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every subgraph of which has minimal 

at most m. An (mI, m2, ... , the set of which 

can be partitioned into s sets generating rpc,,,prtlvplv 

We conjecture that such a graph is )J 
colorable. Partial results 

is settled. 

~VU<A>"Uv',"". but not even Tarsi's case: ml = 1, m2 = 2 

1. Introduction 

The following two definitions of h;:we been formulated 

and shown to be equivalent in [8]. The same paper contains a study of the most 

elE'In'en1;ary properties of m-degenerate graphs we shall use below. Also we mention 

[1] for further results on this class of graphs. 

Definition 1. A graph G is said to be m-degenerate, for m a nonnegative integer, 

if every subgraph of G has minimum degree at most m. 

Definition 2. A graph G is said to be m-degenerate if there is a labelling 

VI, V2, ... ,Vn of its vertices such that for i = 1,2, ... ,n there are among the neigh­

bors of Vi at most m vertices Vj with j > i. Call such edges outgoing. 
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The following consequences of Definition 2 are also observed in [8] and [5]. 

Proposition 1. If G is m-degenerate and has n vertices, then 

(1) IE ( G) I mn - --'-------'-
2 

Proposition 2. If G is m-degenerate, then G is (m + I)-colorable. 

In developed the concept of (ml' m2,. ., ms )-composed 

Definition 3. G is said to be (ml' m2,' .. ,ms )-composed if the edge 

set of G can be into the of Ml , NJz,. ., Ms being 

rpc'nprh~rpl"T m1, m2, . ,rn s de,g;eIler·atle. 

The main result of IS 

Theorem O. is (m1' m2, .. , ms )-composed if and only if 

i=l J 
(2) n 

Denote the side of by v( ml, m2, .. , 

the only if part of Theorem 0, one uses the following 

Vs for short. To prove 

U,HLJU,DHJH of Proposition 

1. A constructive proof of the if part is in [5] 

3. If G is (ml' m2, . .. ,ms)-composed and has n vertices then 

IE(G)I n~mj-
i=l 

The generalization of Proposition 2 is difficult. The cases of (1, m)-composed 

and (ml' m2 )-composed graphs were considered in [4] and [5] respectively. This pa­

per is an attempt to establish the colorability of (ml' m2, ... ,m s )-composed graphs 

using tools and methods similar to those in [4] and [5]. 

2. Bounds 

An obvious bound is established in the next proposition. 

Proposition 4. If G is 
s 

,m2, .. , ms)-composed then it is I1 (mi + 1) colorable. 
i=l 

Proof: By Proposition 2 the graphs Mi (tre (mi + I)-colorable and the cartesian 

product of the colorings will do. 

A bound better in general can be obtained as a consequence of the following 

fact. 
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rroposruon ::>. iT l:r 1S \ml) m2, .. , ms)-composea tnen li L mi - 1 aegen-

erate. 

Proof: One shows that every 
s 

2 I: mi 1. This follows from the fact 
i=l 

graph 

This 

than 2m. 

immediately: 

of G has vertex of degree at most 

the of an m dc.gelGel:at 

Proposition 6. If G is (ml, m2,·· 1 i_r.r>rr.n(,cu"rl then G is mi colorable. 

Observe that the bound of Proposition 6 is never worse than the bound of 

Proposition 4 and better except in the 

m = 1 the bound exact. 

8 1, and m2 = m. When 

For 
An 1l,tpr"Qt·,n 

value of Tn 1 it is not known whether the bound 2( 1 + m) is exact. 

case is when m 2. There 5-chromatic (1, 2)-composed graphs, 

for eX,:1mPle 6, but it still not known whether there exists 

(1, graphs which are 6-chromatic. This question is due to Tarsi and 

raised in connection with [10]. 
that v(l, 2) = 5. 

In 

composed 

by Theorem a there are v( ml, m2, ... , chromatic (mIl m2,··· ,ms)­

that a better bound than and we close this section 

the bound of Proposition 6 can be obtained. 

