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Abstract.

An m-degenerate graph is a graph, every subgraph of which has minimal degree
at most m. An (my,ma,...,m,)-composed graph is a graph, the edge set of which
can be partitioned into s sets generating respectively graphs being mq,mq,, ..., my

1+8Zm;m7)J

g
degenerate. We conjecture that such a graph is 3 m; + [$(1 + T<icics

2=1
colorable. Partial results are obtained, but not even Tarsi’s case: my; = 1, my =2

is settled.

1. Introduction

The following two definitions of m-degenerate graphs have been formulated
and shown to be equivalent in [8]. The same paper contains a study of the most
elementary properties of m-degenerate graphs we shall use below. Also we mention
[1] for further results on this class of graphs.

Definition 1. A graph G is said to be m-degenerate, for m a nonnegative integer,
if every subgraph of G has minimum degree at most m.

Definition 2. A graph G is said to be m-degenerate if there is a labelling
v1,vg,...,V, Of its vertices such that for ¢ = 1,2,...,n there are among the neigh-
bors of v; at most m vertices v; with j > 7. Call such edges outgoing.
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The following consequences of Definition 2 are also observed in [8] and [5].

Proposition 1. If G is m-degenerate and has n vertices, then

m(m + 1) .

M IB(G)] < mn— L

Proposition 2. If G is m-degenerate, then G is (m + 1)-colorable.

In papers [4,5,6,7] we developed the concept of (my,ms,...,m,)-composed
graphs.

Definition 3. A graph G is said to be (my,ma,...,mg)-composed if the edge
set of G can be partitioned into the edge sets of graphs My, M, ..., M, being
respectively my, mo, ..., m, degenerate.

The main result of [5] is

Theorem 0. K, is (my,ms,...,ms)-composed if and only if
" 1

(2) nSZmi-kE(H-\/lHB Z mgm])J.
g 1<i<j<s

Denote the right side of (2) by v(my,ms,...,m,) and by v, for short. To prove
the only if part of Theorem 0, one uses the following generalization of Proposition
1. A constructive proof of the if part is given in [5].

Proposition 3. If G is (my,ms,. .., m,)-composed and has n vertices then
8 &
mi(m; + 1)
E(G) <n ™m; — ————— et
~; (@) < §=j }; 5

The generalization of Proposition 2 is difficult. The cases of (1,m)-composed
and (my,mg)-composed graphs were considered in [4] and [5] respectively. This pa-
per is an attempt to establish the colorability of (my,ms, ..., ms)-composed graphs
using tools and methods similar to those in [4] and [5].

2. Bounds

An obvious bound is established in the next proposition.
3
Proposition 4. If G is (my,mq,...,m,)-composed then it is 1] (m;+1) colorable.
i==1
Proof: By Proposition 2 the graphs M; are (m; + 1)-colorable and the cartesian
product of the colorings will do.

A bound better in general can be obtained as a consequence of the following
fact.

202



LTOpPOsItIon a. A1 & 15 (TN, 1o, ..., g )-CoOINposed tien W 15 4 ) iy — L degell-
=1
erate.

Proof: One shows that every subgraph of G has a vertex of degree at most

2 Z m; — 1. This follows from. the fact that, the average degree of an m degenerate

=1
graph is less than 2m.

This gives immediately:

Proposition 6. If G is (my,ms,...,m,)-composed then G is 2 i m; colorable.
=1

Observe that the bound of Proposition 6 is never worse than the bound of
Proposition 4 and is better except in the case s = 2, m; = 1, and mp = m. When
m = 1 the bound is exact.

For every value of m > 1 it is not known whether the bound 2(1 +m) is exact.
An interesting case is when m = 2. There are 5-chromatic (1,2)-composed graphs,
for example Ks. The bound is 6, but it is still not known whether there exists
(1,2)-composed graphs which are 6-chromatic. This question is due to Tarsi and
raised in connection with [10].

Observe, that v(1,2) = 5.

In general by Theorem 0 there are v(my, ma, ..., m,) chromatic (my,ms, ..., ms)-
composed graphs and we close this section by conjecturing that a better bound than
the bound of Proposition 6 can be obtained.

