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Abstract

We consider the problem of assigning a common due-date to a set of
simultaneously available jobs and sequencing them on a single machine, so that
a specified number of the jobs are tardy. The objective is to determine the
optimal combination of the common due-date and job sequence that minimizes
the total absolute lateness. A simple algorithm is presented to achieve this.
Effectively three independent procedures are developed: one to give the optimal
sequence; a second to give the optimal due date and a third to give an explicit
formula for the associated minimum penalty.

1. Introduction

A great deal of research has been directed towards single-machine
scheduling where the objective is the minimizing of penalties assocrated with
both tardiness and earliness. Surveys by Cheng and Gupta (1989) and Baker and
Scudder {1990) attest to the volume of this research up to 1990. More recently,
interest in the area shows no sign of diminishing. An important aspect of this
research relates to the problem of completing all jobs in a batch as close as
possible to a common due-date: due no doubt to the widespread adoption of the
philosophy of ‘just-in-time’ (JIT) customer service in industry. The seminal work
for the common due-date problem is due to Kanet {1981), and as outlined below
his work has been developed and extended by a number of authors. It is the
purpose of this paper to present and solve a new variation of the common
due-date problem.

For a given number of tardy jobs, we give independent procedures for
finding (a) a permutation sequence of the jobs which is optimal with respect to
total absolute lateness in relation to a common due date; (b) the optimal
common due date without finding the corresponding sequence, and (c) an
explicit formula for the optimal total absolute lateness without finding the
associated optimal permutation sequence or the optimal common due date.

In Kanet's original work, the number of tardy jobs and the number of early
jobs are approximately equal and the optimal due date is located at about the
centre of the makespan of the job set. Later studies provide for differential
weighting of early and tardy jobs, and, as a result the optimal common due date
can vary greatly. The actual number of tardy jobs in the optimal sequence then
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follows as a consequence of these weights. However, a due date for a batch
of jobs may need to be set so that a specific number of the jobs are completed
by that date. For example, this could occur if the client’s or the manufacturer’s
storage facilities are limited, or, if there is a preference for a particular proportion
of a batch being completed by a common due date. In this paper, we provide
the scheduler with the opportunity to nominate any number of tardy jobs and in
this context be provided with the corresponding optimal sequence, optimal due
date or optimal penalty, or any combination of these three. This gives the
scheduler flexibility in choosing prescribed numbers of tardy jobs and examining
the consequences.

2. Previous Work

Kanet (1981) provides an O(n log n) algorithm for producing an optimal
sequence for the total absolute lateness (early/tardy) problem and then computes
the optimal common due date. The sequence is obtained before the optimal
common date is calculated. Kanet's work has been extended in a variety of
ways.

There are, for example, extensions to larger classes of penalty functions.
Seidmann, Panwalker and Smith (1981) and Panwalker, Smith and Seidmann
(1982) examine the problem when the penalty function is a linear combination
of costs associated with the due date, the earliness and the tardiness. Lee,
Danusaputro and Lin (1991) investigate the construction of a common due date
where the penalty function is the weighted sum of the number of tardy jobs and
earliness / tardiness penalties. Cheng (1992} considers Kanet's original problem
and shows how the due date assignment problem can be separated from the job
sequencing problem. He shows that for a given job sequence, the optimal due
date is a simple function of the number of jobs. Cheng and Kahlbacher {1993)
find an optimal combination of common due date and job sequence that
minimizes a cost function based on the assigned due dates, job earliness and the
number of tardy jobs. Kahlbacher {1993} considers the class of penalty functions
that are monoctonous with respect absolute lateness. In another direction, Chand
and Chhajed (1992) using the same objective function as Panwalker, Smith and
Seidmann, solve the problem of assigning p due dates to n jobs, where
1 < p < n, and where specified numbers of jobs are to be assigned to each
date; so that the total penalty is minimized.

