tied with the edge ¢ and d{a,u) = d(b,v) = 5(—;’;)— and d(a,v) = d(b,u) = E(—SQ +1.
We show that diam(H) = k, which contradicts the minimality of 7. Since the edge
e exists, dy(z,y) < k, where 2,y are not tied vertices with the edge €'. Similarly,
one can easily see that dy(z,y) < t(e')+ 1 < k, where z and y are tied vertices with
the edge e'. Since t(e') is even, du(z,a) = dg(x,0) and du(z,b) = dg(z, b) for all z
which are tied with the edge /. This implies that dy(z,y) < k for all z which are
tied with ¢ and all y which are not tied with €', and this is the last contradiction.

b) t(e') is odd and dglc, a;¢€') = de(d, b; €’) (see Fig. 2 a)); It follows from this that
da(e,bie’) < da(c,a;€¢’) + 1 and da(d,a;€') < dg(d,bje’) + 1. Let H = G — €.
We claim that diam(H) = k. From the existence of the edge e, it follows that
der(z,y) < k, where z and y are not tied with e. The fact that t(e) < k — 1 implies
that dy(z,y) < k, where z and y are tied with e. Finally, it can be verified, using
the above lower bounds, that each shortest z —y path which contains the edge e’ can
be replaced by a « —y path of the same length such that it does not contain the edge
e/, where z is tied with e and y is not tied with e. Thus, du(z,y) < k, which proves
the claim and so this case cannot occur.

c a c
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d d
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Fig. 2
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c)t(€')1s odd and dg(c, a; €') # dg(d, b; €'); Suppose that dg(c, a; €') < dg(d, b; ') (see
Fig. 2 b)). This implies that dg(a,d;e’) < dg(b,d;e’) and dg(a, c; e') < dg(b, c;e).
Consider the subgraph H = G—<u,v>, where u and v are tied with ¢’ and de(b,u) =
LE%QJ and dg(a,u) = dg(a,v) = [ﬂ;—I)] Similarly, as in the previous case, one can
observe that dg(z,y) < k, where both z and y are either tied with e or are not. From
the existence of the edge €, it follows that dg(z,y) < k, where z is tied with e but
it is not tied with e’ and y is not tied with e. Lastly, we show that du(z,y) < k,
where z is a tied vertex with the edge ¢’ and y is not tied with e. Obviously, each
such « — y path must contain either ¢ or d (or both these vertices). Evidently,
de(z,a; <u,v>) = dg(z,a) for all = which are tied vertices with e/. Recall that
dg(a,d;e’) < dg(b,d;e’) and de(a,c;e’) < dg(b,c;e’). Now it is immediately clear
that dg(z,y) < k for all z,y € H. This contradiction proves the Lemma. O

The following Corollary can be proved using methods similar to the previous proof.

Corollary 1 Let G be a minimal outerplanar graph of diameter k with no cutvertes.
Let G contain an interior edge e with t(e) < k — 1. Then t(e) must be odd. O

Lemma 2 Let G be an outerplanar 2-connected graph with every edge in a p-cycle,
where p > 3 and is minimal of diameter k > [2] — 2. Then G cannot contain any
interior edge e with t(e) > p — 2.

Proof. The proof consists of a number of ceses and subcases. To avoid any confusion
of the reader we first outline the proof. We will consider by way of contradiction that
there exists an interior edge e with minimum ¢(e) > p — 2. The main strategy in the
proof is then to consider all cases of the existence of edges which are tied with the
edge e and to find an edge ¢’ for which diam(G) = diam(G — ¢'), a contradiction.
Let e = ab be an interior edge of G with minimum #(e) > p — 2. Since each edge of
G must lie in a p-cycle, an interior edge e’ = wv which is tied with e must exist. In
case that each vertex of G is tied with e, we choose that set A or B (see definition
of tied vertex) to be the set of tied vertices with e, which contains the vertices u and
v. From the minimality of ¢(e), it follows that t(e) < p — 2 < k — 1 and so, from
Lemma 1 it follows that no interior edge which is tied with e’ exists in G. So, each
tied vertex with e is tied with at most one other interior edge which is tied with e,
as well. By Corollary 1, ¢(e’) is odd. We shall distinguish two cases.

