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Abstract

A G-design of order n is a pair (P, B) where P is the vertex set of the
complete graph K, and B is an edge-disjoint decomposition of K, into
isomorphic copies of the simple graph G. Following design terminology,
we call these copies “blocks”. Given a particular graph G, the intersection
problem asks for which k is it possible to find two G-designs (P, By) and
(P, By) of order n, with |By N By| = k, that is, with precisely k common
blocks. Here we complete the solution of this intersection problem for
several (G-designs where G is “small”, so that now it is solved for all
connected graphs G with at most four vertices or at most four edges.

1 Introduction and preliminaries

Let G be a simple graph which is some subgraph of K, the complete undirected
graph on n vertices. A G-design of order n is a pair (V, B) where V is the vertex
set of K, and B is an edge-disjoint decomposition of K, into copies of the simple
graph G. Following design terminology, we refer to these copies of G as blocks. Thus,
for example, a Steiner triple system is a K3-design and a balanced incomplete block
design with block size four and index A = 1 is a K4-design. The number of blocks,
|B], is (;')/]E(G)] where E(G) is the edge-set of G; this nurmber clearly must be an
integer.
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The intersection problem for G-designs asks for what values of k is it possible
to find two G-designs (V, By) and (V, By), of the same order |V| and based on the
same set V, with |B; N By| = k; that is, having precisely k common blocks. This
problem was first considered for Steiner triple systems or Kj-designs (see [8]), and
since then the intersection problem has been considered for many different types of
combinatorial structures; see [3] for a recent survey.

A (p,q) graph is one with p vertices and g edges. We list below all non-trivial
connected simple (p, ¢) graphs with min(p,q) < 4.

g=1 e—e Ky

g=2 e—a—eD;

> <
q = K, 53, e—g—=a——a P4
g=4 Cy, §S4, t D, ::Y, ¢—8—o——a Fs

g=25 Ky —e

q:6 [(4

Clearly a Ky-design is unique; each block is an edge! And so for this design we
cannot find two distinct designs, let alone a pair of designs intersecting in a specified
number of blocks! So we leave this trivial case.

As mentioned above, the intersection problem for K3-designs was dealt with in [8].
The intersection problem for 4-designs appears in [4], for (K4 — e)-designs in [5] and
for K4-designs (with a few exceptions) in [6].

The remaining cases, namely the graphs Pi, Py, Ps, S3, Si, D and Y, we deal
with below. We use the notation of [2] for names of these graphs, and the following
diagram shows how we label the blocks.

a
D d (a,bc)-dor (ba,c)d
; c
d
Y (a,b,¢;d,e) or (a,b,c;e,d)
a b ¢ e
P, é . . (a1,a9,...,an) O (Gn,Cn—1,...,01)
a as [£27)
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an

In what follows we let IG(n) denote the set of integers &k for which there exist two
G-designs (P, B1) and (P, By) with |P| = n and |B1 N Ba| = k. Alsoif G is a graph
with g edges, let

Jg(n):{ {0,1,2,...,1(3) =2, 1)} it ql(3);

] otherwise.

In other words, JG(n) denotes the intersection numbers one expects to achieve with
a G-design of order n.

We also modify this notation slightly and let /G(H) and JG(H ) denote respectively
the achievable and expected intersection numbers for a G-decomposition of the graph
H.

We also need the following definition. If 5 is a set of positive integers and A is
some positive integer, then A% 5 denotes the set of all integers which can be obtained
by adding any h elements of S together (repetitions of elements of S allowed). For
example, 2 * {0,1,3} = {0,1,2,3,4,6}.

Subsequently we shall need to decompose certain bipartite and tripartite graphs
into edge-disjoint copies of the graphs G. Consider the following example.

ExXAMPLE 1.1 Decompositions of K44 into copies of Ps.

Let Ky 4 have vertex set {11,21,31,41} U {12,29,35,42}, and let P = {A, B,C, D}
where
A= (13,11,29,21,33), B = (13,41,42,31,32),
C =1(11,32,41,29,31), D =(11,42,21, 12,31).
These cover the 16 edges of Kj 4, and so form a Fs-decomposition of Ky4.
Now C and D cover the same edges as

C' = (12,21,42,11,32), D' = (13,31, 23,41, 32),
while B, C and D together cover the same edges as
B = (25,41,33,11,42),C = (12,21,42,31,32), D = (23,31, 12,41, 42).

Moreover, the permutation {1 2) applied to the subscripts of blocks A, B, ' and D
yields a different Ps-decomposition of K44 having no blocks in common with P; call
these blocks P. ,

Thus we see that |[PNP| =0, |PN{4,B,C,D} =1, |PNn{A4,B,C D} =2
|PP| = 4. (Clearly it is not possible to have two decompositions which have all but
one block in common.) We record these intersection numbers for FPy-decompositions
of .K4,4 as

IPs(Ky4) = {0,1,2,4}. O
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More generally, if K is a collection of graphs, then a K-decomposition of the graph
H, (V,B), is an edge-disjoint decomposition of H with vertex set V into a set of
subgraphs B3, with each subgraph isomorphic to some graph in . If K = {G}, then
we call this a G-decomposition of H, and if also H = K, then it is a G-design of
order n.

The following lemma will be most useful in the rest of this paper.

