ON CONSTRUCTING GRAPHS UITH A PRESCRIBED ADJACENCY PROPERTY

W. Ananchuen and L. Caccetta
School of Mathematics and Statistics
Curtin University of Technology
GPO Box U1987
Perth, 6001
Western Australia.

Abstract

: A graph G is said to have property $P(m, n, k)$ if for any disjoint sets A and B of vertices of G with $|A|=m$ and $|B|=n$ there exist at least k other vertices, each of which is adjacent to every vertex of A but not adjacent to any vertex of B. We know that almost all graphs have property $P(m, n, k)$. However, almost no graphs have been constructed. In this paper, we construct classes of graphs having property $P(1, n, k)$. For the case $m, n \geq 2$, the problem of constructing graphs with the property $P(m, n, k)$ seems difficult, with the only known examples being Paley graphs.

1. INTRODUCTION

For our purposes graphs are finite, loopless and have no multiple edges. For the most part our notation and terminology follows that of Bondy and Murty [8]. Thus G is a graph with vertex set V(G), edge set $E(G), v(G)$ vertices, $\varepsilon(G)$ edges, minimum degree $\delta(G)$ and maximum degree $\Delta(G)$. However, we denote the complement of G by \bar{G}.

A graph G is said to have property $P(m, n, k)$ if for any disjoint
sets A and B of vertices of G with $|A|=m$ and $|B|=n$ there exist at least k other vertices, each of which is adjacent to every vertex of A but not adjacent to any vertex of B. The class of graphs having property $P(m, n, k)$ is denoted by $\mathcal{G}(m, n, k)$. Observe that if $G \in$ $\mathscr{\mathcal { E }}(\mathrm{m}, \mathrm{n}, \mathrm{k})$, then $\overline{\mathrm{G}} \in \mathscr{\mathcal { E }}(\mathrm{n}, \mathrm{m}, \mathrm{k})$. The cycle C_{ν} of length ν is a member of $\mathscr{G}(1,1,1)$ for every $v \geq 5$. The well known Petersen graph is a member of $\mathscr{Y}(1,2,1)$ and also of $\mathscr{\mathscr { (}}(1,1,2)$. Despite these relatively simple examples few members of $\mathscr{\mathcal { G }}(\mathrm{m}, \mathrm{n}, \mathrm{k})$ have been found. The class $\mathscr{\mathcal { G }}(\mathrm{m}, \mathrm{n}, \mathrm{k})$ has been studied by: Ananchuen and Caccetta [2, 3]; Blass et. al. [5]; Blass and Harary [6]; Exoo [11]; Exoo and Harary [12, 13]. In addition, some variations of the above adjacency property have been studied by: Ananchuen and Caccetta [4]; Alspach et. al. [1]; Bollobás [7]; Caccetta et. al. [9] and Heinrich [14].

Blass and Harary [6] established, using probabilistic methods, that almost all graphs have property $P(n, n, 1)$. From this it is not too difficult to show that almost all graphs have property $P(m, n, k)$. Despite this result, few graphs have been constructed which exhibit the property $P(m, n, k)$. An important graph in the study of the class $\mathscr{G}(\mathrm{m}, \mathrm{n}, \mathrm{k})$ is the so called Paley graph G_{q} defined as follows. Let $q \equiv 1(\bmod 4)$ be a prime power. The vertices of G_{q} are the elements of the finite field \mathbb{F}_{q}. Two vertices a and b are adjacent if and only if their difference is a quadratic residue, that is $a-b=y^{2}$ for some $y \in \mathbb{F}_{q}$.

