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Abstract 

We survey results on generating set partitions, S( n), and restricted growth 
tails, T( n, k), with an emphasis on Gray code listings, in which the change be
tween successive elements is minimal. Although there is a well-known bijection 
between S ( n) and T( n, 0), it preserves minimal changes in only one direction. 

We show that a minimal Gray code listing for T( n, k) is not always possible, 
although for a relaxation of the adjacency criterion, we can construct 
Gray codes for all n > 0, k ::::: O. One consequence is a Gray code for Sen) 
in which only one element changes, to a cyclically adjacent block, between 
successive partitions on the list. This generalizes earlier work of Knuth for 
S( n) and Ehrlich for T( n, 0). Our construction for T( n, k) yields Gray codes 
which can be required to be cyclic, or to go from the lexicographically minimum 
to maximum elements, properties not possessed by the Gray codes of Ehrlich 
and Knuth. 

1 Introduction 

For a given integer n > 0, a set partition is a decomposition of {I, ... , n} as a 
disjoint union of nonempty subsets called blocks ([8], p. IS). The set of all partitions 
of {I, ... , n} is denoted Sen); 5(4) is listed in Figure l(a). The restricted growth 
functions (RG functions) of length n, denoted R( n), are those strings al'" an of 
non-negative integers satisfying al = ° and ai ::; 1 + max{ at, ... , ai-t} ([S], p. IS). 

With each 7r E associate a string al ... an as follows. Order the blocks of 7r 

according to their smallest element, for example, the blocks of 7r {{9}, {I, 2, 7}, 
{4, 10, 11}, {3, 5, 6, S} } would be ordered {I, 2, 7}, {3, 5, 6, S}, {4, 10, 11}, 
{9}. Label the blocks of 7r in order by 0, 1, 2, ... and for 1 ~ i ~ n, let ai be the 
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(a) S(4) (b) L( 4) in (c) Knuth's ( d) modified (e) Ehrlich's 
lex. order Gray code Knuth algorithm 

{I, 2, 3, 4} 0000 0000 000 0 0000 
{I, 2, 3}, {4} 0001 000 1 000 1 000 1 
{I, 2, 4}, {3} 0010 o 0 1 2 001 2 001 1 
{I, 2}, {3, 4} o 0 11 001 1 o 0 1 1 001 2 
{I, 2}, {3},{4} o 0 1 2 o 0 1 0 001 0 001 0 
{I, 3, 4}, {2} o 1 00 o 1 2 0 o 1 1 0 o 1 1 0 
{I, 3}, 4} o 1 0 1 o 1 2 1 o 1 1 1 o 1 1 2 
{I, 3}, {2}, {4} o 1 02 o 122 o 1 1 2 o 1 1 1 
{I, 4,}, 3} o 1 1 0 o 1 2 3 012 2 o 1 2 1 
{I}, {2, 3, 4} o 1 1 1 o 1 1 2 012 3 o 1 2 2 
{I}, {2, 3}, {4} o 1 1 2 o 1 1 1 o 1 2 1 o 1 23 
{I, 4}, {2}, {3} 0120 o 1 1 0 012 0 o 1 20 
{I}, {2, 4}, {3} o 1 2 1 o 1 0 0 010 0 o 1 00 
{I}, {2}, {3, 4} o 1 22 o 1 0 1 o 1 0 1 o 1 02 
{I}, {2},{3},{4} o 1 23 o 1 02 010 2 o 101 

Figure 1: Listings of S(4) and R(4). 

label of the block containing i. The associated string for 7f above is 0 0 1 2 1 1 0 1 
3 2 2. Note that a1 ... an E R(n) and, in fact, this mapping is a bijection between 
S(n) and R(n) ([8], p. 18-19). For n = 4, the bijection is illustrated in the first two 
col umns of Figure 1. 