LEMMA 1.1 Let G be a graph with g edges and suppose (V,B) is a {Km, H}-decom-
position of Ky, with o > 0 blocks isomorphic to Kp. If IG(m) = JG(m) and
IG(H) 2 {0,r} with |E(H)| = gr and q(r +1) < a(7y), then IG(n) = JG(n).

Proof. First a G-design of order n can be consiructed by replacing each of the
blocks B € B that is isomorphic to Ky, by a G-design of order m, and replacing each
of the blocks B € B that is isomorphic to H by a G-decomposition of H.

Secondly, if ¢ (7;), then for any positive integer z,

. B z {m z (mY)
m*JG(m)“{07l)2>)5(2)_25‘6(2)}:

and forallz > r + 1,
{0,1,2,...,z— 2,2} +{0,r} = {0,1,2,...,z+7r — 2,2+ r}.
Thus if B contains « blocks isomorphic to K, and f blocks isomorphic to H, then

IGw) 2 ax JG(m)+ B+ {0,r} ={0,1,2,...,2— 2,2}

where z = a% (g’) +8r. But B is a decomposition of K, so we also have a('g) +Bgr =

(g) Thus z = %(g), as required. Hence IG(n) = JG(n). 0
In what follows, the graph H in Lemma 1.1 will usually be a complete bipartite or
tripartite graph.

2 Paths on 3, 4 and 5 vertices

2.1 The path P;

Note that a P3-design of order n contains n{n — 1)/4 blocks and so we must have
n =0 or 1 (mod 4).

EXAMPLE 2.1 IP3(Ky3) = {0,2}.

Take designs (P, B;), © = 1,2, where the vertex set of K33 is P = {a,b} U {¢,d},
and By = {(a,¢,b),(a,d,b)}, By = {c,a,d),(c,b,d)}. Since |By N By| = 0 we have
IPy(Ka2) = {0,2}. ]
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EXAMPLE 2.2 IP3(4) = {0,1,3}.
We use designs (P, B;), 1 = 1,2, 3, where P = {a,b,c,d} and

B = {(a; b, C); (a, c, d)r (a'r d, b)}7
B2 = {(a’a b70)7(d)a‘ac):(b> d: C)}:
By = {(¢,b,d),(a,d,c),(a,c, b)}

Here |B1 N Ba| =1, |B1 N B3| = 0 and of course |B; N By| = 3. The result follows. [

EXAMPLE 2.3 IP3(K19,) = {0,1,2,...,n — 2,n}.

The verification of this is immediate. 0

Now let n = 4m, and take the vertex set of K, tobe {(¢,7) | 1 <4 <2m, j =1,2}.
Take Ky blocks {(2i — 1,7),(24,7) | 7 = 1,2}, for 1 < 2 < m, and K35 blocks
{(a,1),(2,2)} U {(b,1),(b,2)} where 1 < a < b < 2m and {a,b} # {2 — 1,2} for
1 <4 < m}. The result is a {Kj, Ko 3}-decomposition of Ky, and consequently by
Lemma 1.1 we have I P3(4m) = JP;3(4m).

Now let n = 4m 4 1, and let the vertex set of K, be {1,2,...,4m co}. We
may use P3-designs of order 4m on {1,2,...,4m} and use Example 2.3 to find P3-
decompositions of Ky 4m on {co}U{1,2,....,4m}. Thus

IP3(4m -+ 1) 2 IP3(4m) + IP3(K1'4m)
= {0,1,2,...,m(dm+ 1)~ 2,m(4m + 1)} = JP3(4m + 1).
We have now proved

THEOREM 2.1  The intersection numbers for Py-designs are given by IP3(n) =
JPy(n) = {0,1, ...,b — 2,b} where b = n(n — 1)/4, the total number of blocks in
a Py-design of order n. i

2.2 The path P,

A Py-design of order n contains n(n — 1)/6 blocks so that » = 0 or 1 (mod 3), n > 4.
So let n = 3m or 3m + 1. First we give some necessary examples.

ExaMpPLE 2.4 TP4(4) = {0,2}.

Let V = {1,2,3,4}, By = {(1,2,3,4),(2,4,1,3)}, B2 = {(1,4,3,2),(3,1,2,4)}. Then
(V, B1), (V, By) are both Py-designs, and | By N Ba] = 0; the result follows. O

EXAMPLE 2.5 IP4(K3,3) 2 {0,3}.

Let K33 have vertex set V = {1,2,3} U {4,5,6}. Two disjoint decompositions are
By = {(1,4,2,5),(2,6,3,4),(3,5,1,6)}, B2 = {(2,5,3,6),(3,4,1,5),(1,6,2,4)}. The

result follows. 0
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ExaMPLE 2.6 IP4(6) = {0,1,2,3,5}.

Let Kg have vertex set V = {0,1,2,3,4,5}, and let A = {(0,1,2,3),(3,0,5,2),
(0,4,3,0}, B = {(0,2,4,5),(3,5,1,4)}, and C = {(0,4,3,1),(3,51,4)}. Then
(V.AU B} is one P;-design of order 6. Note that the blocks A trade with A' =
{(1,0,5,2),(4,0,3,2),(4,3,1,2)}, and the blocks € trade with C' = {(0,4,1,3),
(1,5,3,4)}. Let X = AU B, and let o denote the permutation (14)(35) and S
the permutation (15)(34). The following table lists intersection numbers.

blocks intersection size
X, Xa 0
X, Xp 1
X, {A, B} 2
X, ((X\Cyudh 3
X, X 5

EXAMPLE 2.7 IP4(7)={0,1,2,3,4,5,7}.