a) Either some interior edge e’ which is tied with e has t(e') < p — 2 or some exterior
edge which is tied with e is not tied with any other interior edge e’ which is tied
with e. Since each edge must lie in a p-cycle, a shortest a — b path P exists on the
tied vertices with e of the length at most p — 1. It is immediately clear that P must
contain each interior edge which is tied with e and each exterior edge which is tied
with no interior edge tied with e. We can assume that dg(u, a; e') < d(v,b;e'). We
shall distinguish the following subcases.

(i) de(u,a;€') < d(v,b;e'); Let e’ = uyvy, where u; and v, are tied with e’ and
d(vy,v) = [E%JJ and d(ui,u) = d(u,v) = fﬂg_)] Let H = G — ¢". We claim
that diam(H) = k. It follows from the existence of e’ that du(z,y) < k, where
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both z and y are not tied with €. Similarly, from i(e') < k — 1, it follows that
di(z,y) < k, where z and y are tied with ¢’. Now consider the case when z is
tied with ¢’ and v is not tied with e. From the assumptions of this case, it follows
that dg(u,b;e’) < dg(v,b;€') and de(u,a;¢') < dg(v,e;¢'). Now this case can be
handled as a part of the case ¢) of the proof of Lemma 1. Finally, suppose that =
is tied with e’ and y is tied with e but it is not tied with e’. It is immediately clear
(t(e') is odd) that if z # uq, then dy(z,y) = de(z,y) < k and so we assume that
z = u; and that the edge €' lies on each u; — y path of the length at most k (in
other words it contains the vertex v, as well). In the case when y is tied with no
interior edge which is tied with e, y will have to lie on the path P. It follows that
d(v,y) < |2] and d(u,y) < |E]. Similarly, de(u,v) = de(uwr,v;€") +1 < [£] and
de(ug,u) = de(uy,u;e”) < |E]. By summing these upper bounds we obtain that
each such u; — y path can be replaced by u; — y path of the length at most k, such
that it does not contain the edge e” and so diam(H) = k. Now suppose that y is tied
with f = uyv,, where f is tied with e. Note that ¢(f) < p — 2 and £(f) is odd. Since
de(u1,v) = de(us,v;€”) + 1 and de(ug,u) = dg(uq, u; e”), the distance d(uy,y) = k.
We can assume that dg(v,us;e’) < dg(v,vq;€').

If da(v,uge’) < L—p-%gj, then since dg(ug,v) = [ Z”)] < [p—;lj and since k >
[¥2] — 2, the distance dg(us,y) must be more that |£], which is impossible.

If do(v,us; ') = LE—EEJ) then since the length of P is at most p — 1, the distance
de(u, vy; ") < fgfé-?] and since dg(uq,y) = k, the distance dg(uz,y) > [£]. From this
de(vz,y) < |E]. Recall that de(uy,u; ") = dg(ug,v) < L‘—’;AIJ These bounds enables
us to replace the u; —y path so that it does not contain the edge e and has length
at most k, which is a contradiction.

If de(v,us e’} > ‘i}%J, then dag(u,vq;e’) < Lf—;—gj and we replace the u; — y path
by using the edge f = uqvy, as well.

(i1) da(v, a; ') = d(v,b; €'} and there exists other interior edge f, which is tied with
e. Note that from ¢(f) < p — 2 and from Lemma 1, it follows that ¢’ is not tied with
f. Then we choose the edge f and obtain the case (i).

