A Structural Method for Hamiltonian Graphs

G. Li

Department of Mathematics, Yantai Teachers' College, Yantai 264000, China

B. Wei¹

Institute of Systems Science, Academia Sinica, Beijing 100080, China

T. Gao

Department of Mathematics, University of Sanxi, Taiyuan 030006, China

Abstract

In this paper, we shall introduce a special structure for graphs and show that a graph G is hamiltonian if and only if G has such a special structure. Using this result, we can prove a new weakened version of Fan's condition for hamiltonian graphs, which generalizes a recent result of Bedrossian, Chen and Schelp (1993).

1 Preliminaries and Main Results

We consider only finite undirected graphs without loops or multiple edges. The set of vertices of a graph G is denoted by V(G) or just by V; the set of edges by E(G) or just by E. We use |G| as a symbol for the cardinality of V(G). If H and S are subsets of V(G) or subgraphs of G, we denote by $N_H(S)$ the set of vertices in H which are adjacent to some vertex in S, and set $d_H(S) = |N_H(S)|$. If $S = \{u\}$ and H = G, then let $N_G(u) = N(u)$ and set $d_G(u) = d(u)$. For $D \subseteq V(G)$, G[D] denotes the subgraph of G induced by D. For basic graph-theoretic terminology, we refer the reader to [3].

Definition 1. Let H be a subgraph of G and $x, y \in V(G) \setminus V(H)$. $\{x, y\}$ is called a pair of useful vertices of H if $G[H \cup \{x, y\}]$ contains a hamiltonian path connecting x and y.

Definition 2. A graph G is call L-decomposable if G can be separated into k + 1 pairwise disjoint subgraphs G_0, G_1, \dots, G_k such that the following four conditions are satisfied:

1) G_0 is complete.

2) For any $1 \leq i \leq k$, there exists a subset $S_i \subseteq N_{G_0}(G_i)$ with at least two vertices which contains a vertex x such that for every $y \neq x \in S_i$, $\{x, y\}$ is a pair of useful vertices of G_i .

3) For any three distinct S_i, S_j, S_l , we have $S_i \cap S_j \cap S_l = \emptyset$.

Australasian Journal of Combinatorics 11(1995), pp.257-262

¹ Supported by National Education Committee of China and Chinese Academy of Sciences

4) For any positive integer $r \leq k$, $|\bigcup_{1 \leq j \leq r} S_{i_j}| = r$ if and only if $|V(G_0)| = k = r$.

If G is L-decomposable, then we say the partition G_0, G_1, \dots, G_k which satisfies the four conditions above a L-decomposition of G. In Section 2, we shall prove the following structural theorem.

Theorem 1. A graph G is hamiltonian if and only if G has a L-decomposition.

Theorem 1 has some applications. We shall give some examples here. In order to do this, we need some additional terminology and notations.

In Figure 1, we define four kinds of graphs, C-graph, F-graph, B-graph and N-graph.

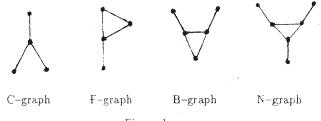


Figure 1.

Let S, T be two induced subgraphs of G with $\max\{|S|, |T|\} < |G|$. A graph G of order n is said to satisfy property ST(n) if for any pair of vertices x and y at distance two in S or T, $\max\{d(x), d(y)\} \ge n/2$. If G contains no S as an induced subgraph, we call G S-free. If G contains neither S nor T as an induced subgraph, we call G ST-free.

The closure of a graph G denoted by \overline{G} , is the graph obtained from G by recursively joining pairs of nonadjacent vertices whose degree sum is at least |V(G)| untill no such pair remains. Let $V_0 = \{x : d(x) \ge n/2, x \in V(G)\}$.

The following result is due to Bondy and Chvátal.

Theorem 2[2]. A graph G is hamiltonian if and only if \overline{G} is hamiltonian.

Now, using Theorems 1 and 2, we can easily prove the following two theorem known before.