Let Ky have vertex set V = {0,1,2,3,4,5,6}. Let 4 = {(0,1,3,6),(1,2,4,0)},
B ={(2,3,5,1),(3,4,6,2),(4,5,0,3)} and C = {(5,6,1,4),(6,0,2,5)}. Then (V, X),

{(4,1,6,0),(0,2,5,6)} respectively. Let o denote the permutation (06)(13). The
following table lists intersection numbers.

blocks intersection size
X, AUB Ul 0
X, Xa 1
X, AUBUC 2
X, AuBUC 3
X, AUB'UC 4
X, AUBUC 5
X, X 7

EXAMPLE 2.8 IF(9) = {0,1,2,...,9,10,12}.
Take a Py-design of order 6, on {0,1,2,3,4,5}, and adjoin elements H, J and K, and
also the blocks
X = {(0,H,1,1),(2,H,3,J),(4,H,5,J),(1,K,0,J),
(37 Ki 25 J)) (57 K? Jﬂ H)7 (H7 K? 4? ‘]>}'
Now using [ P4(6) we have {7,8,9,10,12} C IP4(9). Also applying the permutation

(H J) to the set X changes all the blocks in X, so again using IP4(6) we have
{O: 112)37 5} c IP4(9)
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1Thus 1t remains to show that 4 and 6 are 1n [/ F4(9). To do this, let D denote the
design with blocks X U AU B where A and B are as in Example 2.6 above. Then
|D N Dy| = 4 where v is the permutation (03)(12). Finally, let

T ={(0,2,4,5),(3,0,5,2),(0,4,3,1),(3,5, 1,4)}
which has trade
TI = {(3) 17 47 5)) (0) 3) 5) 1)7 (3: 4¢ 27 0)> (4‘3 Oy 5) 2)}

Then [DyN((D\T)UT")| = 6, which completes the intersection numbers for designs
of order 9. O

Now let n = 3m + 1 and let the vertex set of K, be V = {(3,7) | 1 €< ¢ €
m, j =1,2,3} U {co}. There is a {K7, K4, K33}-decomposition of K, with: one Ky
block {o0} U {(%,7) | ¢ = 1,2; j = 1,2,3}; K4 blocks {oo} U {(3,7) | 7 = 1,2,3},
for 3 < 7 < m; Kaz blocks {(5,7) | 7 = 1,2,33 U {(¢,3) | 7 = 1,2,3}, for all
1 € 4 <4 < m, excluding {3,4'} = {1,2}. Then using Examples 2.7, 2.4, 2.5 and
a slight generalization of Lemma 1.1, it follows that IPy(3m + 1) = JPy(3m + 1) =
{0,1,2,...,t—2,t} where t = m(3m+1)/2, the total number of blocks in a Py-design
of order 3m + 1.

Next let n = 3m. The cases m even and m odd are treated separately. When m
is even let n = 6M and let the vertex set of K, be {(,7)| 1 <1< 2M; 5 =1,2,3}.
There is a {Kg, K3 3}-decomposition of K, with Kg blocks {(2i — 1,7),(2¢,5) |7 =
1,2,3} for 1 <4 < M and Ks3 blocks {(41,7) | 7 = 1,2,3} U{(32,7) | = 1,2,3} for
all 1 <41 < ip < 2M excluding {i1,i2} = {2i — 1,2}, 1 <i < M.

The result IP4(6 M) = JP4(6M) then follows from Examples 2.6, 2.5 and Lemma
1.1. ‘

When m is odd let n = 6M + 3, and let the vertex set of K, be {(3,7) | 1 < <
2M +1, j = 1,2,3}. There is a {Kg, K¢, K33}-decomposition of K, with: one Ky
block {(z 7) 14,7 =1,2,3}; Kg blocks {(2z, ]) (2i+1,7) |7 =1,2,38}fori = 2,..., M;
K33 blocks {(a,7) | 7 = 1,2,3} U {(b,7) | 7 = 1,2,3} for all pairs {a,b} w1th a # b
and with a and b not bothin {1,2,3} orin {2,2i+ 1}, 2 < < M.

Then from Examples 2.8, 2.6, 2.6 and Lemma 1.1, we have IPy(6M + 3) =
JP4(6M + 3).

We have now proved

THEOREM 2.2  The intersection numbers for Ps-designs are given by IPy(n) =
{0,1,...,b—2,b} where b= n(n —1)/6. |

2.3 The path P;

The graph Ps; has 4 edges, and so a suitable decomposition of K, will contain
n(n —1)/8 blocks; consequently we must have n = 0 or 1 (mod 8). The only ingredi-
ents needed are decompositions of K44, Ks and Kg, and of course their intersection
numbers too.
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Now let the vertex set of K, be V = {(4,7) | 1 <1< 2m, 1 <7 < 4} or VU {00},
according as n = 8m or 8m + 1.

In the former case there is a {Ks, K4,4}-decomposition of K, with Kj blocks
{22 — 1,7),(24,5) | 1 € j <4} for 1 <4 < m, and Kg4 blocks {(a,7) | 1 <5 <
43 U{(b,5) |1 €75 <4}foralll < a < b< 2m and {a,b} # {2 — 1,2} for
1 € 1 < m. In the latter case there is a {Kjy, K4 4}-decomposition of Ky; the Ky
blocks have {co} adjoined to each of the K3 blocks above, otherwise blocks are the
same as when n = 8m.