For a prime $p \equiv 1(\bmod 4)$, Blass, Exoo and Harary [5] showed that $G_{p} \in \mathscr{G}(n, n, 1)$ for $p>n^{2} 2^{4 n}$. In [3] we improved this result by showing that for a prime power $q \equiv 1(\bmod 4), G_{q} \in \mathscr{(n , n , k)}$ for every $q>\left\{(2 n-3) 2^{2 n-1}+2\right\} \sqrt{q}+(n+2 k-1) 2^{2 n-1}-2 n^{2}-1$. Further, we
proved that $G_{q} \in \mathscr{(}(\mathrm{~m}, \mathrm{n}, \mathrm{k})$ for every

$$
q>\left\{(t-3) 2^{t-1}+2\right\} \sqrt{q}+(t+2 k-1) 2^{t-1}-1
$$

 Computational results were also presented to determine the smallest Paley graphs in $\mathcal{(}(2,2, k)$ for small k.

In this paper, we will construct classes of graphs having property $\mathrm{P}(1, \mathrm{n}, \mathrm{k})$. These classes include: the cubes; "generalized" Exoo-Harary graphs; "generalized" Petersen graphs; and "generalized" Hoffman Singleton graphs. These graphs are described in Sections 2 and 3.
2. THE CLASS $\mathcal{G}(1, n, k), n+k \leq 4$

In this section we construct classes of graphs satisfying property $P(1, n, k), n+k \leq 4$. We begin by stating the following two lemmas.

Lemana 2.1: (Ananchuen and Caccetta [2])
For $1 \leq \ell \leq \mathrm{n}, \quad \mathscr{\mathcal { G }}(\mathrm{m}, \mathrm{n}, \mathrm{k}) \subseteq \mathscr{\mathcal { F }}(\mathrm{m}, \mathrm{n}-\ell, \mathrm{k}+\ell)$.

Lemma 2.2: (Exoo [11])
If G is a graph having girth at least 5 and $\delta(G) \geq n+k$, then $G \in$ $\mathscr{G}(1, n, k)$.

The work to follow makes use of the following notation. For a graph G we denote the neighbour set of a vertex u by $N(u)$, and non-neighbour set of u by $\bar{N}(u)$. For vertices $u, v_{1}, v_{2}, \ldots, v_{n}$ of G we denote by $N\left(L / v_{1}, v_{2}, \ldots, v_{n}\right)$ the set of vertices of $V(G) \backslash\left\{u, v_{1}, v_{2}, \ldots, v_{n}\right\}$ which are adjacent to u but not adjacent to any $v_{i}, 1 \leq i \leq n$.

Exoo and Harary [13] constructed small graphs in the class $\mathcal{E}(1, n, 1)$. In particular, they proved that the graphs G_{1} and G_{2} displayed in Figures 2.1 are smallest order graphs of girth 3 in the classes $\mathcal{Y}(1,2,1)$ and $\mathcal{Y}(1,3,1)$, respectively.

Figure 2.1

We now generalize these graphs. Let $C=u_{0} u_{1} \ldots u_{m-1} u_{0}$ be a cycle of length $m, m \geq 5$. For s a positive integer, define the graph $E(m, s)$ as follows. Take \bar{C} and s copies $C_{0}, C_{1}, \ldots, C_{S-1}$ of C. Join vertex u_{i}, of $C_{j}, 0 \leq i \leq m-1,0 \leq j \leq s-1$, to vertex u_{i} of \bar{C}. $E(m, s)$ is the resulting graph. Observe that $\mathrm{E}(5,1)$ is the Petersen graph and the graph G_{1} of Figure 2.1 is $E(6,1)$. It is easy to see that $E(m, s)$ is a graph on (s + 1)m vertices having minimum degree 3. The adjacency properties of $E(m, s)$ are given in the following result.

Theorem 2.1: For any positive integers $m \geq 5$ and $s, E(m, s) \in \mathscr{S}(1, n, k)$, for $n+k \leq 3$.