A Gray code for a combinatorial family is a listing of the objects in the family so 
that successive objects differ in some pre-specified, usually small, way [3J. Although 
any listing algorithm for one of S(n) or R(n) can be used for the other, small changes 
between objects of one family may be magnified by the bijection. For example, the 
partitions 7f1 {I, 2, 5}, {3, 6}, {4} and 7f2 = {I, 3, 6}, {2, 5}, {4} differ only 
in that element 1 changes sets. However, the RG functions associated with 7f1 and 7f2 

are 0 0 1 2 Oland 0 1 0 2 1 0, which differ in several positions. 
In [4J, Kaye describes a Gray code L(n) for S(n), attributed to Knuth, where 

between successive partitions, only one element moves and that move is to an adjacent 
block. The listing is recursive with L(l) = {I}; the list L(n) is obtained from L(n-l) 
by replacing every 7f = B1 , . •• ,Bben) on L( n - 1) by the sublist: 

B1 U {n}, B 2 , ••• , Bb(1rb 

B l , B2 U {n}, ... , Bb(1rb 

B l , B 2 , ••• , Bb(1r) U {n}, 
B l , B2 , ••• , Bb(1r) , {n}, 

in the gi ven order if 7f has odd rank on L ( n -1) and in reverse order if 7f has even rank. 
In terms of RG functions, this corresponds to successively appending 0, 1, ... , b + 1, 
in the given or reversed order, to the RG function associated with 7f. (See Figure 
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1 (c).) Although L( n) is a Gray code listing of S (n ), the RG functions associated 
with successive elements of L(n) may differ in a number of positions which can grow 
arbitrarily large with n. 

On the other hand, if R( n) can be listed so that successive elements differ in just 
one position, then in the corresponding listing of Sen), only one element moves to 
a different block. In [6], Ruskey describes a modification of Knuth's algorithm in 
which the associated RG functions differ by at most 2, as follows: if 7r, of odd rank 
on L(n 1), has b blocks, but its successor has only b 1 blocks, then to the RG 
function for 7r, append successively 0, 1, ... , b 1, b+ 1, b. Similarly, if 11" has even 
rank and b blocks, but its predecessor has only b - 1 blocks, then to the RG function 
for 11", append successively the elements in the reverse order of the sublist above. (See 
Figure 1 ( d) . ) 

Call two elements of R(n) strictly adjacent in they differ in only one position and 
in that position by only 1. A listing of R( n) is a strict Gray code if successive elements 
are strictly adjacent. Ehrlich observed that a strict Gray code for R( n) is impossible 
for infinitely many values of n [1]. Nevertheless, he was able to find an efficient listing 
algorithm for R(n) (loop-free) which has the following interesting property: successive 
elements differ in one position and the element in that position can change by 1, or, 
if it is the largest element in the string, it can change to 0, or conversely a 0 can 
change to the largest value v or to v + 1. For example, 0 1 0 2 0 2 1 can change 
to 0 1 0 2 0 0 1, and conversely. In the associated list of set partitions, this change 
corresponds to moving one element to an adjacent block in the partition, where the 
first and last blocks are considered adjacent. The algorithm of Ehrlich is sinlilar to 
that of Knuth in that to each a al ... an-Ion the list for R( n - 1), we successively 
append the values 0, 1, .. , b + 1, but in different order: 1, 2, ... , b + 1, 0 if a 
has odd rank, and the reverse of this order otherwise. (See Figure l(e).) 

In this paper we generalize the results of Ehrlich to the set of restricted growth 
tails, T( n, k), which are strings of non-negative integers satisfying al :::; k and ai :::; 
1 +max{al, ... ,ai-l, k 1}. (These are a variation of the T(n,m) used in [9] (p. 
97) for ranking and unranking set partitions.) Note that T(n,O) = R(n). In Section 
2, we show that for all k there are infinitely many values of n for which T(n, k) has 
no strict Gray code. However, if we relax this to allow that the largest element in 
a string can change to 0 (as long as it is at least k), we show that Gray codes are 
possible for all n > 0, k ~ O. 

Our construction gives several families of Gray codes for T(n, k), and thus also 
for R(n) and Sen). In particular, they can be required to be circular (first and last 
elements are adjacent) or min-max (starts and ends at the lexicographically minimum 
and maximum element, respectively.) These are properties not possessed by the Gray 
codes of Knuth, Ruskey, and Ehrlich. 

In Section 3, we consider the case where the number of blocks of the partition is 
fixed. It is shown that strict Gray codes are not possible in general, even under the 
modified criterion of Ehrlich. 