In Example 1.1 we showed that I Ps(Ks4) = {0,1,2,4}. We also need the following

two examples.

ExaMmpLE 2.9 IP5(8) = {0,1,2,3,4,5,7}.

On the vertex set Z7 U {co}, developing the base block 8 = (0,0,1,3,6) modulo 7
generates a Ps-decomposition of K7. For each ¢ € Z7 the blocks 4; = {f+1,8+i+1}
trade with 4% = {(6,3,1,0,4) + ¢,(0,00,1,2,4) + 1}, and B = {#+ 4,8+ 5,8 + 6}
trades with B' = {(3,0, 5, 00,4),(0,6,5,2,0),(0,6,1,4,5)}. We observe that Ag, Az
and A4 are mutually disjoint and that B is disjoint from Ap and Aj. Consequently
I1P(8) = {0,1,2,3,4,5,7}. 0

EXAMPLE 2.10 IP5(9) = {0,1,2,3,4,5,6,7,9}.
On the vertex set Zg, a Ps-design is generated by developing the base block 8 =
(0,1,3,7,4) (modulo 9). For each ¢ € Zg the blocks A; = {8+ 14,8 +1+2} trade with
Al ={(0,5,3,7,4)+1,(2,3,1,0,6) + i} and the blocks B; = {8 +%,8+i+1,8+i+2}
trade with B} = {(0,1,2,3,5) +1,(1,3,7,4,2) +1,(6,0,5,8,4) +4}.

Moreover, the blocks C = {8 + 5,8 + 7,8 + 8} trade with the blocks C' =
{(7,8,3,6,5),(3,0,8,6,2),(8,1,5,2,0)}. The following table lists the disjoint trades
which may be used in order to achieve the required intersection values.

trades intersection achieved

By, B;, Bs 0

Ay, A1, Ag, As 1

C, Ao, Ay 2

Bo, B3 3

Ag, Bs 4

A07 Al 5

By 6

Ay 7

nothing 9

0
Now applying Lemma 1.1 yields the following result for Ps-designs.

THEOREM 2.3  The intersection numbers for Ps-designs are given by IPs(n) =
{0,1,...,b— 2,b} where b=n(n—1)/8. O
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J oStars with 3 and 4 edges

3.1 S;-designs

The number of blocks in an S3-design of order n is n{n — 1)/6, and son = 0 or 1
(mod 3), and n > 6. (S3 involves four vertices, and it is easy to see that K4 has no
S3-decomposition.)

We start with the following example.

ExaMPLE 3.1 IS3(K33) = {0,3}.

Let K33 have vertex set {1,2,3}U{4,5,6}. The following two S3-decompositions are
disjoint.

Dy = {(1:4,5,6),(2:4,5,6),(3:4,5,6)},
D, = {(4:1,2,3),(5:1,2,3),(6:1,2,3)}.
Moreover, it is straightforward to see that 1 ¢ I53(K33). O

One slight difficulty in this case (and, indeed, for Sy,-designs in general) is that
the expected full set of intersection numbers for a design of order 6 (or 2m in general)
cannot be achieved. In the case of S3-designs, each block involves 4 vertices, and it is
impossible to find a trade consisting of two blocks when the design is of order 6. The
smallest trade involves seven vertices, such as {(z : a,b,¢), (z : d, ¢, f)} trading with
{(z : a,b,d),(z : c,e, f)}. We do however achieve the other expected intersection
numbers, as the following example shows.

ExampLE 3.2 I53(6) = {0,1,2,5}.
Let V = {0,1,2,3,4,5} and take
B={(0:5,1,2), (1:5,2,3), (2:5,3,4), (3:5,4,0), (4:5,0,1)}.

Let a = (012), 8 = (345) and v = (01) be permutations on V. The result then
follows from the table below.

blocks intersection
BN Ba 0
Bn BB 1
BN By 2
BnNB 5

Three more necessary examples follow.

ExampPLE 3.3 I53(7) = {0,1,2,3,4,5,7}.
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Take the vertex set {0,1,2,3,4, 5,6}, and blocks BU{(6 : 0,1,2), (6:3,4,3)} = BUY
where B is as in Example 3.2. The permutations «, f# and v of Example 3.2 fix Y.
Hence {2,3,4,7} € I153(7). Moreover, Y trades with Y’ = {(6 : 0,1,3), (6:2,4,5)},
and so 0 € 153(7). Also (BUY)N(BAUY")| =1and |(BUY)N(BUY")| =5, so
the result follows. O

ExaMPLE 3.4 I53(9) = {0,1,...,10,12}.
Let the vertex set be Zyg, and take blocks B as follows.

block in subset(s) block in subset(s)
(0:1,3,6) X (6:1,2,7) Y, T
(1:2,4,7) Y (7:2,0,8) T
(2:0,5,8) (8:0,1,6) X, T
(3:1,4,6) X (3:2,7,8)

(4:2,57) Y (4:0,8,6) X
(5:0,3,8) Z (5:1,6,7) Y, Z

The set X trades with X' = {{1:0,3,8),(0:3,4,8),(6:0,3,8),(4:3,6,8)}; the set
Y trades with Y/ = {(2:1,4,6),(1 :4,5,6),(7:1,4,6),(5 : 4,6,7)}; the set Z trades
with Z' = {(5:0,3,7),(5: 8,1,6)}; and the set T trades with 7" = {(6 : 1,2,8),(7 :
0,2,6),(8 :0,1,7)}. Also Z and T are disjoint. The intersection values now follow
from the table below, where numbers in parentheses are permutations on Zg.

blocks intersection
BN B(678) 0
BN B(4758) 1
BN B(45)(78) 2
BN B(78) 3
BN((B\(XuY)uXx'uy') 4
BN B(45) 5
Bn((B\(XuU2z))ux'uZz) 6
Bn((B\(XuTHux'urmh 7
Bn({(B\X)uXx" 8
Bn((B\T)uTh 9
Bn((B\2)uZ" 10
BnNB 12

ExXAaMPLE 3.5 153(10) = {0,1,...,13,15}.