Proof: In view of Lemma 2.1 it is sufficient to show that $E(m, s) \in$ $\mathscr{G}(1,2,1)$. Let u be any vertex of $E(m, s)$. If $u \in C_{j}$ for some j, then u does not belong to any cycle of length less than 5. Hence for any other vertices v and $w, N(u / v, w) \neq \phi$. If, on the other hand, $u \in \bar{C}$ at least $s+2 \geq 3$ vertices $a_{1}, a_{2}, \ldots, a_{s+2}$ are needed so that $N(u) \subseteq$ ${\underset{i}{i=1}}_{\uplus_{2}^{2}}^{N}\left(a_{i}\right)$. Hence for any distinct pair of vertices v and w of $E(m, s)-u$, $N(u / v, w) \neq \phi . \quad$ Therefore $E(m, s) \in \mathscr{G}(1,2,1)$, as required.

We next generalize the graph G_{2} displayed in Figure 2.1. Let $m=$ $2 r \geq 6$ and $2 \leq s \leq r$. Define the graph $E^{*}(2 r, s)$ by adding r new vertices labelled $0,1,2, \ldots, r-1$ to $E(2 r, s)$ and the $2 r s$ edges:

$$
\left\{\left(i, u_{i+j}\right),\left(i, u_{i+j+r}\right): u_{i+j}, u_{i+j+r} \in C_{j}, 0 \leq i \leq r-1,0 \leq j \leq s-1\right\} ;
$$

all subscripts are read modulo $2 r$. Note that the G_{2} graph in Figure 2.1 is just $E^{*}(6,2)$. It is easy to see that $E^{*}(2 r, s)$ is a graph on $(2 s+3) r$ vertices having minimum degree 4 . The adjacency properties of $E^{*}(2 r, s)$ are given in the following result.

Theorem 2.2: For $r \geq 3$ and $2 \leq s \leq r, E(2 r, s) \in \mathcal{E}(1, n, k)$, for $n+k \leq$ 4.

Proof: In view of Lemma 2.1 it is sufficient to show that $E^{*}(2 r, s) \in$ $\mathscr{E}(1,3,1)$. Let u be any vertex of $E^{*}(2 r, s)$. If u is a new vertex added to $E(2 r, s)$ or $u \in C_{j}$ for some j, then every edge incident to u belongs to a cycle of length 5 and to no smaller cycle. Hence for any other distinct vertices x, v and $w, N(u / x, v, w) \neq \phi$. If, on the other hand, u $\in \bar{C}$, then at least $s+2 \geq 4$ vertices $a_{1}, a_{2}, \ldots, a_{s+2}$ are needed so that
$N(u) \subseteq \stackrel{s}{1=1}_{\cup 2}^{N}\left(a_{1}\right)$. Hence for any distinct vertices x, v and w of $E^{*}(2 r, s)-u, \quad N(u / x, v, w) \neq \phi . \quad$ Therefore $E^{*}(2 r, s) \in \mathscr{G}(1,3,1)$, as required.

We noted in the introduction that the Petersen graph is in the class $\mathscr{G}(1,2,1) \cap \mathscr{G}(1,1,2)$. We now generalize this graph to give another class of graphs in $\mathcal{G}(1, \mathrm{n}, \mathrm{k}), \mathrm{n}+\mathrm{k} \leq 4$.

Let m and t be integers, $m \geq 5$ and $m \neq 6$, satisfying

$$
\begin{equation*}
1<t<m-1, \quad m \neq 2 t . \tag{2.1}
\end{equation*}
$$

Define the graph $I(m, t)$ as follows. The vertices of $I(m, t)$ are $\left\{v_{0}, v_{1}, \ldots, v_{m-1}\right\}$ and the edges are $\left\{\left(v_{i}, v_{i+t}\right): 0 \leq i \leq m-1\right\}$; all subscripts are read modulo m. Noting that $I(m, t) \cong I(m, m-t)$, we can replace (2.1) with

$$
\begin{equation*}
1<t<\frac{1}{2} m \tag{2.2}
\end{equation*}
$$

We use the normal convention of denoting the greatest common divisor of integers a and b by (a, b). Observe that $I(m, t)$ consists of exactly (m, t) disjoint cycles each of length $m /(m, t)$. Furthermore, for each m we can choose at least one value t_{0} of t such that $m /\left(m, t_{0}\right) \geq 5$. Note that $t_{0} \neq 1$.