(iil) dg(u, a; €') = d(v,b; €') and there exists no other interior edge which is tied with
e. From t(e) > p — 2, it follows that t(e') = p — 2 and the length of the path P is
at most p — 1. This implies that t(e) < 2p — 4. Let H = G — ¢'. We claim that
diam(H) = k. To see this, let z and y be vertices which are tied with e. Obviously,
di(z,y) < p—1 < k. If the vertices z and y are not tied with e, then dy(z,y) < k.
Finally, if z is tied with e and y is not, then we use the methods of the case b) in the
proof of Lemma 1.

b) Each interior edge which is tied with e has tolerance equal to p — 2 and each
exterior edge which is tied with e is tied with some interior edge which is tied with
e, as well. From these facts, it follows that only certain values are possible for ¢(e).
Namely, one can observe that t(e) = (p — 1)t — 1 for « > 2. We distinguish two
subcases.

(i) We show that the assertion of this Lemma holds if ¢ = 2 or 3. Firstly, let 1 = 2
and let e; = ac and e, = ¢b be two interior edges which are tied with e (see Fig. 3 a)
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where the case p = 7 is depicted). Consider the subgraph H = G — ¢, where e’ = uv,
where u and v are tied with e; and dg(v,a) = dg(u, a) = [l’lz'ﬂ and dg(u,c) = L’%EJ
The fact that the distance dy(z,y) < k for z and y which are (are not) tied with e
is clear. Similarly, it follows that dpy(z,y) < k, if z # v. And finally, one can easily
check that dy(z,y) < k, if z = v (using the same ideas as above). The case i = 3 can
be handled similarly if we take the edge ¢’ = uv, where u and v are tied with e; and
da(u,a) = dg(v,a) = [252] and de(u,c) = [22] (see Fig. 3 b) where the case p =5
is depicted). So, we have proved that no interior edge with the tolerance 2p — 3 and
3p — 4 exists in G.

N, v,

€2 €1

Fig. 3

(ii) In this case suppose that 7 > 4. We distinguish between two cases according to
the value 3.

aa) 1 > 4, even; Let <cg,cky1>, k = 0,1,...,1 — 1, be interior edges which are tied
with e (see Fig. 4 where the case 7 = 6 and p = 7 is depicted).

\Ibzce e azcol/

(3 (=]

Cq Ca

Fig. 4

Consider the edge ¢’ = uv, where u and v are tied with <ecs,ci_y> and d(c%',u) =
|22%] and d(c‘ L) = d(c. v)=[E2]. Let H =G ~¢. We claim that diam(H) =
k, which contradicts the rmmmahty of G. Since the edge <ei,ci > exists and has

the tolerance p — 2, it follows that dg(z,y) < k, where x,y 7é v. Now we show that
dy(z,v) < k for all z from H. Suppose, by way of contradiction, that a vertex =z
exists here, such that de(z,v) < k < dg(z,v). We distinguish two cases.
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Case 1. z is not tied with e; But dg(a,v) = dg(a,v;€') and da(b,v) = da(b,v;€’)
and so this case cannot occur.

Clase 2. z is tied with e; If z is tied with one of the edges <cp, cx1>, k= 0,1,..., £ -2,
then dg(z,v) = da(z,v; ). If o is tied with <cj,ci_;>, then since the tolerance of
<es,Cig> is p— 2 < k, it follows that dg(z,v; e) < k. Fmally, suppose that z is
tled W1th one of the edges <c, cip1>, | = ;,; +1,. — 1; say <, Cpt+1>>. Since
t(<ck, cr41>) is odd, we can assume that dg(ck+1,a:) < dg(ck,m). From this fact a
vertex y exists here, such that it is tied with <cx, cep1> and de(crt1,y) < de(er,y)
and dg(cr1,2) < de(ces1,y). Since d(;(c- v) = d(,«(c;' v;€') — 1, the length of the
shortest z—v path must be k and it must contain the vertices Cha1, Chy Choly - - . Let
z be a vertex tied with <c; ;,ci ,>, such that (10(61”1, z) = dg(C: 2,z) = [” 7.