An effect of these extensions of Kanet's original result is to provide an
optimal common due date that is often not near the centre of the makespan of
the job sequence. The reality is that the earliness of jobs and the tardiness of
jobs are not always of equal importance to the scheduler, when a common due
date for a batch of jobs is desired. In previous research, weighting factors are
attached to early and tardy measures to take account of their relative
importance. This action effectively results in the specification of a particular
number of tardy (or early) jobs. in this paper, we approach the problem directly
by allowing the scheduler to experiment with the specification of the number of
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tardy Jobs and to Tind the consequent penalties.

A novelty in the results obtained here is the independent formulation of
each factor of interest: the optimal schedule; the associated optimal due date;
and, the associated optimal penalty. The scheduler can adopt a ‘what if’
approach and determine the results for each of a variety of numbers of tardy
jobs. For example, if the scheduler applies Kanet's algorithm, then a common
date is obtained which makes about half of the jobs tardy. What are the
consequences of reducing the number of tardy jobs by one or two? How will
this affect the size of the penalty, or the optimal due date, or the composition
of the optimal schedule? Each of these questions can be pursued quickly and
independently using the results of this paper.

3. The Problem

Consider a set of n jobs with given integer processing times t, t,, ... t,.
For any job in position j in a particular sequence, we define its earliness E; and
its tardiness T, by

E; = max{d - C, O} and T, = max{C, - d, 0}

respectively, where d is the common due date and C, is the completion time of
the job in position j in the particular sequence.

The total absolute lateness of a set of jobs in a particular sequence is defined as

Y abs (G, - d) =Y (6 + T)

j=1 j=1
We remark that for any job in position j in a particular sequence, at most one of
the measures E; and T, will be non-zero. In addition, at most one job j will

exactly on time, thatis, E; = T, = O.

Let n, be the given number of tardy jobs and define m = max{n, n-n,-1};
and P as the total absolute lateness for the given number of tardy jobs with
respect to an arbitrary sequence of jobs and common due date d. We note that
m is the larger of the number of tardy jobs and the number of strictly early jobs.

The problem to be addressed can be stated as
GIVEN:

i) a set of n jobs with specified integer processing times to be
processed on a single machine; and

i) a prescribed number (n} of them to be tardy.
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FIND:

a) A sequence of the jobs which will minimize the total absolute
lateness of the set with respect to an optimal common due date,
{which can always be found once the sequence is constructed).

b} The optimal common due date without necessarily first performing
the procedure in part (a).

c) The optimal total absolute lateness without necessarily first
performing the procedures in part (a) and/or part (b).

The problem will be solved by first proving a related simpler problem and
then extending the result. This simpler problem will be referred to as "the
restricted problem”. lts statementis identical to the statement made above with
an additional requirement in the "given" statement, namely:

"and iii) one job exactly on time".

4. The Results

4.1 Results for the restricted problem (where one job is exactly on time).
(a) Obtaining the sequence.

In this section we construct a sequence from the n jobs, which is optimal
with respect to total absolute lateness; given n,, the prescribed number of tardy
jobs. The proof of optimality is given in Section 5. First, sequence the jobs in
longest processing time (LPT) order. Assign the longest job to the first position
in sequence the second longest job to the last position in sequence, the third
longest job to second position in sequence, the fourth longest job to the second
last position in sequence and so on, breaking ties where jobs are of equal
duration, arbitrarily. This action continues until the conditions described below
hold.

Consider two cases. First, where the number of tardy jobs is strictly
greater than the number of early jobs. That is, suppose m = n, and
n # 2m + 1. In this case, continue the above procedure until n - m jobs have
been assigned to the beginning of the sequence and the same number of jobs
has been assigned to the end of the sequence. Assign the remaining jobs, if
any, in shortest processing time (SPT) order.

On the other hand, if m = n,orn = 2m + 1, then continue the procedure
until n - m jobs have been assigned to the beginning of the sequence and
n - m -1 jobs have been assigned to the end of the sequence. Assign the
remaining jobs, if any, in LPT order.
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N ertner case, e resuiting sedquence I1s opumatl with respect to totai
absolute lateness in relation to the (optimal) common due date d, which is given
independently in the next paragraph.