Conjecture 1. Ifagraph G is(my,...,m,)-composed then G is v(my, mg, ..., me)-
colorable.
The only case for which this is a theorem is m; = mg = -+ = m, = 1. Indeed,

then v(1,1,...,1) = 2s and this equals the bound 2 Z m;. So we have

i=1

Theorem 1. Any (1,1,...,1)-composed graph is 2s colorable.

3. Approach Based on Counting Edges

A natural way for proving Conjecture 1 would be to use the facts that a
(my, ma,...,ms)-composed graph has not too many edges and a (v, + 1)-chromatic
critical graph has not too few. This idea works for the complete graph K, 41 but
for more general (v, + 1)-chromatic critical graphs it does not work.

Let us illustrate this by an example. Consider the case m; = 1,mq = 2. Then
vy = 5, K¢ has 15 edges and this is more than a (1,2)-composed six vertex graph
can have, namely 14, as shown in Proposition 3.
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However, the 6-chromatic critical graph H on 11 vertices

has 29 edges and a (1, 2)-composed graph on 11 vertices can have this many edges.
Proposition 3 gives 3.11 — 4 = 29. The graph H contains two blocks K — e. Define

a similar graph containing ¢ such blocks. H; is also 6-chromatic and critical, has

5t + 1 vertices and the number of its edges is less than a (1, 2)-composed graph on
5¢ + 1 vertices can have. On the other hand, we will show by other methods that
H, is not (1,2)-composed for any t.

For more general v, the situation is simnilar.

4. The Structural Approach

We shall describe some constructions of Hajés [3] and Ore [9] starting with
K41 which provide all graphs that are not v-colorable.
Since K, 41 is not (my, . .., m,)-composed one could hope that non-composedness

is preserved by the constructiomns.

4.1 Hajés’s Construction. The following construction called conjunction is
due to Hajos.

Definition 4. The conjunction Gy of two disjoint graphs GGy and G4 is the graph
obtained by deleting the edges e; = (a1, b1), €2 = (az, b2) of G and G respectively,
identifying the vertices a; and as to a single vertex a and adding a new edge (b1, ba).

One of the main results of this paper is the following, stating that the Hajds

conjunction preserves the property of not being (my,mg,...,m;)-composed.

Theorem 2. If the graphs G; and G, are not (my,ma,...,ms)-composed then

their conjunction Gy is also not (my,ma,...,m,)-composed.
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Frool: ouppose the contrary, then Ior some ) the edge (01,02) belongs to M
and there is a labeling +; of M; showing that M; is m; degenerate. Denote the
graph G; —e; and G; — e3 by G7 and G respectively. Then those graphs are
(my,ma,...,ms)-composed while G; and (G5 are not. Suppose without loss of
generality that ¢j(b1) < ¢;(by) and that ¢j(a) > ¢j(b1). Then the edge (b1,b2) can
be replaced by (b1, a) contradicting the assumptionon Gy. If ¢;(a) < ¢j(b1), observe
that the number of outgoing edges from a is at most m; so it cannot be m; in both
graphs G| and G5 . Let this number be smaller in G . Then the edge (a, b1) can
be added having the same contradiction as above.

This result does not prove our conjecture since not every non-(v,)-colorable
graph can be constructed in this way starting with K, 41’s. It proves, however,
that our claim that the graph H: introduced at the end of section 3 is not (1,2)-
composed for any t, since Hy can be obtained by successive conjunctions of Kg’s.

In order to obtain every not (v, +1)-colorable graph, one can use a construction
of Ore called merger.

Definition 5. A merger of the disjoint graphs (1 and Gy is the graph G°
obtained from Gy, the Hajoés conjunction, by identifying « — 1 additional pairs of
vertices a', a” a' € V(G — a1), o' € V(Gy — ay) excluding the pair by, by, but not
bi,a" or a',by. Denote the set of identified vertices by A.

If the number of pairs including ay, a2 is & the merger is called an a-merger.
If B <o <vitis called a [B,v]-merger. If G is obtained from K,’s by applying
successive mergers it is called a v-amalgamation.

Ore proved that every graph which is not v-colorable must contain a (v + 1)-
amalgamation, hence every critical (v+1)-chromatic graph is a (v+1)-amalgamation.

