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n 

of them are 
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If 

that the 

stence of 

the 

kMOILS(s) 

n the 

of combinatorial designs. In [11], 

at the existence of kIMOLS. Simple counting 

Theorem 1.1 (1) If there st kIMOLS(v,n), then v~ k+l)n. 

kIMOILS(v,n), then v (k+l) (2) f 

For 2IMOLS, the stence has been comoletel solved b'l 

He:;nrich Zhu i [9J. 

Theorem L For any , there e)~i 2IMOLS(v and 

onl'1 i e>;cept } . 

For 2IMOILS the e):istence also been comol solved bv 

ning result ch and Zhu [10J an~ 

Theorem 1. For any , there exist 2IMOILS(v,n) if and 

onlv if v ) . 
For 3H10LS, the stence was solved bv Zhu i [14J when 

n~154. Du 

(v 5 n) as 

and Zhang 

7J has lowered the bound and listed 109 oairs 

ble exceptions. Most recently, Abel. Colbourn~ Yin 

[lJ have further reduced the Ii 2 possi e 

exceptions, which we state follows: 

Theorem 1. For any integer n~l, there exist 3IMOLS(v,n) if and 

onl'l if , exceDt ('1,n)=(6,1) and possibly cept for 

( 1 (1 , 1) or ( 52 , 6) . 

In this paper we consider 3IMOILS, and prove that for any 

integer n)53, there exist 3IMOILS(v~n) if and only. if v>4n. 
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Inearem J..;:J n1:.eger n 

anI if v>4n. 

For our purpose we put 

E={2.3.4.6.10L 

2. PRELIMINARIES 

cliiU 

We need the fol owing known construction for IMOILS, which is 

mainly the working corollary of Theorem 1.1 in [3]. So, state 

the fall na emma without proof. 

Lemma SUPoose there ex st 4MOLS(t), 3MOLS(m) and 3t10ILS (m+l)) 

3MO Then 3IMOILS(mt+h,t) ist. 

construction we need the fol owing result. 

Lemma 2. there 

(2) there 

i st 3HlOILS (v 

3IMOILS 

for 9~v~ 11, 

,8) for v=34 and 38. 

Proof ( ) For 

for \/=11, 

[15]. For v=10, see 

nson and Zhu [12J. 

Brouwer [2] 

(2) From Wang [ 

And 

The input desi gns n Lemma ( ) are requi red in ne>:t 

construction which mainly the working corollary of Lemma 2.2 in 

[5J. So so state 

Lemma 2.3 Suppose there ex 

and 3t-lOILS(u+q) (O:Ss,u:St 

3IMOILS(7t+s+u+2w+q,2w+q) 

for O:Sw:St. 

followi lemma without proof. 

st BMOLS(t), 3MOILS(t+q), 3MOILS(s+q) 

and q=() or 1). Then -there e}: i st 

To apply the above lemmas we need same input designs, which we 

state below. 

From Colbourn and Dinitz [4J we have 

Lemma 2.4 (1) there e>:ist 31MOILS(v) for any positive integer vS::. 

(2) there ist 4MOLS(v) for any integer v>42. 

(:::;,) there e}: i st 4 1M'OLS (v, 8) for anv integer 'I >53. 

From Lemmas 2.2 to 2.4 we then have 

Lemma 2.5 (1) Let n,t,h and v be positive integers such that there 

exist BMOLS(t), n even, 2:Sn:S2t, 55h:S2t (h~21 if t=11) and 

v=7t+~+n. Then there exist 3IMOILS('1,n). 

(2) Let n,t,h and v be positive integers such that there exist 
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8MOLS(t) and 3MOILS(t+l)~ n odd, 3SnS2t+l, 10Sh~2t and 

Then there ex st 3IMOILS n). 

Proof ) Apply Lemma 2.3 with q=O, s+u=h and n=2w. !;le 

that i h~5, then we can choose sand u that both 3MOILS(s) 

and 3MOILS(u} st. 

(2) Apply Lemma 2. with q=1, s+u=h n=2w+l. We observe 

that f 10, then we can choose and u such that both 

3MOILS(s+1) and 3MOILS(u+l) ex st. 

The following easy lemma fil 1ng i hoI es s usef ul • 

Lemma 6 If there e)-:i 3H10ILS (v and 3IMOILS(u,n), then there 

exist 3IMOILS(v ). 

~. A GENERALIZED CONSTRUCTION 

The construction in Theorem .1 of Brouwer and van Rees [3J 

starts th kt-lOLS (t) • To generalize thi we start with a 

kIMOILS(t 3 s). For simplici we shall not state most general 

form but only the special case to meet the need of thi paper. To 

state these constructions, suppose IMOILS(v,n) are based on set S 

and H. A set of \-IH\ cells is called holey common 

transversal i it intersects each row and each column not 

contai ng e H exactly once and contai n each square 

every symbol from S\H exactly once. Two holey common transversals 

are disjoint if they have no cells in common. 