(b) The optimal due date.

We write down the optimal due date for the given set of jobs with respect
to total absolute lateness given a prescribed number of tardy jobs. This result is
independent of the previous section in the sense that the date can be calculated
by the formula without first obtaining the optimal sequence. The proofis given
in Section 5.

First, sequence the jobs in LPT order. Then

n=mn,

d = Z t2r~1

r=1

{c) The optimal penalty.

We state the optimal total absolute lateness P for the given set of jobs
and the prescribed number of tardy jobs. The expression is independent of the
previous two sections and is given by the following:

First sequence the jobs in LPT order. Then
P o= (r-Ntgy + Y, rly + A

r=1 r=1

2

3

-n

where, A {m-rt, if n < 2m

- 7

\
P
(=]

(@]

, otherwise.
The proof is given in Section 5.
4.2 Results for the unrestricted problem.

In this section we consider the results where the due-date is not restricted
to a job completion time.

® fm s norn = 2n + 1orn = 2n, then
a) the optimal sequence, and
b} the optimal due date, and
c) the optimal penalty are the same as for the restricted problem.
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e ifm =n,andn # 2n, + 1 and n # 2n, then

a) the optimal sequence is the same as the optimal sequence for the
restricted problem with n.-1 tardy jobs.

b} the optimal due date d is given by

n=m

d“z lyy — 1

r=d

That is, the optimal due date, is one unit of time less than the
optimal due date for the restricted problem with n.-1 jobs. This
ensures there are n, tardy jobs. One unit of time is subtracted as
all processing times are integers.

c) the optimal penalty is equal to the value of the optimal penalty for
the restricted case with ni-1 tardy jobs plus the number Zn-n.

We note in addition, the time complexity for each procedure considered
separately. For both the restricted and the unrestricted cases, the algorithms
contained in parts (a) and (b) have polynomial-bound time complexity O(n log n)
and the bound for the algorithm in part {c) is O(n?).

5. Proof of the Results
5.1 Proof of Results for the restricted problem.

We begin by considering the total absolute lateness of an arbitrary
permutation sequence of n jobs with an arbitrary common due date d coinciding
with the completion time of one of the jobs, so that as a result n, jobs are tardy
and one job is exactly on time. Later, in Section 5.2, we consider under which
circumstances this date can be modified if necessary to become globally optimal
for a given number of tardy jobs. The penalty for each job may be set out line
by line as follows to facilitate vertical addition.

d-t,

d-t, -1,

d"t1*t2“ Lot

d-ty -ty o tom (=0 (1)
t, o+t o + o tomer - d
Tyt e + t, - d
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(aj ine gpumai sequence.

We consider three cases. Incase 1, m = n,and n # 2m + 1. Case 2
hasn = 2m + Tandincase 3, m = n-n,- 1.

Case 1. {where m = niand n # 2m + 1 ).
Adding vertically, we obtain

P =1I2n-nlt; + 2ng-n + D, + .0+ (ng- D]
+ [Ntear + - i + 0+ (D-ny + 1)t
+ [n-n)ty,, + ... + 2t + t]

- {2n, - n)d.

Now from (1), we can replace d in the last equation as a sum of
processing times and on simplification, the penalty P can be re-written as

P o= [0t, + 1t, + ... + {n-n, - Tt
+ [ntonesr + (M- Mg + oo+ n-ng + 101
+ [n-n)ty,, + .. + 21t + t]. (2)

P is now expressed entirely in terms of processing times. The symbol 'd’
is no longer in the expression. The expression for P consists ofi the sum of
products of processing times and integer constants of various sizes. Such a
sum is minimized by associating the longest processing time with the smallest
constant, here 0; the second largest processing time with the next smallest
constant, here 1: and so on. A proof is given in Hardy et al (1959). We will
refer to this process as associating the constants and processing times in
‘contra’ order. Following these directions, and additionally re-assigning
subscripts to the processing times in equation (2), so that t,, t,, t5, ... arein LPT
order we obtain:

Fo={0t, + 1ty + ... + (n -1, - Dol
+ [Int, + (N, - Dty + 0+ (n-np + Tty onq]
+ [Un - ntynon + .o + 2t + L (3)
Remembering that m = n,, we see that equation (3) indicates that n - m
jobs have been assigned to the beginning of the sequence and n - m jobs have

assigned to the end of the sequence and the remaining jobs, if any, have been
placed in between in SPT order in the way described in part (a).