Algorithm efficiency, historical notes, and open problems are discussed in Section 
4. 
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2 Gray Codes for Restricted Growth Tails 

For n > 0 and k 2:: 0, the set of RG tails T(n, k), defined in Section 1, can be 
decomposed according to the element in the first position as the disjoint union 

k-l 

T(n,k) = Ui.T(n-1,k) U k·T(n-1,k+ (1) 
i=O 

Let G(n, k) be the graph with vertex set T(n, k) and with strictly adjacent RG 
tails adjacent in G(n, k). Then a strict Gray code for T(n, k) is a Hamilton path in 
G(n, k). Note that G(n, k) is bipartite: let 

E(n,k) {al' .. an E T(n,k) I ai is 
i=I 

and let O(n, k) = T(n, k) \ E(n, k). Then two vertices in E(n, k) or O(n, k) cannot 
be adjacent in G(n, k). Furthermore, the vertex v* k k + 1 ... k + n -1 of G(n, k) 
has degree 1 since it is adjacent only to k k + 1 ... k + n - 2. 

Let d(n, k) = IE(n, k)I-IO(n, k)l. Then using the recurrence (1), 

k-l 

d(n, k) = 2:( -l)id(n - 1, k) + (-l)kd(n - 1, k + 1) 
i=O 

so that 
_ { d( n - 1, k + 1) if k is even 

d(n, k) - d(n _ 1, k) d(n - 1, k + 1) otherwise. 

If G(n, k) has a Hamilton path, then Id(n, k)1 :s:; 1. Furthermore, if d(n, k) = 1, then 
v* must be in E(n, k), and if d(n, k) = -1, then v* must be in O(n, k). 

It can be shown by induction that 

d(n, k) = 

o if k is even and n ::.::=: 2,5 (mod 6) 
or k is odd and n 1,4 (mod 6), or 

1 if k is even and n 1,6 (mod 6) 
or k is odd and n 5,6 (mod 6), or 

-1 ifkisevenandn::.::=:3,4 (mod 6) 
or k is odd and n ::.::=: 2,3 (mod 6). 

Note that v'" is in E(n, k) if and only if 

k + (k + 1) + ... + (k + n - 1) -_ (k +2 n) - (k2) 

is even. Since (;) is even exactly when n (mod 4) E {2,3}, the vertex v* is in 
E( n, k) if and only if 

• k is even and n ::.::=: 0,1 (mod 4), or 
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.. k is odd and n 0,3 (mod 4). 

Thus, if (n, k) E X, where X is the set of ordered pairs for which 

• k is even and n 4,6, 7, 9 (mod 12), or 

• k is odd and n 3,5,6,8 (mod 12), 

then ther~ is no Hamilton path in G(n, k). 
We call two elements al ... an, bI ··· bn E T(n, k) weakly adJacent if they differ in 

one position i and in that position, either 

ai = max{aI 1 " .,an}, ai ~ k and bi = O. 

Note that if a, b E T(n, k) are weakly adjacent and if j :::; k, then j . a and j . b in 
j . T(n, k) are weakly adjacent. 

Let G'(n, k) be the graph with vertex set T(n, k) and with weakly adjacent RG 
tails adjacent in G'(n, k). A weak Gray code for T(n, k) is a Hamilton path in G'(n, k). 

Theorem 1 For n ~ 1 and k ~ 0, G'(n, k) has a Hamilton path from 0: to f3 for 
each of the pairs 0:, f3 below. 

(a) 0 0 ... 0 to k k + 1 ... k + n - 1. 
(b) k 1 0 '" 0 to k k + 1 ... k + n 1 (if k ~ 1). 
(c) i 0 ... 0 to (i + 1) mod (k + 1) 0· .. 0 for a :::; i :::; k (if k ~ 1.) 

Proof. We use induction on n. For the cases T(1,0) = {O} and T(1,1) = {O, 1}, 
(a)-(c) are clearly satisfied. If n = 1 and k ~ 2, then 0, 1, ... , k is a cycle in G'(n, k). 
This cycle contains paths satisfying (a)-(c). 

For n :2: 2, decompose T( n, k) as the disjoint union 

Ie-I 

T(n,k)=Ui.T(n-1,k) U k·T(n 1,k+1). 
i=O 

If k = 0, then T(n,O) = 0 . T(n - 1,1). By induction, G'(n - 1,1) has a Hamilton 
path from 0 O· " 0 to 1 2 ... n - 1. Adding a prefix of 0 to each vertex on 
this path gives a Hamilton path in G'(n, O) satisfying (a). 

