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ABSTRACT

It iz proved in this paper that for any integer nrSI,

there exist ZIMDILE (three incomplete orthogonal idempotent

Latin sguarss) if and only i+ vri4n.

1. INTRODUCTION

A Latin square of order n is an nxn array such thst every row
and every column  is & perouvtation of & set S={1,Z,-.,ni¥. &
transversal in a Latin sguare is a set of cells, one per row
and one psr column among which the wvmbols ooow precisely  one
each. A& transversal Latin square is a Latin sguare whose main
diagonal is a transversal. An idempotent Latin square is a Latin
sguare whose symbol is 1 in the cell {(1,1) (i=isny . It is  easy
to see that the existencs 49? a tranﬁversal Lat;n sLUare is
EquivaientAtD thie existence bf an idempotent Latin sguare.

Let M=€51182,m,5n} be a set of disjoint subsets of a =et 5. A
holey batin square having hole set B is  an o |S|x|8] array L.
indexed bv S, satisfyina the following properties:

1) every cell of L either contains & symbol of 8 or iz smoty,

(2} every symbol of § occours at most once in any row or colunn

of L.

131 the subarrays indexed by SixSi are emoty for  1<isn (these

subarrays are reterred to as holes).

{4) A symbol wed ocours in row or column b 1f 0 and  oniy i

W, tlei8xB) v iu QE;xSi)).

1=
The order of L is s=

. 1If the holes are pairwise disjoint,

the holey Latin sqgu is denoted by ILS(§551$54,MYS 1, where Y1V

. 2= “n
=18, | (1=18n). Two holey Latin squares

are
stands for incomplete and =
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L oand M on same symbol set S and hole st M are ssid to be
orthogonal if their superposition yields every ordered pair in
(Sx8iN{u, . . (5, «5,1). We use the notation KIMOLS(s:s
lesisn "7i77E
denote a set of kILS(s:si,sﬂ,mtsn) wher e any two of them ars
2

l,sz,m,sn) to

orthogonal. 1+ H=¢. we obtain kMOLS(s). If [Si]=1 (1<ign), we

obtain KMOILS(s). If H={57, we simply write kIMOLS(s,s ). If |8, |
=1 (2%1%n), we obtain kIHDILS(s,si). It is easy to see that the
existence of (k+1§IﬁOLS(S,sX) implies the existence of

kIMBILS{E,si). The esxistence of kMOLS(s) is equivalant to the
existence of kIMOLS(s,1), and the existence of kMOILS(s) is

eouivalent to the existence of KIMOILS(s:1i,1).

KIMOLS and kIMOILE nave plaved an important role in  the
construction of various kinds of combinatorial designs. In [1113,
Horton started to look at the existence of kKIMOLS. Simple counting

shows the following.

Theorem 1.1 (1) If there exist RIMOLS(v,n), then vZ(k+iin.

(2 If there exist kIMODILS(v,n}, then vi{(k+ldn.

For 2IMOLS; the existence has been comoletelv socived by

Hesnrich and Zhu in [931.

Theorem 1.2 For any integer nxl, there exist 2IMOLS(v,n) iF and

onlv if vzIn, except (v,ni=(4,1).

For ZIMOILS, the existence also bhas been completely solved bv

combining the results of Heinrich and Zhu 0103 and Du [8].

~h

Theorem 1.3 For any integer n2l, there exist 2IMOILS(v,n) i and

onlv if vi>In, except (v,ny=(&,1).

For ZIMOLS, the esxistence was solved by Zhu in (141 when
nziT4. Du [5,71 has lowered the bound and listed (09 pairs of
(vyn) as possible exceptions. Most recently, Abel., Colbourn, VYin
and Zhang in [13 have further reduced the list +o 2 possible

exceptions, which we state as follows:

Theorem 1.4 For any integer nxl, there exist IIMOLS(v,n) if and
onlv if vzd4n , ewcent (v,n)=(5,1) and possibly except For (v,n)=
(10,1) aor (52,6).