In the special case when n = 2n,, the term -(2n-n)d is zero and the

second term in square brackets in equation (3) contains no elements. This case
is covered in Kanet’s original result.
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Case 2. {where n = 2m + 1)

In this situation, nis odd and m = n, = n - n, -1, that is, the number of
tardy jobs is equal to the number of strictly early jobs. This case is one covered
by Kanet’s original result. On assigning n - m jobs at the startand n-m - 1 jobs
at the end of the sequence, all positions are filled. We again add vertically and
note that 2n, - n = -1 and so the penalty P is given by:

P = [t + 0t, + Tty + ... + {n - Dt.d

+ [t + 0+ 2t + ] 4+ d
From (1) asd =t; + t, + t; + ... + .., we can re-write this as
P = [0t + 11, + 2t; + ... + (Nt

+ [0t + o+ 2t + t]

Following the minimizing procedure of ordering the processing times by
LPT and assigning processing times to coefficients of contra size, we obtain

P = [0t; + Tt + ... + ndyone]
+ [Nty + o0 + 2t + ] (4}

which again matches the requirements of part (a) of the results.
Case 3. (where m # n, thatis, m =n-n.-1>ny)

Adding vertically as before we note thatn-m =n-n+n,+ 1 =n + 1 and
that the coefficient of t,.,; is 2n,-n + n-m-1 = 3n,-n. On assigning
n - m jobs at the start and n - m - 1 jobs at the end of the sequence we obtain

P = [(2n,- n)t; + (2n,-n + Tt, + ... + (3ny- Nty ]

+ [(Bn-n+Nt,,, + Bn,-n + 2)t,5 + ... + (n - 1t )

+ INtpmer + o0+ 2t + t]

- (2n, - n)d.
We replace d as a sum of processing times using (1) and obtain
P = [0t, + 1t, + ... + Nty

+ [ny + Dy, + 0y + 20ty + .0 4+ (n-ng- Tt ]

+ [INtones + oo+ 2t 4+ L

Next we again use the optimizing process of associating the coefficients
and processing time in contra order and re-label these times in LPT order t;, t,,
;... The expression for P is:

P =10t; + 1t; + ... + niyneyql
+ [Ny + THgper + (0 + 20003 + o0 + (0 - - 10t]
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a4 VI i Y (o)

Now in this casem = n-n,-Tandson, = n-m- 1. Hence

e n-m-1

>

r-ty,, + 3 rt,+ A
r=1

=

2m-n
where, A = 3 (m-nt,, if n< 2m

r=Q

= 0, otherwise. (6)

Equation (8) gives the minimal total absolute lateness for a given number
of tardy jobs, where the due date coincides with the completion of a job, in the
three cases discussed. In equation (3), the substitution m = n, needs to be
made and in equation (4), the substitution is also m = n,.

{b) The optimal due date.

As the due date coincides with the completion of a job, the maximum
number of tardy jobs is n - 1 and developments in section (a) show that if the
jobs are sequenced in LPT order, optimal d is given by

n-n,

d = Z t2/7!
r=1

{c} The optimal penalty.

From part (a), the optimal total penalty for a given number of tardy jobs
{(where the common date is to coincide with a job completion time) is given by
equation (6).