Define the graph $G\left(m, t_{o}, s\right)$ as follows. Start with the graph $I\left(m, t_{0}\right)$ and s copies $C_{0}, C_{1}, \ldots, C_{s-1}$ of the m-cycle $C=u_{0} u_{1} \ldots u_{m-1} u_{0}$. Add the ms edges:

$$
\left\{\left(v_{i}, u_{i}\right): v_{i} \in I\left(m, t_{0}\right), u_{i} \in C_{j}, 0 \leq i \leq m-1,0 \leq j \leq s-1\right\}
$$

Note that $G(5,2,1)$ is the Petersen graph. Observe that the graph $G\left(m, t_{0}, s\right)$ has ($\left.s+1\right) m$ vertices, girth at least 5 , minimum degree 3. Therefore, by lemmas 2.1 and 2.2 we have:

Theorem 2.3: Let m and t_{0} be integers, $m \geq 5$ and $m \neq 6$ and $m /\left(m, t_{0}\right)$
5. Then $G\left(m, t_{o}, s\right) \in \mathscr{G}(1, n, k)$, for $n+k \leq 3$.

Remark 1: When $I\left(m, t_{0}\right) \cong I\left(m, t_{0}^{\prime}\right), t_{0} \neq t_{0}^{\prime}$ it is still possible for $G\left(m, t_{o}, s\right) \neq G\left(m, t_{0}^{\prime}, s\right)$. For example, $I(11,2) \cong I(11,3)$ but $G(11,2,1) \neq$ $G(11,3,1)$.

For $r \geq 4,2 \leq s \leq r$, we construct the $\operatorname{graph} G^{*}\left(2 r, t_{0}, s\right)$, from $G\left(2 r, t_{0}, s\right)$ as follows. Add r new vertices labelled $0,1,2, \ldots, r-1$ to $G\left(2 r, t_{0}, s\right)$ and the $2 r s$ edges:
$\left\{\left(i, u_{i+j}\right),\left(i, u_{i+j+r}\right): u_{i+j}, u_{i+j+r} \in C_{j}, 0 \leq i \leq r-1,0 \leq j \leq s-1\right\} ;$ all subscripts are read modulo $2 r$. It is easy to see that $G^{*}\left(2 r, t_{0}, s\right)$ is a graph on $(2 s+3) r$ vertices having minimum degree 4. The adjacency properties of $G^{*}\left(2 r, t_{0}, s\right)$ are given in the following result.

Theorem 2.4: For $r \geq 4,2 \leq s \leq r$ and $2 r /\left(2 r, t_{0}\right) \geq 5, G *\left(2 r, t_{0}, s\right) \in$ $\mathscr{G}(1, \mathrm{n}, \mathrm{k})$, for $\mathrm{n}+\mathrm{k} \leq 4$.

Proof: In view of lemmas 2.1 and 2.2 , we need only to show that $\mathrm{G}^{*}\left(2 \mathrm{r}, \mathrm{t}_{\mathrm{o}}, \mathrm{s}\right)$ has girth at least 5 . From the construction of the graph G* $\left.2 r, t_{0}, s\right)$ it is sufficient to show that this graph contains no 4-cycle. Since $G\left(2 r, t_{0}, s\right)$ has girth at least 5 and $t_{0} \neq 1$, without any loss of generality we can assume that $G^{*}\left(2 r, t_{0}, s\right)$ contains a 4-cycle consisting of one new vertex and one vertex from each of $C_{j}, C_{h}(h \neq j)$ and $I\left(2 r, t_{0}\right)$. This is clearly impossible.