Take Z1o and blocks B of Example 3.4 above, together with P = {(9:0,1,2),(9 :
3,4,5),(9 : 6,7,8)}. The blocks in P are fixed by the above permutations {except
for (4758)) and by the trades on B, so {3,4,6,7,8,9,10,11,12,13,15} C I153(10).
Also P trades with P' = {(9:0,1,3),(9 : 2,4,6),(9 : 5,7,8)}, and so in particular
{0,1,5} C 155(10) also. Finally we see that 2 € 153(10), using 1 € I53(9) and the
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tradae (9 : U, 1,4),{9 L 9,%,0)y wWith {{¥ 1 U, 1,3),(Y : £4,4,0)p. Lhis completes the
example. O

In the general situation we deal with four cases: n =6m, n = 6m+1,n =6m+3
and n = 6m + 4. In each case the vertex set is V = {(4,5) | 1 <4< 2m, j = 1,2,3},
or VU {oo},or V' =V U{(2m+1,5) |7 =1,2,3} or V' U {co} (respectively).

First, when n = 6m+ 1, there is a { K7, K3 3}-decomposition of K, with K7 blocks
{oo} U{(20 - 1,7),(2,5) | 5 = 1,2,3} for 1 < 1 < m and K33 blocks {(a,7) |
7 =123U{(bj) | j =123} forall 1 < a< b < 2m, excluding {a,b} =
{2 -1,%),1 <i<m.

From Lemma 1.1 it follows that I53(6m + 1) = JS3(6m + 1).

Secondly, when n = 6m + 4, we use a {K19, K7, K3 3}-decomposition of K, with
one K1g block and m—1 K7 blocks. Once again Lemma 1.1 then yields I53(6m+4) =
JSa(Gm + 4).

Thirdly, when n = 6m, in order to achieve the intersection number “b — 2”, with
all but two blocks in common, since 5 — 2 = 3 ¢ 153(6), we use a {Ky, K¢, K33}
decomposition of K, with two Ky blocks and m — 3 Kjg blocks. This assumes that
m 2 3, so n 2 18; the case of order 12, therefore, must be considered separately.

Then, for m > 3, as before we obtain I.53(6m) = JS3(6m).

Fourthly, when n = 6m + 3, we use a {Kjg, K¢, K3 3}-decomposition of K, with
one Ko block and m — 1 Kg blocks, and obtain IS3(6m + 3) = JS3(6m + 3).

It now remains to consider the case of order 12.

EXAMPLE 3.6 1S3(12) = {0,1,...,20,22}.

First, all intersection numbers except 20 (that is, (b — 2)) can be achieved with the
following construction using two designs of order 6 and four lots of decompositions of
K33. Let A, B, C and D each stand for a set of three vertices. Then on sets {4, B}
and {C, D}, place Ss-designs of order 6, and on the sets {A} U {C}, {4} U {D},
{B} U {C}, and {B} U {D}, place S3-decompositions of K33. The result is an S3-

design of order 12, and we see that
153(12) D 2% 153(6) + 4 % IS:;(K;;’:;)

which includes all required intersection numbers except 20.

Secondly, in order to obtain this intersection number, note that in the above con-
struction, one of the four decompositions of K31 is on the sets {A} U {C} while
another is on the sets {A} U {D}; so there will be two blocks of the form (= : u,v,w)
and (z : r,s,t). These may be traded with (z : u,v,t) and (z : r,s,w); so we have
20 € 153(12) as required. O

The results in this subsection have shown

THEOREM 3.1  The intersection numbers for S3-designs are given by I1S3(n) =
{0,1,...,b—2,b} where n =0 or 1 (mod 3), n > 6 and b = n(n — 1)/6, except that
3 ¢ 155(6). 0
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3.2 S;-designs

Since the number of blocks in an S4-design of order n is n(n — 1)/8, we must have
n = 0 or 1 (mod 8). First note that once we have intersection numbers I.54(8m),
we can easily obtain I1S4(8m + 1). For in order to construct an S4-design of order
8m + 1 from one of order 8m we may simply adjoin one new vertex, say z, and 2m
new blocks of the form {(z : a,b,¢c,d) | ¢,b,¢,d € V} where V is the vertex set of the
design of order 8m. Moreover, by judicious interchange of the 2m elements, we see
that we may construct two Sy-designs of order 8m + 1 so that

I84(8m +1) D I84(8m) +{0,1,2,...,2m — 2,2m}.

Now consider the following examples.

ExaMPLE 3.7 IS4(Ks4) 2 {0,4}.

Imitate the construction in Example 3.1 above, but taking four vertices rather than
three in each partite set. O

EXAMPLE 3.8 154(8) = {0,1,2,3,4,7}.
With vertex set {0,1,2,3,4,5,6, 7}, let blocks B be as follows.