5.2 A Corollary to the Restricted Problem.

The absolute value of the difference between the optimal penalty for the
case of n, tardy jobs and the case of n - 1 tardy jobs is zero, if n = 2n and

12n~n| -1

5 t,, . otherwise.

r=0
Proof

Suppose n = 2n,, Then from the remarks made at the end of case 1 of
the proof of the restricted problem,

P = [0t + 1t + ... + (n.- Nt ] + [ngt, + ... + 2t + 1t

Note that there is an equal number of (n,) terms in each bracket. If we
now reduce the number of tardy jobs by 1, then m # n, - 1, and, on assigning
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n - m jobs at the start of the sequence and n - m - 1 jobs at the end of the
sequence in the required way, the shortest job is left and is placed in between.
Hence
P = [0t, + Tt; + ... + (n,- 1)t 4]
+ [n; t,]
+ Ung- Dt + o0+ 2t + 1t,].
We obtain P-P’" = O.

Now suppose m = n and n # 2n,and n # 2n, + 1. The penalty P is
given by equation (3). The corresponding penalty P’ for n, - 1 tardy jobs is given
by

P’ = [0t + Tty + 2tg + ... + (n-n, - Dty + (N -0t 004

+ [(ﬂt‘ 1)tn + (nt' z)tm + ..+ (n- n + 3”2n»2nt+4

+ (n -y + 2)1[2:1»2nt+3:1

+ [n-n, + Ngpones F (0 -ndton + 0 + 2t + TE1
2n,-n-1

Then P-P" = Y &

n-r
r=0

>0 .
The case where n = 2n, + 1 can be proved in a way similar to the case
where n = 2m (= 2n,).

The case where m # n, can be established using a similar argument to the
above and gives

P-P = t. >0
r=0
Thus |[P-P’] =0 if n=2n,
12n,-n] -1
and |P-P| = t,., . otherwise.

r=0

For a given set of jobs the optimal penalty P is monotone decreasing with
respect to the number of tardy jobs for O < n, = f0-5n! and monotone
increasing for foBn! < n, < n, where x! is defined as the smallest integer
greater than x.

5.3 Proof of results for the unrestricted problem.

In this section, we consider how the results for the restricted problem
need to be modified when the common due date is not limited to a job
completion time. The case where n = 2n, + 1 and where n = 2n,is covered
by Kanet’'s work and so procedures {a), (b} and (c) for the restricted problem
remain optimal for the problem addressed by Kanet.

We next employ an argument used by Cheng (1987) in relation to Kanet's
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coincide with or be within an arbitrarily small difference of a job completion time.

Letd” be any arbitrarily chosen common due date which does not coincide
with any of the job completion times (i.e. Cy; <d” < Cy,j=1,2, .., n)
where Cy is the completion time of the job in position j.

Then d” expressed in the form of a Gantt chart will be as follows:
|
Cpoay| < X-->d <y 1 Cyy

!
-1 [l i+11

Figure 1

If we shift d’ to the right so that it is equal to Cy, then the following
change in penalty will arise

AP = (j-Tly-In-j+ Ty = (2j-n-2)y.

Similarly, if we shift d” to the left so that it equals C ), then the following
change in penalty occurs

AP = (n-j 4+ Tx-{-1Th = (n-2] + 2)x.
Since x, y and n > 0, it follows that

AP, = 0 if j=n/2 + 1
and
AP, = O if j =n/2 + 1.

Thus for any given d’ we can shift it to the left or to the right depending
on its value so that a reduced or eqgually good penalty value can be achieved.
Consequently the optimal due date must be equal to one of the job completion
times; or be arbitrarily close to it to preserve the required number of tardy jobs.

This means that the optimal sequences developed for the restricted
problem are also optimal for the unrestricted problem but it remains to asscciate
a specified number of tardy jobs in the unrestricted problem with the appropriate
optimal sequence from the restricted problem. That is, we must ascertain
whether an optimal sequence for the restricted problem with n, jobs is also an
optimal sequence for the unrestricted problem with the same number of tardy
jobs.