Theorem 3[4]. Let G be a 2-connected graph of order n. If each pair of vertices x and y at distance 2 satisfies $\max\{d(x), d(y)\} \ge n/2$, then G is hamiltonian.

Theorem 4[1]. Let G be a 2-connected graph of order n. If G satisfies property CF(n), then G is hamiltonian.

To prove Theorems 3 and 4, we assume, by contradiction, that G is a counterexample with as many as possible edges. By Theorem 2, $G[V_0]$ is a complete subgraph of G. Let G_0 be a induced complete subgraph of G with as many as possible vertices and $V_0 \subseteq V(G_0)$. Let G_1, G_2, \dots, G_k be the components of $G \setminus G_0$. We can easily verify that G_0, G_1, \dots, G_k is a L-decomposition of G under conditions of Theorem 3 or Theorem 4, which leads to a contradiction by Theorem 1.

In section 3, we shall prove the following more general theorem by using Theorems 1 and 2.

Theorem 5. Let G be a 2-connected graph of order n. If G satisfies property CB(n), then G is hamiltonian.

2 The Proof of Theorem 1

If G is a hamiltonian graph, let $C = c_1 c_2 \cdots c_n c_1$ be a hamiltonian cycle of G. Set $G_0 = G[\{c_1, c_2\}]$ and $G_1 = G[\{c_3, \cdots, c_n\}]$. Then G_0, G_1 satisfy the four conditions of Definition 2. Thus G has a L-decomposition.

Conversely, let G_0, G_1, \dots, G_k be a L-decomposition of G. By Definition 2, G_0 is a complete subgraph with $|G_0| \geq 2$ and for any $1 \leq i \leq k$, there exists some $S_i \subseteq N_{G_0}(G_i)$ which satisfies the conditions 2)-4) of Definition 2. By condition 2), S_i contains a vertex x_i such that for any $y \in S_i \setminus \{x_i\}, \{x_i, y\}$ is a pair of useful vertices of G_i for all $1 \leq i \leq k$. Using the following Claim we will give a structural proof of the sufficiency.

Claim. G_0 contains either a cycle $C = u_{i_1}u_{i_2}\cdots u_{i_k}u_{i_1}$ with $|V(C)| = |G_0|$ (when $|G_0| = 2$, C is just an edge.) such that

 $\{u_{i_j}, u_{i_{j+1}}\} = \{x_{i_j}, y_{i_j}\}, j = 1, \cdots, k, j \mod k \qquad (*)$

or q pairwise disjoint paths $P_i = u_{i_1}u_{i_2}\cdots u_{i_{r_i+1}}, i = 1, 2, \cdots q$

 $\{u_{i_j}, u_{i_{j+1}}\} = \{x_{i_j}, y_{i_j}\}, j = 1, 2, \cdots, r_i, \quad (**)$

and

 $u_{i_1}, \cdots, u_{i_{r_i}+1} \notin \bigcup_{j \notin \{i_1, \cdots, i_{r_i}\}} S_j \qquad (***)$ where $y_{i_i} \in S_{i_i} \setminus \{x_{i_i}\}.$

In fact, let $P = u_{i_1} \cdots u_{i_{r_i+1}}$ be a longest path satisfying the equation (**). Then $u_{i_2}, \cdots, u_{i_{r_i}} \notin \bigcup_{j \notin \{i_1, \cdots, i_{r_i}\}} S_j$ by condition 3). If $u_{i_1}, u_{i_{r_i+1}} \notin \bigcup_{j \notin \{i_1, \cdots, i_{r_i}\}} S_j$, then P is desired. Otherwise, there exists a subset, say $S_{i_{r_i+1}}$, such that $\{u_{i_1}, u_{i_{r_i+1}}\} \cap S_{i_{r_i+1}} \neq \emptyset$. By the maximality of P and $|S_{i_{r_i+1}}| \ge 2$, we have that $S_{i_{r_i+1}} = \{u_{i_1}, u_{i_{r_i+1}}\}$. Since $|\bigcup_{1 < j < r} S_j| \ge r$ for any $r \le k$, we need only to consider the following two cases.