Remark 2: For $m \geq 9$, the graph $G\left(m, t_{0}, 1\right)$ obtained from $G\left(m, t_{0}, 1\right)$ by adding a vertex x and the edges $x u_{0}, x u_{3}$ and $x u_{6}$ is in the class $\mathscr{G}(1,2,1)$. In fact, for any $G \in \mathscr{G}(1,2,1)$, we can add a vertex x of degree at least 3 provided the distance between the vertex of $N(x)$ is at least 3 and the result is a graph in $\mathcal{G}(1,2,1)$.
3. $\mathscr{G}(1, n, k)$

In this section we will show that the t-cube is in the class $\mathscr{G}(1, n, k)$, for $2 n+k \leq t$. Further, for any n and k, we construct a class of graphs with property $P(1, n, k)$. We begin with the cube.

The t-cube, Q_{t}, is defined as follows: the vertices of Q_{t} are the 2^{t} vectors $\left(e_{1}, e_{2}, \ldots, e_{t}\right)$ where $e_{i}=0$ or $1, i=1,2, \ldots, t$ and two vertices are adjacent if and only if their symbols differ in exactly one coordinate. Thus Q_{t} is a t-regular graph on 2^{t} vertices.

Exoo and Harary [12] proved that $Q_{2 n+1} \in \mathscr{Y}(1, n, 1)$. A more general result is:

Theorem 3.1: $Q_{t} \in \mathscr{G}(1, n, k)$, for any $2 n+k \leq t$.

Proof: Let x be a vertex of Q_{t} and $u_{1}, u_{2}, \ldots, u_{t}$ be the neighbours of x. From the definition of a cube we know that Q_{t} contains no triangle and no vertex of Q_{t} except x is adjacent to more than two vertices of the $u_{i}, i=1,2, \ldots, t$. Since $2 n+k \leq t$, for any n-set A of vertices of $Q_{t}-x$ there are at least k other vertices, each of which is adjacent to x but not adjacent to any vertex of A, as required.

Hoffman-Singleton graphs.
Let $p \geq 5$ be a prime and t an integer satisfying $1<t<\frac{1}{2} p$. For $m=p$ the graph $I(m, t)$ defined in Section 2 is a cycle of length p. For $1 \leq r, s \leq p$ we define the graph $H_{s}^{r}(p, t)$ as follows. Take r copies $I_{0}, I_{1}, \ldots, I_{r-1}$ of $I(p, t)$ and s copies $C_{0}, C_{1}, \ldots, C_{s-1}$ of the p-cycle $C=$ $u_{0} u_{1} \ldots u_{p-1} u_{0}$. Add the prs edges:

$$
\begin{aligned}
\left\{\left(v_{i}, u_{i+j k}\right): v_{i} \in I_{j}, u_{i+j k} \in C_{k},\right. & 0 \leq i \leq p-1 \\
0 & \leq j \leq r-1,0 \leq k \leq s-1\}
\end{aligned}
$$

Note that for the particular case $p=5, t=2$ we have (see [15]): the Petersen graph $H_{1}^{1}(5,2)$; the Wegner graph $H_{3}^{3}(5,2)$; the O'Keefe-Wong graph $H_{4}^{4}(5,2)$ and the Hoffman-Singleton graph $H_{5}^{5}(5,2)$. Observe that the graph $H_{s}^{r}(p, t)$ has $(r+s) p$ vertices, minimum degree $\delta=2+$ $\min \{r, s\}$. Of course, $H_{r}^{r}(p, t)$ is $(r+2)$-regular. The adjacency properties of $H_{s}^{r}(p, t)$ are given in the following theorem.

Theorem 3.2: Let $p \geq 5$ be a prime, $1<t<\frac{1}{2} p$ and $1 \leq r, s \leq p$. Then $H_{S}^{r}(p, t) \in \mathscr{G}(1, n, k)$, for $n+k \leq 2+\min \{r, s\}$.

