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Abstract

In this paper we show that a partial K4 — e design of order n and index
) that has a blocking set S can be embedded in a K4 — e design of order
v < 10n + 204/n + 56 and index A that has a blocking set S* such that
S C §*. This also improves upon the smallest known embedding for
partial K4 — e designs.

1 Introduction

A (partial) H-design of a graph @ is an ordered pair (V, B), where V' is the vertex
set of @ and where B is a collection of edge-disjoint copies of H with the property
that each edge of G is in (at most one) exactly one copy of H in B. If G is (a
subgraph of) AK,, then we say that (V, B) is a (partial) H-design of order n and
mdex A

An H-design (V, B) of G is said to be embedded in an H-design (V', B') of AK,
if V CV'and B C B'. There have been many papers written on the embedding of
H-designs, especially in the case where H = Kj [1, 2], but also for example when H
is a cycle [7, 8] and when H = K, — e [6]. The most common embedding question
asked seems to be: What is the smallest integer v such that any partial H-design
of order n and index X can be embedded in an H-design of AK,? Of course, vis a
function of n, and conceivably also of A\. The most famous outstanding problem in
this area is to show that if H = K3 and A = 1 then v = 2n + 1 (it has been shown
that if H = K3 and 4 divides A then v = 2n + 1, and this is best possible).

To date, the smallest known embedding for any partial K4 — e design of order
n and index A is in a K, — e design of order v = 15n + 46 [6], but this is certainly
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not the smallest possible value of v. However, even obtaining this embedding was
a breakthrough, produced by using a generalization of Cruse’s Theorem [5] for em-
bedding partial idempotent commutative quasigroups to the embedding of partial
groupoids (see Section 2). This construction is quite flexible, a fact that we demon-
strate in this paper by showing that not only can a small embedding be produced,
but also that any blocking set (see below) of the original partial K, — e design can
be extended to a blocking set of the containing Ky — e design of AK,,.

A blocking set of an H-design (V, B) is a set S C V such that each copy h € B
of H satisfies V(h)N S £ 0 and V(R)N S # V(h). Again, there have been many
papers written in this area. For example, a long series of papers finally culminated
in the settling of the existence of K,-designs of AK,, that have a blocking set, with a
couple of possible exceptions [3], and the existence of H-designs of K, with blocking
sets has also been settled for all connected graphs H with at most 5 edges [4, 9]
(and in particular for Ky — e designs).

In this paper we show that any partial Ky — e design of order n and index )\ that
has a blocking set S, can be embedded in a Ky — e design of AK, that has a blocking
set S* such that S C 5* and v < 10n + 204/n + 56; so in addition to extending the
blocking set, we also improve upon the best known embedding for partial K; — e
designs for n > 16 (see the remark following Theorem 2.2).

Let (a, b, ¢, d) denote the copy of Ky — e with edge set {{a, b}, {a, c}, {a,d}, {b,c},
{5, d}}.

2 Embedding Groupoids

A partial groupoid (P, o) is said to be idempotent if zoz = z for allz € P. A
partial groupoid (P, o) is called an embedding groupoid if (1) (P, o) is idempotent,
(2) if z # y then either both or neither of the products zoy and y oz is defined, (3)
(P, o) is row latin, and (4) each z € P occurs as a product an odd number of times.

Theorem 2.1 ([5]) Any partial embedding groupoid of order n can be embedded in
an idempotent groupoid of order 2n + 1 which is (1) row latin, and (2) the main di-
agonal together with all products not defined in the given partial embedding groupoid
form a partial symmetric idempotent quasigroup.

Remark The fact that in (2) we form a partial quasigroup and not just a partial
groupoid is important in what follows.

Certainly a stronger result than the following can be proved, but this will suffice
for our purposes. Let (a;a1,...,a,) denote the m-star K, on the vertex set
{a,a;,...,am,} in which a has degree m.

Lemma 2.1 For all £ > 1 there ezists a simple graph G on 2£ vertices with at least
2£
( 9 ) — 3£ edges for which there ezists a K, 4-design with the additional property that

each Ky 4 can be split into two copies of K1, so that the resulting Ky z-design of G
has a blocking set of size £.
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Proof: We construct such a graph on the vertex set Zj x Zj,, with blocking set
Zy4 x {0}. Define the set B of copies of Kj 4 as follows.