Conjecture L If a graph G (ml' ... 1 

colorable. 

)-OOITLPC)sed then G is v( ml, m2, ... , ms)-

The only case for which this is a theorem is mI m2 = ... = ms = 1. Indeed, 

then v( 1, 1, ... , 1) 28 and this equals the bound 2 mi. So we have 

Theorem 1. Any (1,1, ... ,I)-composed graph is 23 colorable. 

3. Approach Based on Counting Edges 

A natural way for proving Conjecture 1 would be to use the facts that a 

(mI' m2,· .. , ms)-composed graph has not too many edges and a (vs + I)-chromatic 

critical has not too few. This idea works for the complete graph ]{v.+1 but 

for more general (vs + I)-chromatic critical graphs it does not work. 

Let us illustrate this by an example. Consider the case ml = 1, m2 = 2. Then 

V2 = 5, J(6 has 15 edges and this is more than (I,2)-composed six vertex graph 

can have, namely 14, as shown in Proposition 3. 
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the 6-chromatic critical H on 11 vertices 

11 vertices can have this many 

H contains two blocks If6 - e. Define 

a similar t such blocks. Ht 6-chromatic and critical, has 

51 + 1 vertices and the number of its is less than a (1, 2)-composed graph on 

51 + 1 vertices can have. On the other 

H t is not (1, 2)-composed for any 1. 

we will show 

For more V s the situation is similar. 

4. The Structural Approach 

other methods that 

We shall describe some constructions of [3] and Ore [9] starting with 

all graphs that are not v-colorable. 

Since J( 1/. +1 is not (ml' ... ,ms)-composed one could hope that non-composedness 

is preserved by the constructions. 

4.1 Hajas's Construction. 

due to Rajas. 

The following construction called conjunction is 

Definition 4. The conjunction Go of two disjoint graphs G 1 and G2 is the graph 

obtained by deleting the edges C1 = (aI, bl ), C2 (a2' b2) of G I and respectively, 

identifying the vertices a1 and 0,2 to a single vertex 0, and adding a new edge (b I , b2 ). 

One of the main results of this paper is the following, stating that the Rajas 

conjunction preserves the property of not being (ml' m2, ... ,ma )-composed. 

Theorem 2. If the graphs G1 and G2 are not (m1' m2, ... ,ms )-composed then 

their conjunction Go is also not (m1' m2, ... ,ms)-composed. 
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Proof: 

and there 

graph G1 

(mIl m2,·· , 

contrary, then for some J the 

&) of Mj 
- ez by 

(b1 , b2 ) belongs to Mj 

Denote the 

Then those are 

;:)U.DI)OS;e without loss of 

(b 1 , b2 ) can generality that L j( bI) 
be replaced by (b1 , a) UU.L'-'~JLUF-. the assumption on G1. If Lj(a) ), observe 

that the number of VU.v~\JH'.'" edges from a at most m j so it cannot be mj in both 

. Let this number be smaller in Then the b1 ) can 

the contradiction above. 

This result not prove our since not every non-( v s )-colorable 

graph can constructed in this way with + 1 It proves, 

that our claim that the H t introduced at the of section 3 not (1, 

composed for any t, H t can be obtained by of K6 'so 

In order to obtain every not (v s + 1 )-colorable 

of Ore called 

conjunction, 

and IS the 

Q J. additional pairs of 

Definition 5. 

obtained from 

vertices a', a" al), a" V( G z a2) excluding the pair b1, b2, but not 

hI a" or at 1 b2 Denote set of identified vertices A. 

If the number of a the merger is called an a-merger. 

If f3 ::; 0: ~f it called If is obtained from Ie.! by 

succeSSIve rnt:'rrr,or<o it is called a v-amalgamation. 

Ore that every graph which is not v-colorable must contain a (v + 1)-
amalgamation, hence every critical (v+ 1 )-chromatic graph is a (v+ I)-amalgamation. 