Suppose d is optimal, then d = C, where s is determined by the specified
number of tardy jobs and by whether m = n,. Suppose m = n,, then s will have
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a value satisfying s < n/2 + 1 and so any arbitrary due dates which preserve
the specified number of tardy jobs will shift to the right so as to coincide or
nearly coincide with a job completion time. Three optimal sequences for the
restricted problem each associated with different numbers of tardy jobs are the
only candidates for the optimal sequence for the unrestricted problem with n,
tardy jobs. These sequences are illustrated in Figure 2. The sequence relevant
to the unrestricted sequence with n, tardy jobs is determined in what follows.

~~~~~ > n, + 1 tardy jobs to the right ->
--> n, tardy jobs -—->
--n.-1 tardy jobs -->

relevant
optimal sequence

d (i} d (optimal due date for the
restricted problem with n,
tardy jobs)

(ili) (optimal due date (ii) d {optimal due date for the

for the restricted restricted problem with
problem with n,+1 n.-1 tardy jobs)
tardy jobs)

Optimal sequences for the restricted problem with (i) n,, {ii} n-1 and (i} n+1
tardy jobs.

Figure 2

The first sequence is illustrated in part (i) of Figure 2, and is the optimal
sequence for the restricted problem with n, tardy jobs (having penalty P). We
shift its due date as far as possible to the right while still preserving the same
number of tardy jobs, that is, shift it by an amount t, - 1, as by equation (3) the
first late job is the shortest job and has processing time t,. The new penalty P,
is given by

P, = P-(2n, - n)t, - 1)

and as m = n,, we have 2n,-n = 0 and so P, < P. The second sequence is
illustrated in part (i) of Figure 2. The specified number of tardy jobs can be
obtained by taking the optimal sequence for the restricted version with n, - 1
tardy jobs and an arbitrary due date to the left of the optimal date for this
version. When such a date is moved as far as possible to the right (while still
retaining n, tardy jobs), it has a value one unit less than the optimal due date for
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n, - 1 taray jobs. The resultant penalty P, is given by

2n,~n=1
P,=P - % t_+{2n -n)
r=0
where we have used the result of the corollary to the restricted problem to give
the difference between the optimal penalties for sequences with n, and n, - 1
tardy jobs. We next compare the relative sizes of P, and P,.

Upon simplification, we obtain

2n,~n-1

Py =P, = ¥t - (2n - nht,

r=0

2n,-n-1

= 3 {t,-t) =0

r=0

after noting that t, is the smallest of the 2n, - n numbers t, t i, ... , tyomes
which lie in SPT order in the associated optimal sequence for the restricted
problem. Note that when these numbers all have the same value, P, = P,.

Thus P, < P, < P. The only other approach (illustrated in part (iii) of
Figure 2) is to take the optimal sequence in the restricted problem for n, + 1
tardy jobs and move the due date to the right until there are n, tardy jobs. But
the associated penalty then can be no less than P, which is the optimal penalty
for the restricted problem.

Hence when m = n, in the unrestricted case, we choose to form the
optimal sequence for n, - 1 tardy jobs for the restricted problem and select a
common date one unit less than the associated optimal due date for this
restricted case. The associated optimal penalty for the unrestricted case is P,,
which is equal to the optimal penalty for the restricted case with n, - 1 tardy jobs
plus the number 2n, - n.

On the other hand, suppose m # n,. We again consider the same
sequences illustrated in Figure 2. In this case, n, is relatively small and so s will
have a value satisfyings = n/2 + 1. As a consequence, arbitrary due dates
which preserve the required number of tardy jobs will shift to the left for
optimality to coincide with the exact completion of n - n, jobs. Thuss = n-n,
and the relevant optimal sequence is that for the restricted problem with n, tardy
jobs (see part (i} of Figure 2). Note from part (i) of Figure 2, that the optimal
sequence for the restricted problem involving n, - 1 tardy jobs can be made to
have n, tardy jobs by taking an arbitrary due date to the left of the optimal due
date for the restricted version and shifting it further to the left to coincide with