If¢ =4z +1 then B = {((4,k); i + 25 + Lk), G+ 25 +2,k), (s + 25 + L,k +
1),(64+25 +2,k+ 1)) |4 € Zy, § € Zay k € ZLy}; there are £ edges in no copy of Ky 4
in B.

[f ¢ = 4z +3 then B = {((4, k); (s-+24, k), +25+1, k), (i+27, k+1), i +25+1, k+
1)) I 1€ Zts 1< .7 < Ly ke ZZ}U{(2)0)7(7‘+150)7 (7’+111)1(7’a 1)2(7‘_131) ! 1€ Zl}’
there are £ edges in no copy of K4 in B.

£ ¢ = 4z then B = {(3, k); (3427, k), (i-+25+1, k), (:4+27, k+1), (1425 +1, k+1)) |
1€ Zl; 1 SJ <z ‘1) ke Z2}U{(7‘10)!(7’+1:0)a (z+1,l),(z,1),(z— 111) 17'6 Zl};
there are 34 edges in no copy of Ki4 in B.

10 =4z +2 then B = {((4,k); (6 +25 +1,k),c+ 27+ 2,k), i+ 25 + L,k + 1),
(142 +2,k+1)) | i € Zy, j € Ly, k € Zy}; there are 3L edges in no copy of K14
in B.

It is trivial to see that each copy of Ky 4 can be split into two copies of K, so
that each copy of Kj; has a vertex in Z; x {0} and a vertex in Z; x {1}, so indeed
Z¢ = {0} is a blocking set.

Lemma 2.2 There exists a Ky — e design of K¢ with a blocking set of size 3, and
one of size 4.

Proof:  {1,2,3} and {1,2,3,4} are each blocking sets for the Ky — e design
(Zo, {(i + 3,5 + 1,0+ 4) | i € Zs}) of Ke.
We are now ready for the main result.

Theorem 2.2 A partial K; — e design of order n and indez ) that has a blocking
set S can be embedded in @ Ky — ¢ design of AK, that has a blocking set 5% such
that S C S* and v < 10n + 204/n + 56.

Remark It may be worth noting that the theorem proves a slightly stronger result,
namely that v < 10n + 10a + 6, where a is at most the smallest even integer with
o > 2/n + 3. Also, the size of the blocking set produced is [S| + 4n + 9a/2 + 3.

Proof: Let (P, B) be a partial K4— e design of order n and index X with a blocking
set S.

For 1 < i < A, let G; be the simple graph with vertex set P and with {u,v} €
E(G;) iff {u,v} occurs in at least i copies of Ky — e in B.

Let 2z; (< n) be the number of vertices of odd degree in G;. Let a be the smallest

even integer satisfying (;) — 3a/2 > 2n (clearly (2¢/n + 3)(24/n — 1)/2 > 2n, so

certainly @ < 2/m + 5). Let A be a set of a = 2{ vertices with PN A = 0.
For 1 <% < X let H; be a graph with vertex set A containing 4z; (< 2n) edges
as described in Lemma 2.1. In each case, let A’ C A be a blocking set for the
K s-design of H; (A’ is independent of ).

For 1 <1 < ), arbitrarily gather the 2z; vertices of odd degree into z; pairs, and
to each pair arbitrarily assign one of the x; copies of Ky 4 in the K4 design of H;.
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Lo €achh Sucil palr u; and u; ol odd daegree vervices and their corresponding 4, 4, say
(a; b,¢,d, €), if K, 4 is split into the two copies (a; b, ¢) and (a; d, €) of K, ; in Lemma
2.1 then let B; contain the two copies (uy,a,b,c) and (uz,a,d, €) of K4 —e. Let G!
be the simple graph with vertex set P/ = PU A formed from G; by adding the edges
in the copies of K4 —e in B;. If u has odd degree in G, then dei(u) = dg,(u)+3, so
u has even degree in G}. Also, since the copies of K;; can be paired to form copies
of K14, each vertex in A has even degree in G). So for 1 < ¢ < ), each vertex in G
has even degree. Clearly A’ is a blocking set for B;.
For 1 <1 < X form a partial idempotent groupoid (P, 0;) where

(i) zo;z = z for all z € P', and

(i) if z # y, then zo;y =y and y o, z = z if {z,y} € E(G!) and otherwise z o, y
and y o; z are undefined.