When n ~ 2 and k ~ 1, by induction, the following Hamilton paths exist: 

1. Pi in G'(n - 1, k) from i 0 ... 0 to (i + 1) mod (k + 1) 0 ... 0 for 
0:::; i :::; k. 

2. qi in G'(n 1, k + 1) from i 0 ... 0 to (i + 1) mod (k + 2) a ... a for 
O:S;i:::;k+l. 

3. r in G' (n - 1, k + 1) from k 0 ... 0 to k + 1 k + 2 ... k + n - 1. 

Then the required Hamilton paths in G'(n, k) are (see Figures 2, 3, 4): 
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0(00 ... 0) 0(10 ... 0) 

1 (10 ... 0) 1 (2 O ... 0) 

2 (2 0 ... 0) 2 (30 ... 0) 

(k -1) . Pk-l 

(k-1) (k-1 0 ... 0) (k-1) (kO ... O) 

k·, 

k(kO ... O) k(k+1 k+2 ... k+n-1) 

Figure 2: Construction of path satisfying (a). 
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o . Pk-l 

O(k-lO ... O) O(kO ... O) 

1 . Pk-2 

l(k 20 ... 0) l(k 10 ... 0) 

(k 2)· PI 

(k-2) (10 ... 0) (k 2)(20 ... 0) 

(k - 1) . po 

(k-1) (0 ... 0) (k-l)(lO ... O) 

... k+n-l) 

Figure 3: Construction of path satisfying (b). 
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O(iO .. 0) 0(i+10 ... 0) 

(i 1)· PI 

(i-1)(10 ... 0) (i 1)(20 ... 0) 

z· PO 

i (0 ... 0) i (1 0 ... 0) 

(i + 1) . Pk 

(i+1) (0 ... 0) (i+1) (kO ... O) 

(i + 2) . Pk-I 

(i + 2) (k - 1 O ... 0) (i+2) (kO ... O) 

(k-1)'Pi+2 
(k-1) (i+20 ... 0) (k-1) (i+3 0 ... 0) 

k· qi+l 

k(i+10 ... 0) k(i+20 ... 0) 

Figure 4: Construction of path satisfying (c) when k ;:: 2 and 0 :::; i :::; k - 2. 
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tb) \I~ l)'POl ~k-l)'Pl, ... ,1·Pk-2, U'Pk-l, k·qk· 

(c) If k 1, then the path O· Po, 1· qo\ when i 0 and its reverse if i = l. 

If k 2 then 

• i·po, (i 1)'Pb ... , O'Pi, k'qi+l, (k-l)'Pi+21 ... , (i+2)'Pk-ll (i+l)'Pkl 
when 0:::; i :::; k - 2, 

• (k - 1) . p;;\ (k - 2) . P;;~l' ... ,0· PI I
, k· qol when i = k - 1, and 

• k'qo, (k 1)'PI, (k-2)'P2' ... , I'Pk-l, O'Pk, when i=k. 

o 

Corollary 1 R(n) has cyclic (weak) Gray code and a min-max (weak) Gray code. 

Proof. By (1), R(n) = T(n,O) O·T(n-l,I). By Theorem lea) and (c), T(n-l, 1) 
has weak Gray codes from 0 ... 0 to 1 2· .. n-l and from 0 ... 0 to 1 0 ... O. Prepending 
o to the elements of these lists weak Gray codes for R( n) from from 0 0 ... 0 to 
o 1 2··· n 1 (min-max) and from 0 0···0 to 0 1 0···0 (cyclic). Examples when 
n = 4 are given in Figure 5. 0 

mIn-max circular 

0000 0000 
000 1 000 1 
001 1 001 1 
0012 001 2 
0010 001 0 
o 1 1 0 o 1 1 0 
o 1 1 2 011 1 
o 1 1 1 o 1 1 2 
o 1 0 1 o 122 
0100 o 123 
o 1 02 o 120 
o 1 2 2 o 1 2 1 
o 1 2 1 o 1 0 1 
0120 o 102 
o 1 2 3 o 100 

Figure 5: New (weak) Gray codes for R(4) T(4,0) O· T(3,1). 

93 



3 Partitions Into a Fixed Number Blocks 

For n 2:: 1 and 0 :::; b:::; n -1, let Sb(n) be the set of partitions of {I, ... , n} into b+ 1 
blocks. The bijection between S (n) and R( n) restricts to a bijection between Sb (n) 
and 

Rb(n) {al" .an E R(n) I max{al 1 •• ,an} b}. 