Proof: In view of lemmas 2.1 and 2.2 we need only show that $H_{s}^{r}(p, t)$ has girth at least 5. From the construction of $H_{S}^{r}(p, t)$ it is sufficient to show that the graph contains no 4-cycle. So suppose $v_{i} u_{k} v_{j} u_{\ell} v_{i}$ is a 4-cycle in $H_{s}^{r}(p, t)$. Without any loss of generality assume that $v_{i} \in I_{a}, v_{j} \in I_{b}, u_{\ell} \in C_{c}$ and $u_{k} \in C_{d}$, where $a \neq b$ and $c \neq$ d. Then

$$
\begin{aligned}
& \ell \equiv i+a c \equiv j+b c(\bmod p), \text { and } \\
& k \equiv i+a d \equiv j+b d(\bmod p)
\end{aligned}
$$

Therefore $a c-a d \equiv b c-b d(\bmod p)$ and thus $(a-b)(c-d) \equiv O(\bmod p)$. Hence $a \equiv b(\bmod p)$ or $c \equiv d(\bmod p)$. Now, since $0<a, b, c, d<p$ and p is a prime, we have equality, a contradiction. This completes the proof of the theorem.

We conclude this paper by constructing a graph $G \in \mathscr{G}(1,2,1)$ on n vertices for every integer $n \geq 10$ and $n \neq 11$. As noted in remark 2 the graph $\hat{G}\left(m, t_{0}, 1\right), m \geq 9$ together with Theorem 2.3 establishes the existence of G for $n=14,15,16$ and for $n \geq 18$. For $n=10$ we have the Petersen graph whilst for $n=12$ and 13 we can take the graphs displayed in Figure 3.1. For $n=17$ we can take the Paley graph G_{17}. We remark that it is not to difficult to show that $\mathcal{Y}(1,2,1)=\phi$ for every $\mathrm{n} \leq 9$ and $\mathrm{n}=11$.

Figure 3.1

ACKNOWLEDGEMENTS

This work has been supported by an Australian Research Council Grant A48932119.
[1] B. Alspach, C.C. Chen and K. Heinrich, Characterization of a class of triangle-free graphs with a certain adjacency property, J. Graph Theory 15 (1991), 375-388.
[2] W. Ananchuen and L. Caccetta, Graphs with a prescribed adjacency property, The Australasian Journal of Combinatorics 6 (1992), 155-175.
[3] W. Ananchuen and L. Caccetta, On the adjacency properties of Paley graphs, Networks, 23 (1993), 227-236.
[4] W. Ananchuen and L. Caccetta, On Graphs satisfying a strong adjacency property, The Australasian Journal of Combinatorics 8 (1993), 153-168.
[5] A. Blass, G. Exoo and F. Harary, Paley graphs satisfy all first-order adjacency axioms, J. Graph Theory 5 (1981), 435-439.
[6] A. Blass and F. Harary, Properties of almost all graphs and complexes, J. graph Theory 3 (1979), 225-240.
[7] B. Bollobás, Random Graphs. Academic Press, London (1985).
[8] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications. The MacMillan Press, London (1976).
[9] L. Caccetta, P. Erdös and K. Vijayan, A property of random graphs, ARS Combinatoria 19A (1985), 287-294.
[10] L. Caccetta and K. Vijayan, On minimal graphs with prescribed adjacency property, ARS Combinatoria 21A (1986), 21-29.
[11] G. Exoo, On an adjacency property of graphs, J. Graph Theory 5 (1981), 371-378.
[12] G. Exoo and F. Harary, The smallest graphs with certain adjacency properties, Discrete Math. 29 (1980), 25-32.
[13] G. Exoo and F. Harary, Extremal graphs of small girth with an adjacency property, Utilitas Mathematica 23 (1983), 245-252.
[14] K, Heinrich, Graphs determined by an adjacency property, J. Combinatorial Mathematics and Combinatorial Computing 7 (1990), 3-9.
[15] P.K. Wong, Cages - A survey, J. Graph Theory 6 (1982), 1-22.