Since diam(G) = k, shortest ¢ — z and y—z paths Py, Pz must exist in G respectively.
It can be checked that P, and P, cannot contain the vertices ¢, ck-1,...,¢:. On the
other hand, they must contain the vertices cpi1, crqa, - o 1,b, a, cl,cz,z. 5 Cig
From this, it follows that dg(z, 2) < de(y, 2z) < k. But d(;( Ci_g)V cef) = dg(6%~2,2)+1

and so dg(z,v;e') < k, which contradicts our assumption.

bb) ¢ > 5, odd; This case can be handled similarly to the previous case if we take the
edge ¢ = uv, which is tied with the edge <€l il
The proof is completed. O

Now we consider outerplanar (k,p)-minimal graphs with a cutvertex. For any
subset H of V() an induced subgraph by the set H is denoted by (H). If z — ¢ and
y — c are two paths denoted by A, B, respectively, then the connecting of the paths
A and B, denoted by A® B, is a  —y path (AU B)\ ((4N B)U {UC;}), where C;

is a cycle in AU B. We prove a more general result.

Theorem 1 There ezists no minimal graph of diameter k which is 2-edge-connected
and has a cutvertez.

Proof. Suppose for a contradiction that @ is a minimal graph of diameter k which is
2-edge-connected and contains a cutvertex w.

Fig. 5

Let B! be a connected component of G —w and B} = ((V(G —w))— V(B;)). Now
let B, = (V(G) = V(B})) and By = (V(G) — V(Bj)). Since G does not contain any

bridge, each of its edges lies in a cycle. And since w is a cutvertex, a cycle C; which
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contains w exists 1n 37 and a cycle {3 which contains w exists in B,. Suppose that
C: and C) are minimal such cycles (see Fig. §).

From the minimality of C;, = = 1,2, it follows that no other edge exists between the
vertices of C; and C,, respectively. Consider the edges <uy,v1>€ C; and <uy,vy>€
C2, where d(u;, w) = d(v;,w) = }_L%’—’J if |C;| is odd or d(u;,w) — 1 = d(v;,w) = I_C;_I if
|C;] is even, for + = 1,2. We distinguish two cases.

a) An z — y path of the length at most k£ which does not contain the edge <uy,v;>
exists in B, for all z,y € B;. Obviously, deleting <uy,v;> does not affect the lengths
of the shortest z — y paths, where ¢ € B, and y € B;. From the minimality of Cj,
it follows that d(uy,w) = d(uy, w; <uy,vi>) = d(vi,w) = d(v1, w; <ug,v1>) if |C4]
is odd, and d(ui,w) — 1 = d(uy, w; <ug,v1>) — 1 = d(vy,w) = d(vy, w; <uy,v;>) if
|C1] is even. From these facts, for z € B; and y € B the shortest z — y path can be
chosen such that it contains either one of the vertices u;,v; or neither of them and
so, d(z,y) = d(z,y; <uy,v:1>). But this contradicts the minimality of G.

b) Vertices z, y exist in By, such that each z—y path of the length at most k contains
the edge <u;,v,>. Consider the shortest ¢ —w and y —w paths P;, P,, respectively.
By the methods similar to those used in case a), it can be observed that P, and P,
can be chosen such that they contain at most one of the vertices u; and u,. Thus,
P = P; ® P, does not contain the edge <uy,v;> and so the length of P must be more
than k. From this, the length of P, or P, must be more than 1;— Since diam(G) = k,
the length of an ¢ — w shortest path must be less than % for all z € B,. Recall that
each of these shortest paths can be chosen such that it does not contain the edge
<uz,v3>>. So, for By, a) holds. O

Note that no assertion similar to Theorem 1 holds for minimal graphs with a
bridge, because one can see that any graph obtained from the graph (k, p)-OP, where
p > 3 and k > p, by adding a new vertex for each vertex of (k,p)-OP and the edge
connecting these two vertices is a minimal graph, as well. On the other hand, it
can be proved (using methods similar to those used in the previous proof) that any
minimal graph of given diameter cannot contain two blocks which contain at least
three vertices. Now we improve Lemma 2.