(0:1,2,3,7),(1:2,3,4,7),(2:3,4,5,7),(3 : 4,5,6,7),
(4:5,6,0,7),(5:6,0,1,7),(6: 0,1,2,7).

The following table shows the intersection values achieved by applying the given
permutations to the vertices.

permutation | intersection size
(0123) 0
{0012) 1
(012) 2
(00 0) 3
(01) 4
identity 7
0
ExAMPLE 3.9 I154(9) ={0,1,2,3,4,5,6,7,9}.
As indicated in the remark preceding Example 3.7,
I54(9) 2 I154(8)+ {0,2}
= {0,1,2,3,4,7} +{0,2}
= {0,1,2,3,4,5,6,7,9}.
O
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WXAMPLE 3.1U0 154(10) = U, 1,...,46,0Uy.

First, all intersection numbers except 28 (that is, (b — 2)) can be achieved with the
following construction using two designs of order 8 and four lots of decompositions of
Ky4. Let A, B, C and D each stand for a set of four vertices. Then on sets {4, B} and
{C, D}, place S4-designs of order 8, and on the sets {A}U{C'}, {A}U{D}, {B}uU{C},
and {B} U {D}, place Ss-decompositions of K4 4. The result is an Ss-design of order
16, and we see that

154(16) D2x 154(8) + 4 % IS4(K4,4)

which includes all required intersection numbers except 28.
Secondly, in order to obtain this intersection number, take another design of order 16
with vertex set Z15 U {oc} and 30 blocks as follows:

(icid+1,i42i+3,i+4), (G:i+54i+6i+7,00), i€ ZLis.

The two blocks (0:1,2,3,4), (0:5,6,7,00) trade with (0: 5,6,7,4), (0:1,2,3,00),
changing just two blocks, and thus showing that 28 € 154(16) as required. O

Again, using the remark at the start of this subsection, using the above example
it is easy to obtain 1S54(17) = {0,1,...,32,34}.

Now the general construction for order 8m uses a {K1¢, K3, K4 4}-decomposition
of Kgmm with one Kig block and m — 2 Kjg blocks. Explicitly, let the vertex set be
{(3,7) 11 €4 < 2m, 1 < j <4}, and let the Ki¢ block be {(7,7) | 1 < 4,7 < 4}, the
Kg blocks be {(2¢ — 1,7),(2¢,7) | 1 € 7 < 4} for 3 < i < m, and the K44 blocks be
{{a,7) 11 <7 <4}U{(b,7) |1 < j < 4} for all ¢ # b where a and b are not both first
components of elements in the same Ki5 or K3 blocks. Then I54(8m) = JS4(8m).

The only difference for order 8m + 1 is that, since 1.54(9) includes all intersection
numbers expected, including “b — 2", we may merely use a { Ky, K4 4 }-decomposition
of Kgm+1, in order to achieve I54(8m + 1) = JS54(8m + 1).

We have now proved

THEOREM 3.2 The intersection numbers for Si-designs are given by ISi(n) =
{0,1,...,6~2,b} where n =0 or 1 (mod 8), except that 5 & 154(8). , O

4 D, a triangle with pendant edge
Once again, since D has four edges, we find that a D-design of order n contains
n(n —1)/8 blocks and so n = 0 or 1 (mod 8). However, since D contains an odd cycle

(a triangle!) there is no D-decomposition of any bipartite graph, so in this case we
require a D-decomposition of a tripartite graph.

EXAMPLE 4.1 ID(K2’2'2) 2 {0, 3}, and I.D(K4,4’4) D) {0,3, 6,9,12}.
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For K332, take the vertex sets {1,1'} U {2,2'} U {3,3'}. Then disjoint D-decomposi-
tions are given by {(1,3,2)-1', (3,2',11)-3', (1,2',3')-2} and {(1, 3',2')-1, (3,2,1)-
3, (1,2,3)-2'}. Thus {0,3} C ID(K22,2)-

Now let the vertex sets for K444 be {A, D} U {B,E} U {C, F}, where each letter
here is itself a set of two points. Then we may take four decornpositions of K339 on
the four sets AUBUF, AUEUC, DUBUC and DU E U F, yielding 12 blocks
for a D-decomposition of K444. Then using the intersection values for ID(Ka 3 2)
we obtain 1D(Ks44) 2 {0,3,6,9,12}. O

For the general construction, we take the vertex set V = {(7,7) |1 €4< 2m, 1 <
J<4}ifn=8m,or VU{cc}ifn=2=8m+1.

Then if 2m = 0 or 2 (mod 6), 2m > 6, we may use a GDD with group size 2
and block size 3 on {1,2,...,2m}, while if 2m = 4 (mod 6), 2m > 10, we may
use a GDD with one group of size 4 and the rest of size 2, and block size 3 on
{1,2,...,2m}. These exist; see for instance Lemma 2.1 in [1], or the general result
in [7). Then for each group {zi,...,z4} of the GDD, place a D-design on the set
{(zi,7) |1 <4< g, 1 <j <4} oron this set together with co. Since the group sizes
are 2 or 4, this means we require D-designs of orders 8, 9, 16 and 17. And for each
block {a,b,c} of the GDD, place a D-decomposition of Ky44 on {(a,7) |1 <j <
2 U{(,5) 11 <5 <4FU{(es) |1<] <4}

It now remains to deal with orders 8, 9, 16 and 17.