In this paper we consider IIMOILS, and prove that {or any

Jinteger ni3S%, there exist EIMDILS(Qan) if and only if vian.
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TG iR L.l D /Ay LiLERED 1 ude e LRV B Zaldl ol SAULLO VY i d EEl =hild
only if virdn.
For our purpose. we put

E={2.3,4.6.10}.

2. PRELIMINARIES

We need the following known construction for IMOILS, which 1is
mainly the working corollary of Theorem 1.1 in [33. So, we state

the followinog lemma without proot.

Lemma 2.1 Suppose there exist 4MOLS{(Y), IMOLS(m) and IMOILS(m+13,
IMOILS(h) and 1ghst. Then ZIMOILS(mt+h,t) exist.

For the next construction we need the following result.

Lemma 2.2 (1) there exist IIMOILS(v,2) for F9<v=il,
{(2) there exist ZIMOILS(v,8) for v=34 and Z8.

Proof {1} For v=%, see Zhu [151. For v=10, see FErouwer [2]J. And
for v=11, see Stinson and Zhu [121.

(2) From Wang [131.

The input designs in Lemma 2.2 (1) are reguired in  the next
construction which is hainly the working corollary of Lemma 2.2 in
£E51. So, we also state the following lemma without proof.

Lemma 2.3 Suppose there exist 8MOLS{(t); 3MOILS(t+q), IMDILS(s+qg}
and  IMOILS (u+qg) { 0=s,u<t and q=0 aor 1). Then there exist
FIMOILS (7t +stutlwtg,2Zwtrq)l

for OSwst.

To apply the above lemmas we need some input designs, which we
state below.

From Colbown and Dinitz £41 we have

Lemma 2.4 (1) there exist IIMOILS(v) for any positive integer vek.
(2) there exist 4MOLS({v} for any integer v>42.

(3) there exist 4IMOLS(v,8) for any integer v>53.
From Lemmas 2.2 to 2.4 we then have

Lemma 2.5 (1) Let n,t,h and v be positive integers such that there
exist 8MOLS(t), n even, 2<n<2t, Sshg2t (h=21 1f  t=11) and
w=7t+h+n. Then there exist IIMOILS(vyn).

(2) Let n,t,h-and'v be positive integers such that thera exist
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BMOLS () and SMOILS{t+1), n odd, 3snz2t+i, 10=hs2t and v=7t+h+n.
Then there exist 3IIMOILS{v,n).

Froof (1) Apply Lemma 2.3 with g=0, s+u=h and n=2w. e observe
that if hZ5,; then we can choose s and u such that both 3IMDILS (s)
) and SMOILS {u) exist.

(2) Apply Lemma 2.3 with g=1, s+u=h and n=2w+l. We observe
that if ©z10, then we can choose s and u  such that both
IMOILS{s+1) and IMODILE(u+l) exist.

The following easy lemma by filling in holes is useful.

Lemma 2.6 IF there exist IIMOILS(v,w) and FIMOILS Gu,yndy then there
exist TIMOILS{v,n).

3. A GEMERALIZED CONSTRUCTION

The construction in Theorem 1.1 of Brouwer and van Rees [Z3
starts with a kMOLS(t). To generalize this. we start with a
KIMOILS<(t,s). For simplicity we shall not state its most general
form, but only the special case to meet the need of this paper. To
state these constructions, suppose kKIMOILS{(v,n) are based on set S
and hole H. A set of }8!—!H{ cells is called a holey common
transversal if it intersects each row and each column not
containing the hole H exactly once and contains in each square
every symbol from G\H exactly once. Two holey common  transversals

are disjoint if they have no cells in common.

Theorem 3.1 Suppose there exist ZIMOILB(t,s) with g disjoint holey
common transversals missing the holes of size s. Suppose there
exist 3SMOLS(m) and 3MOILS(m+l) and 12£h=q. Then there exist
SIMOILS(mt+h,t) if TIMOILS(ms+h,s) exist.