Case 1. $|\bigcup_{1 \le j \le r_i+1} S_j| = r_i + 1.$

Then $|V(G_0)| = k = r_i + 1$ by condition 4). Thus $C = u_{i_1} \cdots u_{i_{r_i+1}} u_{i_1}$ is a cycle of G_0 with $|V(C)| = |G_0|$ satisfying (*).

Case 2. $|\bigcup_{1 \le j \le r, +1} S_j| > r_i + 1.$

By condition 3), there is a $l \in \{1, \dots, r_i\}$ such that $|S_{i_l}| \ge 3$. We assume without loss of generality that $\{x_{i_l}, y_{i_l}, z_{i_l}\} \subseteq S_{i_l}$ satisfying $x_{i_l} = u_{i_l}, y_{i_l} = u_{i_{l+1}}$ and $z_{i_l} \notin$

V(P). Then we can construct a new path $P' = z_{i_l}u_{i_l}u_{i_{l-1}}\cdots u_{i_1}u_{i_{r_l+1}}u_{r_l}\cdots u_{i_{l+1}}$ which is longer than P and satisfies (**) when the subscripts are rewritten. This contradiction completes the proof of the Claim.

Now, from the Claim above, if G_0 contains a cycle C with $V(C) = |G_0|$ satisfying (*), then it is easy to check that G is hamiltonian. Otherwise, by the Claim above, G_0 contains q pairwise disjoint paths $P_i = u_{i_1}u_{i_2}\cdots u_{i_{r_i+1}}$, $i = 1, 2, \cdots q$ which satisfy both (**) and (***), and we have $\sum_{i=1}^{q} r_i = k$. Since G_0 is a complete subgraph of G, we can easily check that G has a hamiltonian cycle.

Therefore, Theorem 1 is true. \Diamond

Theorem 1 has the following consequence.

Corollary 1. Let G_0 be a complete subgraph of G with $|G_0| \ge 2$. If G_0 contains a pair of useful vertices of each component of $G \setminus G_0$ and $G[N(G_0)]$ is C-free, then G is hamiltonian.

Proof. Let G_1, \dots, G_k be all the components of $G \setminus G_0$ and set $G^* = G[N(G_0)]$. By Theorem 1, it is sufficient to show that G_0, G_1, \dots, G_k is a L-decomposition of G.

By the hypothesis, we can choose $S_i \subseteq V_{G_0}(G_i)$ such that S_i satisfies 2) of Definition 2 and $|S_i|$ is as large as possible. Since G^* is C-free. 3) of Definition 2 is satisfied. Thus we only need to show that 4) of Definition 2 is also satisfied.

In fact, let $r \leq k$ be any positive integer. Since G^* is C-free, we have $|V(G_0)| \geq k \geq r$. If $|V(G_0)| = k = r$, then $|\bigcup_{1 \leq j \leq r} S_{i_j}| = r$. Conversely, if $|\bigcup_{1 \leq j \leq r} S_{i_j}| = r$, then $|S_{i_j}| = 2$ $(j = 1, 2, \dots, r)$ and each vertex $x \in \bigcup_{1 \leq j \leq r} S_{i_j}$ is a common vertex of some two pairs of useful vertices. Let $x \in S_{i_r} \cap S_{i_r}$ and $y \in N_{G_{i_r}}(x)$, $z \in N_{G_{i_r}}(x)$. When $|G_0| > r$, then there exists some $w \in V(G_0) \setminus (\bigcup_{1 \leq j \leq r} S_{i_j})$. Since G^* is C-free, we have $wy \in E$ or $wz \in E$. Therefore, either $S_{i_r} \cup \{w\}$ or $S_{i_r} \cup \{w\}$ still satisfies 2) of Definition 2, which contrary to the choice of S_{i_r} or S_{i_r} . Thus $|V(G_0)| = k = r$. This completes the proof of Corollary 1.