ExAMPLE 4.2 ID(8) = {0,1,...,5,7}.

Take the vertex set {oo} UZry, and blocks B = {(3,1+41,3+4%)~co | i € Z1}. Note the
following trades.

X ={(1,2,4)-00, (3,4,6)-0c0} trades with X' = {(1,2,4)-3, (o0,4,6)-3},
Y ={(2,3,5)-00, (4,5,0)-0c} trades with ¥' = {(2,3,5)-4, (00,5,0)-4},

={(5,6,1)-00, (0,1,3)-00} trades with Z' = {(5,6,1)-0, (oo, 1,3)-0},
A= {(0,1,3)-o0, (2,3,5)-00, (5,6,1)-00} trades with

={(0,3,1)~o0, (2, 3)—00, (6,1,5)-00}.

Here X, Y and Z are pairwise disjoint, and A is also disjoint from X. Thus we
achieve the following intersection values, where a below denotes the permutation
(1 00) applied to B.

trades  blocks changed intersection achieved
Ba 7 0
X, Y, 2 6 1
X, A 5 2
X, Y 4 3
A 3 4
X 2 5
nothing 0 7

252



LAAMPLE 2.0 LIA9)= U, 1,...,(,9).
With vertex set Zg, let D = {(i,i+ 1,1 +4)-(1 +6) |1 € Zg}. The following trades

are disjoint:

X ={(1,2,5)-7, (4,5,8)-1} trades with X' = {(8,4, 5)-7, (2,5,1)-8},
Y = {(2,3,6)-8, (5,6,0)-2} trades with Y’ = {(3,6,2)-0, (0,5,6)-8},
Z = {(0,1,4)-6, (3,4,7)-0, (6,7,1)-3} trades with

z'={(3,1,7)-6, (0,7,4)-3, (6,4,1)-0}.

Now denote permutations by « = (01), 8 = (125), v = (1234), and let T =
{(7,8,2)-4, (8,0,3)-5}. The following table then completes this example.

blocks intersection size
DN Dy 0
DN DB 1
Dn{X'uY'uz'uT} 2
DN Da 3
Dn{xuY'uz'uT} 4
Dn{X'uY'uzuT} 5
Dn{xXuvyuz'uT} 6
Dn{X'UYuUuzZuT} 7
DnND 9

ExAMPLE 4.4 ID(16) = {0,1,...,28,30}.
With vertex set Z15 U {0}, a design is given by

{(i,1 +4,6 +2)~(8+1), (5,3+14,7+1i)oo} wheres € Zs.
Now blocks A4; trade with Ai for 0 <17 < 6 where

A; = {(3,3414,7+1)-00, (T+1%,10+1,14 +14)-oco} and
Al {G,344,7+4)~(10+1), (741,00 +1,14 +4)~(10 +i)}.

Il

Disjoint from these trades are the following five trades, B; with B}, for 0 <17 < 4
where

3

B; = {(3,1+%,6 +1)~(8+14), (5+1,6+1,114+4)~(13+14), (10+7,11+2,1+2)-(3+14)}
and
B! = {(3,6 +14,1 +3)~(3+1), (544,11 +%,6+43)~(8+14), (10+1,141,114+1)~(13+1)}

(addition in Zy5). Thus we have trades on 2a + 3b blocks, where 0 < ¢ < 7 and
0 € b < 5. This means that we may trade 2a + 3b = ¢ blocks for 2 € ¢ € 29. Thus
{1,2,...,28} C ID(16). And trivially 30 € I.D(16). Finally, to show 0 € I.D(16), let

X = {(6,9,13)-c0, (13,1,5)-00, (14,2,6)-co0}

253



which trades with
X' ={(14,2,6)-92, (1,15,13)-9, (13,6,00)-15}.

Thus trading {B:}+ o U {4:}2_o U {X} will change all the blocks, so 0 € ID(16).
This concludes the example. 0
ExaMPLE 4.5 ID(17) = {0,1,...,32,34}.
Let the vertex set be Z17. Then a design is given by

D={0G:+3,i+8)-(:+4+12), 5, + L,i + T)-(44+9) | 2 € Z17}.
Let permutations on Z17 be given by

oo =(012345678), oy =(012345678910),
oy = (01)(23456), 3= (01)(2345), as=(01234).

Then |D N Da;| = 1, 0 < 1 < 4, so {0,1,2,3,4} C ID(17). For the remaining
intersection values we consider trades as follows.

The set 4; = {(1,4,9)-13, (13,16,4)-8} + ¢ (mod 17) trades with A} = {(16,4,13)-
9, (9,1,4)-8} + 4 (mod 17), 0 < 7 < 4. Disjoint from this are the blocks

B; = {(1,2,8)-10, (9,10,16)-1} + 3 (mod 17)
trading with
B} = {(8,2,1)-16, (9,16,10)-8} +i (mod 17),
0<2< 7. Also let
Ci = {(0,3,8)-12, (12,15,3)-7, (11,12,1)-3} + 14,
which trades with
C! = {(0,8,3)-7, (12,15,3)-1, (1,11,12)-8} +1,
for0 <1< 4.