Proof We begin with the IIMOILS(t,s), and fill +the h disjoint
holey common transversals (containing the main diagonal) with
SIMOILS (m+i:1, 1) from IMOILS (m+1), and the others with 3IIMOLS(m,1)
from SMDLS(m). We then obtain the required design by filling the
size {(ms+h) hole with 3IIMOILS(ms+h,s) and permuting rows and

columns.
We then have

Corollary 3.2 Suppose . there exist 4IMOLS(t,s), 3IMOLS(m) and
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WU ALS AT LY, SAFUALO ARSI S, |G IoThos.e inen SiMJiLosimtth,t) exist.
Prooct Since IZIMOILS{t,s) have an extra orthogonal mate, they have
s disjoint holey common transversals each of which is determined

by a symbol in hole.
Moreover , we have

Theorem 3.3 Suppose there exist 4IMOLS it sy, IMOLSim) and
SMOILS{m+1) and 1Zu<se. Suppose there exist FZIMOILS(ms+u,s)  and
JIMOILS (wtu,u) and OSwst-s. Then ZIMDILS (mb+u+w,t) exist.

Proof Since JIMOILS(t,=s) have an extra orthogonal mate, they have
s disjoint holey common transversals  and {t—s) disjoint common
transversals each of which is determined by a symbol in the extra
square. We fill the u disjoint holey common transversals (contain-—
ing the main diagonzl) and w disjoint common transversals with
SIMOILS (m+l:1,1) from IMOILS(m+1l) and the others with 3IIMOLS(m,1)
from SMOLS{m). We then obtain the required design by filling the
size (ms+u) hole with ITMOILS{ms+u,s) and the size (w+u) hole

with SIMOILS (w+u,u) and permating rows and columns.

As a application of Theorem 3.1 we have the following example

which we will use later in Theorem 4.4.
Example 3.4 There exist 3IMOILS{v,8) for v=33 and 3&.

Proof From 7MOLE(8) we can obtain 3IMOILS(8,1) with 4 disiocint
holey common transversals missing the holes of size 1. We then
apply Theorem 2.1 with m=4 and h=3 or 4 toc obtain the reguired

design.

4. THE PROOF OF THEDOREM 1.5
In this section we shall prove Theorem 1.5.

Lemma 4.1 There is a sequence of positive integers
M=(mi:i=1,2,E,M)=£23,25,27,29,32,37,41,43,49,53,59,w)

such that

- (1) mi+1~mi§8,
(23 7mi+1+459mi,
(3 7mi+1+554(2mi+2)+1,
(4) 7m. +1054 (2m, +3)+1, and
1-+1 i

{3) there exist BMDLSKmi) for ail izi.
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Froof From existing tables on the number of MOLS {(see, for example

[41). It is not difficult to check that such a seguence M exists

with m.  -m. <8 and there exist BMOLS(m,). Since m, _ -m. <8, it is
Lt S i i+l i

easy to see that 7mi+1+459mi if miZSQ, 7mi+1+554(2mi+2)+1 if miZSE,

and 7mi+1+10£4(2m;+3)+1 if miziq, For the remaining cases, simple

calculation shows that we have the result. This praves the lemma.
Theorem 4.2 There exist JIMOILS(v,n) whenever v>5n and nZ42.
Proof Apply Lemma 2.5 with teM. From Lemma 4.1 we have the result.

Theorem 4.3 There exist ZIMOILS(v,n} whenever v=4n+h, n>»42, 1<hzn

and het.

Froof Apply Lemma 2.1 with t=n and m=4, the required conditions

come from Lemma 2.4.

Theorem 4.4 There exist ZIMOILS(v,n) whenever v=4n+h, heE and n>

jul
Lo

FProof For h#l0, apply Corollary 2.2 with m=4, t=n with n>*53 and
==8. The required conditions come from Lemmas 2.2 and 2.4 and
Example 3.4.

For k=10, apply Theorem 3.3 with m=4, t=n, s=w=8 and u=2 with

n>33  and s=8. The required conditions SIMOILS (10,2 and
JIMOILS(34,8) come from Lemma 2.2, others from Lemmaz 2.2 and
2.4.

Proof of Theorem 1.5 The conclusion follows immediately from

Theorems 4.2 to 4.4.
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