3 The Proof of Theorem 5

In order to prove Theorem 5, we need the following theorem.

Theorem 6[5]. If G is 3-connected and CN-free, then for any distinct vertices x, y of G, there exists a hamiltonian path connecting x and y.

Now, set $V_0 = \{x \in V(G) : d(x) \ge n/2\}$. By Theorem 2. we may assume that $G[V_0]$ is a complete subgraph of G if $V_0 \ne \emptyset$. Let G_0 be a complete subgraph of G such that $V_0 \subseteq V(G_0)$ and $|V(G_0)|$ is as large as possible. Let G_1, \dots, G_k be all the components of $G \setminus G_0$. Then by the property CB(n), $G[N(G_0)]$ is C-free and G_s is CB-free for any $1 \le s \le k$. By Corollary 1, we need only to show that G_0 contains a pair of useful vertices of G_s for $1 \le s \le k$.

Assume that there is a component G_s of $G \setminus G_0$ such that G_0 does not contain

any pair of useful vertices of G_s . Let S be a minimal cut vertex set of G_s and $v \in S$. Then by the assumption and Theorem 6, $|S| \leq 2$. Since G_s is C-free, $G_s \setminus S$ has only two components H_1 , H_2 . Let $H = G[V(H_1) \cup V(H_2) \cup \{v\}]$ and $S_{-i} = \{u \in V(H_1) : d_H(u,v) = i\}$ and $S_i = \{u \in V(H_2) : d_H(u,v) = i\}$ for $i \geq 0$. Denote $m := \max\{i : S_i \neq \emptyset\}$ and $n := \max\{i : S_{-i} \neq \emptyset\}$. Clearly, we have $V(G_s) = S \bigcup (\bigcup_{i=-n}^m S_i)$, and $G[S_i \cup S_j]$ is complete if and only if |i-j| = 1 since G_s is CB-free.

If |S| = 1, then there exist some $x \in S_m$ and $y \in S_{-n}$ such that neither x nor y is a cut vertex of G_s and $N_{G_0}(x) \neq \emptyset$ and $N_{G_0}(y) \neq \emptyset$, since G is 2-connected. Because of the structure of G_s , there exists a path P connecting x and y in G_s with $V(P) = V(G_s)$. Thus by the assumption, $N_{G_0}(x) = N_{G_0}(y)$ and $|N_{G_0}(x)| = 1$, which contrary to the fact that $G[N(G_0)]$ is C-free.

If |S| = 2, let $v' \in S$ and $v' \neq v$. Since G_s is 2-connected, $N(v') \cap S_i \neq \emptyset$ for some $1 \leq i \leq m$ and $N(v') \cap S_{-j} \neq \emptyset$ for some $1 \leq j \leq n$. Let $i_0 = \max\{i : N(v') \cap S_i \neq \emptyset\}$ and $j_0 = \max\{j : N(v') \cap S_{-j}\}$. By the hypothesis of Theorem 5, we may assume that there exists some t with $0 \leq t \leq m$ such that $N_{G_0}(S_t) \neq \emptyset$.

Since G_s is 2-connected, we have

(a) $|S_i| \ge 2$ for any $m-1 \ge i \ge i_0$ and $|S_{-j}| \ge 2$ for any $n-1 \ge j \ge j_0$. By (a) and the structure of G_s , we have

(b) If $|S_m| \ge 2$, then for any two distinct vertices x and y in S_m , there exists a path P in G_s connecting x and y with $V(P) = V(G_s)$.

(c) For any $x \in S_{i-1}$ and $y \in S_i$ $(1 \le i \le m)$, there exists a path in G_s connecting x and y with $V(P) = V(G_s)$.

Since $|N_{G_0}(G_s)| \ge 2$. By the assumption, (c) and the hypothesis of Theorem 5. we have

(d) n + m > 3.