Lemma 3 Let G be an outerplanar graph with every edge in a p-cycle, where p > 3
and is minimal of diameter k > [%’—’] — 2. Then the tolerance each of its interior
edges is equal to p — 2.

Proof. Suppose that G has an interior edge e, with tolerance different from p — 2.
From Theorem 1, it follows that G cannot contain any cutvertex. Further, it follows
from the previous Lemmas that each interior edge of G has tolerance at most p — 2,
and each exterior edge is tied with at most one interior edge. Thus, the tolerance
t(e) < p—2. In the case that each vertex of @ is tied with e we obtain diam(G) < k,
which is impossible. Since each exterior edge tied with e must lie in a p-cycle and
since t(e) < p — 2, a cycle C, which consists of all interior edges and all exterior
edges which are tied with no interior edge has length at most p — 1. Estimate the
upper bound of diam(G). Let z,y be vertices of the maximum distance in G. If
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z and y lie on C, then d(z,y) < L%J < k. If 2 lies on € and y does not, then
d(z,y) < |E2] + 8] < k. Finally, if neither ¢ nor y lies on C, then we have:

a) if p is odd:

p—3 p p—3 2p—2
d(z,y) < LTJ+2L§J =5t

<122

b) if p is even; then by Corollary 1, the tolerance of each interior edge is less than
p — 2 and so

_.3J

~1 —4 2p—4 3
. poly_pot ot (3

p
d(o,9) < | . .

+2|

1-2
In all cases diam(G) < k, which is a contradiction. O

We are ready to prove the main results of the paper. The following Theorem follows
immediately from the previous Lemma.

Theorem 2 There emists no (k,p)-minimal outerplanar graph for even p > 4 and
B> 7] -2

Proof. Suppose that G is such a graph. By Theorem 1 since G is 2-edge-connected,
@ cannot contain any cutvertex. If G has no interior edge, then G is a p-cycle, but p
is even and so G is not minimal graph. So, G must contain at least one interior edge

e. From Lemma 3, it follows that t(e) = p — 2 < k. But this contradicts Corollary 1.
0

Theorem 3 For odd p > 3 and k > [3] — 2, each outerplanar (k, p)-minimal graph
is isomorphic to the graph (k,p)-OP.

Proof. Similarly to the proof of the above Theorem, each such graph has no cutvertex
and the tolerance of each interior edge is p — 2. We first prove that each exterior edge
is tied with an interior edge. For this purpose, suppose that G is a (k,p)-minimal
outerplanar graph, where p > 3, odd, and k > f%ﬂ — 2. If ¢ has no interior edge,
then it is a p-cycle and diam(G) = |E] < k. So, G has at least one interior edge. If
an exterior edge e is tied with no interior edge, then the length of the cycle, which
consists of all interior edges and all exterior edges which are tied with no interior edge
is p. From this, diam(G) < [_32’31 — 2, which is impossible. Now we have proved that
@ consists of a cycle €' created by all interior edges and one path of the length p — 1
for each edge of C', where the path joins the ends of the edge. Consequently, if C has
more than 2k — 4| 2] + 3 vertices, then either G is not minimal or diam(G) > k; if C
has fewer than 2k —4[E] + 3 vertices, then either G is not minimal or diam(G) < k.
Finally, it can be easily checked that the cycle C' (of all interior edges) of the graph
(k,p)-OP has 2k — 4|2| + 3 vertices, the graph (k,p)-OP is minimal of diameter k
and each its edge lies in a p-cycle. So, G is isomorphic to (k,p)-OP. The Theorem
is proved. O



The tollowing problem arises.
Problem. Describe all outerplanar (k, p)-minimal graphs, for p > 3 and k < [3] —2.
This problem seems to be more difficult. For example, if k > 4, then it can be
verified that all graphs (k,1)-OP, where | = 3,5,... ¢, where k — 1 < ¢ < k, tis
odd, have each edge in a 2k + l-cycle and are minimal of diameter k. Moreover, a
2k + 1-cycle is such graph, as well.
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