The statement generalizing Theorem 2 to mergers is not true. However, this 

does not disprove our conjecture 1 and we state the following equivalent conjecture. 

Conjecture 2. 

No (vs + 1 )-amalgamation IS (ml' mz, ... ,ms )-composed. In particular for 

ml = 1, m2 2, no 6-ama1gamation is (1, 2)-composed. 

As a observation we mention that by a theorem of Ore [9J the 

statement "No 5-a.malgamation is planar" is equivalent to the 4-color theorem. 

Although merger does not preserve the property of not being (ml' ... , ms)­

composed, in general, the property is preserved by a-mergers if Q is not too big. 

Theorem 3. If G1 and are not (ml' m2, ... ,ms)-composed then any Q-merger 

GO of them is not (mIl'" ,ms)-composed provided 

(3) 
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Proof: First consider the case when the a-merger is b-free i.e. neither of bl , b2 

occurs in any of the a identified. The first of the is showing as in 

the proof of Theorem 2 that in the of M j in GO 1 j the index such 

that (b I , b2 ) an of 11/[j. smaller than i j (b I ) and ). Then 

observe that (3), not for every i the number of outg()lDLg from a and also 

Let j be the index with from any other vertex in A can be mi in both G I and 

less thanm) outgoing in 

from some Mh to another lvh and have 

than mj say in . Then G 1 with (aI, bI ) 

ret luning to it contradiction. It is not difficult to 

prove the non-b-free case. 

s 

Theoren1 4. If G by [1, :z= miJ-
i=1 

mergers, then G is not (mIl m2, . , 

Proof: This of Theorem 3. 

Combined Structural and Counting Method 

'-'V·~.lLIUH.UU.F, the C01untlD.g and structural ar~~UInent~3, we shall establish theorem 

similar to Theorem 4, but for a-mergers restricted to different intervaL 

For this purpose, we introduce two definitions. 

Definition 6. A graph G on n vertices with more 

composed on n vertices can have n 

Definition 7. Define 

i=1 

This will be denoted by As for short. 

Theoren15. IfG I andG2 are(mI,m2, .. , 

merger G of them is also (mI' m2, ... , ms)-redundant. 

than a (ml' m2,·.· ,ms)­

!Yti(mi+I)) will be 
2 

Proof: Let the number of vertices of G 1 and G2 be respectively ni and n2. 

Suppose, contrary to the assertion in the theorem, that for some a-merger 

(4) 
1 s 

IE(G)I:::; (ni + n2 - a) L mi -"2 Lmi(mi + 1) 
i=1 i=1 
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By the on C:h and (J2 one has tor f. 1 'J ,--

(5) IE(G,)I ;:> ;~, (n,m; ~ . m;(m;+ 1)) + 1, 
therefore 

(6) IE(G)I (nl + nz) L mi - 2 
2 

i=l i=l 

From (4) and (6), one 

This contradicts the assumption that As :s; a :s; VS' 

Theorem 6. If G is (vs I)-amalgamation obtained exclusively by [As, vs]-

mergers then G is not (ml' mz, ... ,ms )-composed. 

Proof: This is a consequence of Theorem 5. 

6. Final Remarks 

The main results of this paper are Theorems 4 and 6. We mention here without 

proof some more results of the same kind which may help others to accomplish the 

proof of our conjectures. 

Theorem 7. If G 1 and Gz are (ml' m2, ... , ms)-redundant graphs then any b-free 

a-merger with a: As contains an (mIl'" ,ms)-redunclant graph and therefore is 

not (ml' m2" .. ,ms)-composed. 

Theorem 8. If each of G I and Gz contain an (mI' ... , 'ffis )-redundant graph then 

every b-free merger G of them is not (mI' m2,.'" 'ffis)-composed. 

Finally we mention two recent papers [2] and [11] dealing with more specific 

decompositions into degenerate graphs. 
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