Ehrlich presents an algorithm for generating Sb(n) in which successive partitions differ 
only in that two elements have moved to different blocks [1]. Ruskey describes a Gray 
code for Rb( n) in which successive elements differ in one position, but possibly by 
more than 1 in that position [7]. We show in this section that in general, Rb(n) has 
neither a strict nor a weak Gray code. 

For n ~ 1, Ro(n) = {o 0· .. O} , Rn-l(n) = {o 1 .. n - I}, and for 0 < b < n -1, 
Rb(n) can be partitioned as the disjoint union 

b 

Rb(n) = U Rb(n 1)· i U Rb-1(n 1)· b. (2) 
i=O 

Theorem 2 FoT' infinitely many positive values oln and b, Rb(n) has neither a strict 
noT' a weak Gray code. 

Proof. Let Go(n) be the subgraph of G(n,O) induced by Rb(n). Then Go(n) is 
bipartite with bipartition Eb(n), Oo(n), where Eo(n) E(n,O) n Rb(n), Ob(n) = 
O(n,O) n Rb(n), and db(n) = IEo(n)I-IOo(n)l. 

Clearly do(n) = 1 and dn-1(n) = (_1)n(n-l)/2. Using the recurrence (2) for n 2:: 1 
and 0 < b < n - 1, 

d () {-dO- 1 (n - 1) if b odd 
o n = db(n - 1) + db- 1 (n - 1) otherwise. 

(See Table 1.) A strict Gray code for Rb(n) is a Hamilton path in Go(n), which can 
exist only if Ido(n)1 :::; 1. However, it can be shown by induction that 

d ( ) = (_1)rb/21 (n - 1 - rb/2l) 
b n Lb/2J 

and thus that for 1 < b < n - 1, db(n) > 1 if rb/2l is even and db(n) < 1 if rb/2l is 
odd. Thus, no strict Gray code can exist in these cases. 

Let G~ (n) be the graph with vertex set Ro (n) and with weakly adj acent elements 
of Rb(n) adjacent in G~(n). Note that G~(n) differs from Gb(n) only in that for 
1 :::; i :::; n, strings al ... ai-lb ai+l ... an and al ... ai-10 ai+l ... an are now adjacent. 
If b is odd, G~ (n) is still bipartite and Eb (n), Ob (n), and db (n) are the same as for 
Gb(n). So, no weak Gray code can exist in these cases. 0 

4 Concluding Remarks 

It remains open whether there is a strict Gray code for T(n, k) when the (n, k) FJ. X. 
Similarly, when b is even, does Sb(n) have a weak Gray code? 
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n\b 0 1 2 3 4 5 6 7 
1 1 
2 1 -1 
3 1 -1 -1 
4 1 -1 -2 1 
5 1 -1 -3 2 1 
6 1 -1 -4 3 3 -1 
7 1 -1 -5 4 6 -3 -1 
8 1 -1 -6 5 10 -6 -4 1 
9 1 -1 -7 6 15 -10 -10 4 
10 1 -1 -8 7 21 -15 -20 10 
11 1 -1 -9 8 28 -21 -35 20 

Table 1: Table of values for db(n). 

Assume that a listing algorithm must generate N objects of size O(n), where 
usually n ~ N. The efficiency is measured by the time to generate the first object 
and the delay between successive elements generated. In a loop-free algorithm [1], the 
start-up time is O(n) and the worst-case delay is constant, independent of nand N. 
Next best is to have a £onstant ~mortized .time (CAT) algorithm in which the total 
time is O(N), even though some delays may be large [7]. 

In his 1973 paper, Ehrlich [1] gave a loop-free implementation of his Gray code 
algorithm for R(n) and a loop-free algorithm for generating Sb( n), results which 
have been overlooked by some later papers. Kaye's 1976 paper contains a CAT 
implementation of Knuth's Gray code for S(n) [4]. The solutions manual by Fill 
and Reingold [2] for the book by Reingold, Nievergelt, and Deo [5] also presents a 
Gray Code for Sb(n), which they attibute to Brian Hansche. Ruskey gives a CAT 
implementation of his Gray code for Sb(n) [7]. We conjecture that our new Gray 
codes for RG tails, T( n, k), can be implemented by a CAT algorithm. 

Acknowledgement. We are grateful to Malcolm Smith for his help with the figures 
and to the referee for a very careful reading of the paper. 
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