Theorem 3.1 Suppose there exist 3IMOILS(t,s) with q disjoint holey 

common transversals missing the holes of size 

e}:ist 3MOLSim) and 3MOILS(m+l) and l~h~q. 

3IMOILS(mt+h,t) if 3IMOILSCms+h,s) exist. 

Proof We begin with the 3IMOILS(t,s), and fill 

s. Suppose 

Then there 

there 

e>: i st 

the h disioint 

holey common transversals (containing the main diagonal) with 

3IMOILS(m+1:1,1)from 3MOILS(m+l) 1 and the others with 3IMOLS(m,1) 

from 3MOLS(m). We then obtain the required design by fillin9 the 

size (ms+h) hole with 3IMOILS(ms+h , s) and permuting rows and 

columns. 

We then have 

Corollary 3.2 Suppo~e. there exist 4I0oLS(t,s}, 3MOLS(m) and 
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hen ~IMOILS(mt+h,t) exist. 

Proof Since 3IMOILS ,s) have an extra orthogonal mate, they have 

s disjoint ey common transversal each of vlh ch determined 

by symbol in 

Moreover, we have 

there e>: st HlOLS 3r'lOLS (m) and Theorem 3.3 

31'-10 I LS <m+l Suppose there exist IMOILS(ms+u,s) and 

3HiOILS (w+u, oswSt-s. Then 3IMOILS(mt+u+w t) st. 

Proof nce 3UlOILS an extra orthogonal thev have 

s disjoint hoI common transversals and disjoint common 

transversals each of which is determined bv a symbol i the e>:tra 

square. We f 

ing the main 

3IMOILS (m+1: 

the u disjoint holey common transversals (contain-

diagonal) and w disjoint common transversals with 

1) from 3MOILS(m+1) and the others with 3IMOLS(m,1) 

from 3MOLS(m) then obtain the re~uired design illin9 the 

size (ms+u) hole with 31MOILSCms+u,s) and the si e (w+u) hole 

with 3IMOILS(w+u permuting rows and columns. 

As a appli 

which we will 

on of Theorem 3.1 we have the following example 

later in Theorem 4. 

Example 3.4 There exist 3IMOILS(v,S) for '1=35 and 36. 

Proof From 7MOLS ) we can obtain 3IMOILS(B,1) with 4 disjoint 

holey common transversal missing the holes of 5i ze 1. We then 

aoply Theorem 

desi9n. 

with m=4 and h=3 or 4 to obtain the reouired 

4. THE PROOF OF THEOREM 1.5 

In this section we shall prove Theorem 1.5. 

Lemma 4.1 There s a sequence of positive integers 

1'1== (m
i 

: i =1,2., , ... ) = (23 .. 25 ~27 ,29,32,37,41,43,)49,53,59, .. ) 

sLlch that 

(1) m
i

+
1

-m
i
S8 .. 

(2) 7m
i

+
l 

(3) 7m
i

+
1

+5S4(2m
i
+2)+1, 

(4) 7m
i

+
1

+10S4(2m
i

+3)+1, and 

(5) there exist 8MOLS(m.) for all i~l. 
1 
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Proof From existing tables on the number of MOLS (see, for example 

[4J). It i not 

\'-lith 

easy to see 

and 

fficult to check that such 

and there exist 8MOLS(m.). 
1. 

f 

sequence 

:58, 

+1 f +1+4:59mi 
+3)+1 if For the remaining cases 

t s 

e 

calculation shows that we have the resul . This proves the lemma. 

Theorem 4.2 st 3IMOILS ,n) whenever and n2:42. 

Proof Appl Lemma th tEM. From Lemma we the resul . 

Theorem 4.3 There ist 3I1'1DILS (v ,n) whenever v=4n+h, 0}42, 1Sh::;n 

and heE. 

Proof Apply Lemma 2. with and m=4, the required candi ons 

come from Lemma 4 

Theorem 4.4 There 1st 3IMOILS(v,n) whenever v=4n+h, hEE and n>53. 

Proof For h;>!10, y Corol ary 3. with m=4 t=n with n 

s=8. The required conditions come from Lemmas 2. 

E>:ample 3.4. 

and 

and 

4 and 

For k= appl Theorem with m=4~ t=n s=w=B and u=2 with 

n >53 and s=8. The required 

3IMOILS(34.B} come from Lemma 

2.4. 

conditions 3IMOILS ( 10,2) and 

others from Lemmas 2.2 and 

Proof of Theorem 1.5 The conclusion follows immediately from 

Theorems 4. to 4.4. 
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