Then clearly (P’ o;) is an embedding groupoid, satisfying property (4) of embedding
groupoids because each vertex in G has even degree. Therefore we can apply
Theorem 2.1 to embed (P’, 0;) in a groupoid (@, o;) of order 2| P'| + 1 which satisfies
properties (1) and (2) of Theorem 2.1.

We can now define a K, — e design ({co} U (Q x Zs), B*) as follows.

(i) For each a € Q let ({oo} U ({a} x Zs), B,) be a K4 — e design of AK; in
which {0, (a,0),(a,1), (a,2)} is a blocking set if a € S U A’, and in which
{e0,(2a,1),(a,2)} is a blocking set if a ¢ S U A', and let B, C B*.

(ii) For each (a,b,c,d) € BU (UL, B:) and for each z, y € Zs (including = = y)
let ((a,2), (b,9), (¢, 2 ®1y), (d, 2 ®2y)) € B*, where (Zs, @) and (Zs, ®;) are
defined by the following quasigroups.

®{0 1 2 3 4 ®200 1 2 3 4
0710121341 0j0]4,2|1]3
1141311210 1111213410
21211141013 214131102
31310121114 321014131
411141032 41311/0]2 4

(iii) For 1 <1 <X, if {a,b} ¢ E(G,) then ((a,7),(b,4), (a0:b,5 +1), (ao;b,74+3)) €
B* for all j € Z5 (reducing sums modulo 5).

Then we claim that ({co}U(Q X Zs), B*) is a K4 — e design of AK,, with v = 5(2(n+
a)+1)+1 < 10n+204/n+56 in which §* = {co}U((SUA’) x {0Hu(@x{1,2})isa
blocking set. From these observations the result follows, because since 0 ®; 0 = § =
0®20, from (ii) we have that for each (a, b, ¢c,d) € B, ((a,0), (4, 0), (¢, 0),(d,0)) € B*
and S x {0} C S*, so the embedding that preserves the blocking set has been
produced.
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To see that S* is a blocking set, consider (ii) and (ii) in the construction. Notice
that for all z,y other than @ = 0 = y, at least one of z,y,2®,y and 2@,y is in {1,2}
and at least one is in {3,4}, so §* is a blocking set for the copies of K4 — ¢ arising
from these values of z and y in (ii). fz =0 =y then also 2 ®;y = 0= z ®, y, s0
(SU A" x {0} = §* N (Q x {0}) ensures that §* is a blocking set for the copies of
K, — e arising from these values of z and y in (ii). Finally, in (iii), for each j € Zs,
at least one of §,  + 1 and j + 3 is in {1,2} and at least one is in {3,4}, so 5% is
a blocking set for the copies of K4 — e defined in (jii) since @ x {1,2} € 5* and
Q@ x {3,4} N §* = (. Therefore 5* is a blocking set as claimed.

To see that B* defines a K, —e design of AK,, consider the edge e = {(u, s), (w,t)}.
If w = w then e is in A copies of K4 — e defined in (i), so suppose that u # w. For
each graph (% containing the edge {u,w} there is a copy of K4 — e in B U (U, B;)
containing {u,w}, and corresponding to this copy of K4 — ¢, say (a,b,c,d) there
are copies ((a,z),(b,), (¢, ®1v), (d,z ®2y)) in B*. Since (Zs, ®1) and (Zs, ®2)
are quasigroups, it is easy to check that regardless of which of a,b,¢ and d u and
w happen to be, = and y are uniquely determined by s and ¢. So if {u,w} occurs
in £ of the A graphs G4q,..., G, then we have just found £ copies of K4 — e in B*
that contain {u,w}. Now X — £ of the graphs Gi,..., G, do not contain {u,w},
so for each such graph (; the product uo; w in (P',0;) is undefined, and so there
is no z € P’ such that u o; z = w (since from (ii) if such a 2z existed it would be
wo;w =w). So by (1) of Theorem 2.1 there is a unique z € @ such that uo;z =w
in (Q,0;), and by (2) of Theorem 2.1 we have that uo; z =w = z0;w. So,if s =1
then {u,w} is in the copy ((u,s), (w,s), (v c;w,s+1), (wo; w,s + 3)) defined in
(ii1), and if s # ¢ then we can assume that t — s (mod 5) € {1,3} and so {u,w} is
in the copy ((u, 8), (2,8),(wo; z=w,s+ 1), (uo; z=w,s + 3)) defined in (iii).
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