the nearest job completion time. However, this action does not result in any
improvement in the penalty for the restricted version with n, tardy jobs than that
already achieved. An argument similar to that which established P, < P, earlier
using the corollary to the restricted problem can be used to establish this fact.
The third possibility involves the optimal sequence for the restricted problem
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with n, + 1 tardy jobs and is illustrated in part (iii) of Figure 2. This can also be
dismissed as the resultant penalty obtained by moving any due date to the left
in this sequence (while preserving n, tardy jobs) can be no better than that for
n, tardy jobs. Thus when m # n,, the results for parts (a), (b) and (c) of the
restricted problem are the same for the unrestricted problem. This completes the
proof for the unrestricted version of the problem.

G. Discussion

in their review article, Baker and Scudder {1990) refer to the large variety
of optimal due dates arising in Kanet's result from the way that pairs of jobs are
assigned to the beginning and end of the optimal sequence. They mention the
secondary criterion of minimizing the total processing time in the set of jobs
scheduled before the comimon date. In many applications it is an advantage in
terms of customer satisfaction to have the optimal common due date as early
as possible, while the associated minimum penalty is preserved. In the current
investigation, the number of tardy jobs is specified before sequencing and the
manner of job assignment insures that the secondary criterion described above
is achieved. A variety of optimal sequences still remain, when different jobs
have the same processing times, but this variety does not change the optimal
common date.

Bagchi, Sullivan and Chang (19886), in investigating the determination of
an optimal sequence for unweighted total absolute lateness with respect to a
given due date, refer to the V-shaped property of all optimal sequences. By this
term they mean that the jobs preceding and succeeding the shortest job are in
LPT and SPT orders, respectively. Krieger and Raghavachari (1892) prove that
this property holds for optimal schedules with monotone penalty functions. In
the current paper, the method of forming the optimal sequence, which is given
in part (a) of the Results section; and its proof, show that the optimal sequences
produced are also V-shaped.

As mentioned earlier, Cheng (1992) show that for a given job sequence,
the optimal common due date k* is a simple function of the number of jobs. He
shows

k* = Cipanm ; n odd

= Cpyz + Ttz forsome O < f < 1,if nis even, where Cy is the

completion time for the job in position i in sequence and t,, , 4, is the processing
time of the job in position n/2 + 1. In the notation of this paper this result
translates to

k* = Cim , n=2m+ 1

= Cpm + fpmey forsome 0 < f <1, if n=2n,.

In the situation where we require the optimal due date for a given optimal
job sequence, having a specified number of tardy jobs, the result is
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KO= Lppm o 1OT M= Ny OF I = L0y, OF U= 24+

= Cpmn-1 for m=mn, and n 2Zm + 1 and n # 2n,. (7)

In this paper, we have shown directly that the optimal common due date
for the optimal sequence having a given number of tardy jobs is also a simple
function of the number of jobs; and is given in part (b) of the Results section;
and, equivalently by equation (7) once the optimal sequence is used.

The corollary to the restricted problem allows the generation of the
penalty for any feasible number of tardy jobs once the penalty for a particular
number of tardy jobs in a sequence is known. For example, if we begin by
considering zero tardy jobs and follow the required procedures, the jobs are
sequenced in LPT order and a common date equal to the sum of the processing
times is assigned. The corresponding optimal penalty can also be calculated.
The optimal penalty for successive numbers of tardy jobs decreases by the
quantity given in the corollary until either n = 2n, orn = 2n, + 1. It then
increases in accordance with the requirements of both the corollary and the
results of the unrestricted problem. This procedure is illustrated towards the end
of the next section.

7. A Numerical example