Now, we distinguish the following two cases.

Case 1. $0 \le t < m$, that is there exists some $x \in S_t$ and $y \in V(G_0)$ such that $xy \in E$.

Then by the hypothesis of Theorem 5 and $1 \le t < m$, there exists a vertex $z \in S_{t-1}$ or $z \in S_{t+1}$ such that $yz \in E$. By the assumption and (c), for any $y' \in V(G_0) \setminus \{y\}$ and $w \in S_{t-1} \cup S_{t+1}$, $y'w \notin E$. Thus we can find a vertex set $F = \{x, y, z, y', w\}$ such that G[F] is a B-graph and does not satisfy the condition of Theorem 5. a contradiction.

Case 2. For any $0 \le i \le m-1$, $N_{G_0}(S_i) = \emptyset$, that is t = m.

Symmetrically, we may assume that for any $0 \le j \le n-1$. $N_{G_0}(S_{-j}) = \emptyset$.

If $N_{G_0}(v') \neq \emptyset$, let $y \in V(G_0)$ such that $v'y \in E$. Then by the hypothesis of Theorem 5, we have $y \in N_{G_0}(S_{i_0})$ or $y \in N_{G_0}(S_{-j_0})$. Thus $i_0 = m$ or $j_0 = n$.

Without loss of generality, let $y \in N_{G_0}(S_{i_0})$. When $y \notin N_{G_0}(S_{-j_0})$, then by the hypothsis of Theorem 5, there exists a vertex $y' \in V(G_0) \setminus \{y\}$ such that $v'y' \in E$ or $y' \in N_{G_0}(S_m)$ or $y' \in N_{G_0}(S_{-j_0})$ whenever $j_0 = n$. By the structure of G_s , we can derive that $\{y, y'\}$ is a pair of useful vertices of G_s , contrary to the assumption. When $y \in N_{G_0}(S_{i_0}) \cap N_{G_0}(S_{-j_0})$, that is $i_0 = m$ and $j_0 = n$. Since G is 2-connected, there exists a vertex $y' \in V(G_0)$ such that $y' \in N_{G_0}(S_m) \sqcup N_{G_0}(S_{-n})$ or $v'y' \in E$. Also by the structure of G_s , we can derive that $\{y, y'\}$ is a pair of useful vertices of G_s , contrary to the assumption. Hence in rest proof we suppose that $N_{G_0}(v') = \emptyset$.

Since G is 2-connected, there exist $x \neq x' \in S_m \cup S_{-n}$ and $y \neq y' \in V(G_0)$ such that $xy \in E$ and $x'y' \in E$. By the assumption and (b), $\{x, x'\} \not\subseteq S_m$ and $\{x, x'\} \not\subseteq S_{-n}$. Let $x \in S_m$ and $x' \in S_{-n}$. By (d), let $m \geq 2$. then $S_m \in N(y)$ by the hypothesis of Theorem 5.

If $i_0 = m$, then $S_{m-1} \subseteq N(v')$ by the hypothesis of Theorem 5. Thus by the structure of G_s , we can derive that $\{y, y'\}$ is a pair of useful vertices of G_s , contrary to the assumption. If $i_0 < m$, then $S_{i_0-1} \subseteq N(v')$. Thus we can also get a contradiction as before.

Therefore. Theorem 5 is true.

References

[1] P. Bedrossian, G. Chen and R.H. Schelp, A generalization of Fan's condition for hamiltonicity, pancyclicity, and hamiltonian connectedness. Discrete Math. 115 (1993) 39-50.

[2] J.A. Bondy and V. Chvátal, A method in graph theory, Discrete Math. 15 (1976) 111-135.

[3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York (1976)

[4] G. Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory Ser. B37 (1984) 221-227.

[5] F.B. Shepherd, Hamiltonicity in claw-free graphs, J. Combin. Theory Ser. B53 (1991) 173-194.

(Received 16/11/94)