The statement generalizing Theorem 2 to mergers is not true. However, this

does not disprove our conjecture 1 and we state the following equivalent conjecture.

Conjecture 2.

No (v, + 1)-amalgamation is (my,msz,...,m,)-composed. In particular for
my = 1, my = 2, no 6-amalgamation is (1, 2)-composed.

As a pessimistic observation we mention that by a theorem of Ore [9] the
statement “No 5-amalgamation is planar” is equivalent to the 4-color theorem.

Although a merger does not preserve the property of not being (mq,...,ms)-
composed, in general, the property is preserved by a-mergers if « is not too big.

Theorem 3. If Gy and G5 are not (my,ma,...,ms)-composed then any a-merger
G° of them is not (my,...,m;)-composed provided

(3> aSZm,’.
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Proof: First consider the case when the a-merger is b-free 1.e. neither of by, by
occurs in any of the o pairs identified. The first part of the proof is showing as in
the proof of Theorem 2 that in the labelling of M; in G°, j being the index such
that (b1, b2) is an edge of Mj. ¢;(a) must be smaller than ¢;(b1) and ¢;(b2). Then
observe that by (3), not for every i the number of outgoing edges from a and also
from any other vertex in A can be m; in both Gy and G,. Let j be the index with
less than m; edges outgoing in say G.

One can remove edges conveniently from some M} to another My and have
precisely for 7 less outgoing edges from ¢ than m; say in Gy. Then Gy with (a1, b1)
returning to it is (my, ma, ..., ms)-composed — a contradiction. It is not difficult to
prove the non-b-free case.

Me

Theorem 4. If ¢ is a (v, + 1)-amalgamation obtained exclusively by [1, ) ms]-

i=1

Il

mergers, then G is not (my, my, ..., my)-composed
Proof: 'This is a corollary of Theorem 3.

5. Combined Structural and Counting Method

Combining the counting and structural arguments, we shall establish a theorem
similar to Theorem 4, but for a-mergers restricted to a different interval.

For this purpose, we introduce two definitions.

Definition 6. A graph G on n vertices with more edges than a (my, ma, ..., m,)-
s s v
composed graph on n vertices can have (namely, n Y. m; — 5 ZHZEUY will be
i=1 i=1
called (my, ma,...,m,)-redundant.

Definition 7.  Define

- 1
Mmi,mae, ..., m,) = E m; + {§<1—\/1+8 E m,‘m])‘I .
i=1

1<i<j<s

This will be denoted by A, for short.

Theorem 5. IfG; and Gy are (my,ma, ..., m,)-redundant graphs then any [Xs, vs)-
merger G of them is also (my,ms,...,m,)-redundant.

Proof: Let the number of vertices of G; and G2 be respectively n; and ns.
Suppose, contrary to the assertion in the theorem, that for some a-merger

(4) |E(G)] < (n1 +n2 — a)zmi - % Zmi(mi +1).
=1 =1
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Dy the assumptions on (; and (o one nhas 1or £ = 1,2

(5) |E(Gy)| > Z (nzmz‘ - *;“ -mi(m; + 1)) +1,

therefore

o E(G)| > (mn + ) Zmi - 22 mi(m; +1) Oé(ozg_ 1) .
i=1 i=1 -

From (4) and (6), one gets

a? —(1 —I—ZZmi)a +Zmi(mi +1)>0.
This contradicts the assumption that A, < a < v,.

Theorem 6. If G is a (v, + 1)-amalgamation obtained exclusively by [As,vs]-

mergers then G is not (my,ma, ..., m,)-composed.

Proof: This is a consequence of Theorem 5.

6. Final Remarks

The main results of this paper are Theorems 4 and 6. We mention here without
proof some more results of the same kind which may help others to accomplish the
proof of our conjectures. ‘

Theorem 7. If Gy and G are (my,ma, ..., m,)-redundant graphs then any b-free
a-merger with a > g contains an (ma, ..., ms)-redundant graph and therefore is
not (my,ma,. .., mg)-composed.

Theorem 8. If each of Gy and G4 contain an (ma,...,ms)-redundant graph then
every b-free merger G of them is not (m1,mga, ..., my)-composed.

Finally we mention two recent papers [2] and [11] dealing with more specific
decompositions into degenerate graphs.
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