We present a numerical example to illustrate the results. The example
consists of twelve jobs.

Data Summary of Results Sample (n, = 8)
i Y n, d P i 4 C P
1 112 0 1254 6031 6 171 171 417
2 101 1 1140 5062 T 112 283 305
4 103 3 924 3784 10 109 392 196
5 71 4 823 3456 4 103 495 93
6 171 5 734 3311 9 94 589 1
7 89 6 663 3311 5 71 660 72
8 114 7 662 3313 11 74 734 146
9 94 8 588 3460 7 89 823 23b
10 109 9 494 3790 2 101 924 336
11 74 10 391 4324 3 105 1029 441
12 111 11 282 5072 12 111 1140 552
12 170 6043 8 114 1254 666

In the table above, the Data column gives the job numbers and processing
times for the twelve jobs. The Summary of Results column gives for each

285



possible number of tardy jobs (from O to 12), the optimal due date and the
associated optimal penalty. The Sample column gives for n, = 8, the optimal
sequence in terms of the original jobs numbers; and, for each job in this
sequence, its completion time C; and the penalty it attracts, due to its position
relative to the optimal due date of 588. We next verify the contents of the
Sample column using the results developed in this paper.

First, place the jobs in LPT order and re-label them. We note thatn = 12,
n,= 8andthatn-n-1 =3 Thusm = 8 and as m = n, we consider the
restricted problem with n,- 1 = 7 = m tardy jobs and assign the firstn-m =
5 odd numbered jobs at the beginning of the sequence and the firstn-m = 5
even numbered jobs at the end of the sequence. The remaining two jobs are
placed in between in SPT order. This can be verified in the S8ample column
where the original job numbers have been retained. The sequence is the optimal
sequence.

Next we independently determine the optimal due date given by

pen=1=5
d = Z tyrq = 1
r=1
= 589 - 1
= 588

where the jobs have first been placed in LPT order.

The optimal penalty is given independently by

5

4 2
P=3Y" (r=1) 1y, + }; rt,, + E; (7-Nty,., + (2n, = n)

r=1

il

1015 + 10556 + 1386 + 4
= 3460.

We now illustrate how the optimum penalty for each feasible number of
tardy jobs can be generated from a particular optimal penalty. The optimal
penalty for zero tardy jobs is obtained by sequencing the jobs in LPT order and
assigning a common date of 1254, which is the makespan of the job set. The
optimal penalty is 6031. To calculate the penalty for one tardy job we proceed
as in the corollary and calculate

n=2n,-1
St . wheren = 1.
=0
In this case, this sum is 969. The optimal penalty for one tardy job is then 6031
- 969 = 5062 and we can proceed in a similar way for increasing numbers of
tardy jocbs. In summary:
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AL L A

n, Yot Optimal Penalty

=0

2 746 5062 - 746 = 4316
3 532 4316 - 532 = 3784
4 328 3784 - 328 = 3456
5 145 3456 - 145 = 3311
6 O(asn = 2n,) 3311-0 = 3311

When n, > 6, m = n, and we foliow the results for the unrestricted
problem. Thus for n, = 7 we use the penalty for 6 tardy jobs calculated above
and add 2n, - n = 2 to obtain the optimal penalty of 3311 + 2 = 3313. For
n, > 7 we calculate the penalty for the restricted version first. These penalties
can also be obtained conveniently by symmetry with the optimal penalties for
n, < 6.

n, Optimal penalty for n, - 1 jobs 2n - n Optimal penalty
8 3456 4 3460
9 3784 6 3780

10 4316 8 4324

11 5062 10 5072

12 6031 12 6043

These results match those summarised in the previous table.
8. Concluding statement

In this paper we consider the problem of optimal sequencing of a set of jobs
on. a single machine to minimize total absolute lateness, where a prescribed
number of jobs is tardy. Three independent procedures are presented. The first
determines the optimal sequence and the second determines the optimal due
date. Each of these procedures runs in O(n log n) time. The third determines
the optimal penalty and runs in O(n? time. The theoretical treatment involves
a consideration of an arbitrary job sequence and an arbitrary common due date,
which coincides with a job completion time. This date is then replaced with the
corresponding sum of processing times to give a total penalty in terms of job
processing times. A standard optimizing procedure follows and an adjustment
is made to the resultant due date to make the results globally optimal. A
numerical example is presented to illustrate the application of the procedures.
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