Note that Cp is disjoint from A4;, +=10,1,2,3
Cy is disjoint from A;, 1 =1,2,3,4
C, is disjoint from A4;, :=0,2,3,4,
C3 is disjoint from A4;, 1=0,1,3,4
Cy is disjoint from A;, 1 =10,1,2,4

Thus we may obtain trades of sizes 2, 3, ...,28, 29, yielding {5,6,...,31,32} C
ID(17). Finally, 34 € ID(17) trivially. This completes the example. O

Now combining the results of this section we have

THEOREM 4.1 The intersection numbers for D-designs are given by ID(n) = {0, 1,
.ov, b—2,b} where b=n(n—1)/8. |
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o l1lhegraph Y

A Y-design of order n contains n(n — 1)/8 blocks, and so n = 0 or 1 (mod 8). The
only ingredients we need are Y-designs of orders 8 and 9, a Y -decomposition of Ky 4,
and their intersection numbers. (In fact, it suffices to use IY(Ky4) 2 {0,4}.)

EXAMPLE 5.1 ITY(K44) 2 {0,4}.

Let the vertex set be {1,2,3,4} U {5,6,7,8}. Then two disjoint decompositions are
given by
{(4,7,1;5,6), (1,8,2,6,7), (2,5,3;7,8), (3,6,4;5,8)}

and

{(8,3,5;1,2), (5,4,6;2,3), (6,1,7;3,4), (7,2,8;1,4)}.

ExAMPLE 5.2 IY(8) = {0,1,2,3,4,5,7}.
With vertex set {oo} U Zr, take blocks D = AU BU C where

il

A
c

{(0, 1,3;6,00), (1,2,4; 0,00)}, B= {(2,3,5; 1,00), (3,4, 6; 2,00)},
{(4,5,0;3,00), (5,6,1;4,00), (6,0,2;5,00)}.

I

Blocks A trade with A' = {(6,3,1;0,2), (3,00,4;0,2)},

blocks B trade with B' = {(1,5,3;2,4), (5,00,6;2,4)} and

blocks C trade with C' = {(4,5,0;3,2), (4,1,6;5,0), (5,2,00;1,0)}.

Now let o denote the permutation (01) and 8 the permutation (012). We obtain the
following intersection numbers, which completes the result.

blocks intersection
DnDB 0

DN Da
Dn{AuUB'UC"}
Dn{AUBUC}
Dn{AuBUC"}
Dn{AuUB'UC}
DnD

O D W B

ExaMPLE 5.3 IY(9) = {0,1,...,7,9}.

Let the vertex set be Zg, and blocks be D = {(0+1,1+%,3 +1;6 +3,7+4) | 7 € Zg}
(addition mod 9). The blocks

Ai={(i—1,5,24+55+5,6+1), (5,1 +4,3+56+5,7+0)}, 1<i< 4,
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trade with
Al = {(644,2+2,51-1,3+1), (2+4,64+4,3+%14+13,7+4)}, 1 <i<4
Also the blocks

B = {(3i-3,3i—2,3;3 43,3 +4),
(31:~2,3i~1,3i+1;3i+4,3i+5), (37;“1:37;;37;+2;37:+5,3i+6)}’

1 <1 <3, trade with the blocks

Bl = {(3:+3,3i,3 — 2;3i — 3,3 — 1),
(34,3 +4,3i + 1;3i — 1,30+ 5), (36 +2,30 +5,3 +1;3i + 4,3 — 1)},

1 <1 £ 3. Thus we obtain the required intersection numbers:

blocks intersection
D n{BjuUB)U B}

D 0{{(8,0,2;5,6)} U{AL |1 <i<4}}
Dn{A1U A5 U Ay U By}

D n {A}U 4, U A5 U Bs}
Dﬂ{AlUA2UA%UBé}

DN {4} U 45 U 43 U Bs}

DN {A;1U A3 U A3 U B}
Dﬂ{A’lUA2UA3UB3}

DnD

<o

W =3 O U P WD

Thanks to Lemma 1.1 we now have

O

THEOREM 5.1 The intersection numbers for Y-designs are gven by IY(n) = {0,1,

., b—2,b} where b =n(n-—1)/8.

6 Summary

d

The following table summarises the intersection results for G-designs where G is a

connected graph on at most four vertices or at most four edges.

In the table, b denotes the number of blocks in a G-design of order n, and the
impossible intersection values are b — z where z is as given. A reference is listed if

the result is not in this paper.
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T

G Comments Ref
Ko ® & n{n —1)/2 | all eccept b unique design!
Py e—eo—@ n(n —1)/4 1 n = 0,1 (mod 4)
n = 0,1 (mod 3),
Pi o o o e n(n —1)/6 ; n> 4
B e o o e | M(n—1)8 I n = 0,1 (mod 8)
n = 1,3 (mod 6),
s V nn—-1)/6 | 1235 5.8 ¢ 1K (9). 18]
D p—_ﬁ. n(n —1)/8 ] n = 0,1 (mod 8)
v >_+_‘ n(n —1)/8 ] n = 0,1 (mod 8)
_ nz=6n=01 (mod8),
53 Oé n(n—1)/6 y 3 ¢ 154(6)
n = 0,1 (mod 8),
Sy é n(n’ - 1)/8 1 5 g 154(8)
on I::I n(n —1)/8 ] n =1 (mod 8§) 4]
n = 0,1 (mod 5),
e EI R ne6rsgin)
n = 1,4 (mod 12);
K, n(n—1)/121 12,3457 | 7,9,10,11,14 ¢ I1(16); /6)
several unknown values
for n = 25,28,37.
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