On the existence of self-orthogonal diagonal Latin squares

B. Du

Department of Mathematics, Suzhou University Suzhou 215006 China (PRC)

Abstract

A diagonal Latin square is a Latin square whose main diagonal and back diagonal are both transversals. A Latin square is self-orthogonal if it is orthogonal to its transpose. In an earlier paper Danhof, Phillips and Wallis considered the question of the existence of self-orthogonal diagonal Latin squares of order 10. In this paper we shall present some constructions of self-orthogonal diagonal Latin squares and consequently consider the existence of self-orthogonal diagonal Latin squares.

1 Introduction

A Latin square of order n is an $n \times n$ array such that every row and every column is a permutation of an *n*-set. A transversal in a Latin square is a set of positions, one per row and one per column, among which the symbols occur precisely once each. A transversal Latin square is a Latin square whose main diagonal is a transversal. A diagonal Latin square is a transversal Latin square whose back diagonal also forms a transversal.

Two Latin squares of order v are orthogonal if each symbol in the first square meets each symbol in the second square exactly once when they are superposed. A Latin square is self-orthogonal if it is orthogonal to its transpose. Orthogonal (transversal) Latin squares of order v are denoted briefly by OLS(v) (OTLS(v)). Self-orthogonal (diagonal) Latin squares of order v are denoted briefly by SOLS(v)(SODLS(v)).

In an earlier paper [1] Danhof, Phillips and Wallis considered the question of the existence of self-orthogonal diagonal Latin squares of order 10. In this paper we shall present some constructions of self-orthogonal diagonal Latin squares and consequently consider the existence of self-orthongal diagonal Latin squares. We shall prove

Theorem 1.1 A SODLS of order v exists for all positive integers v, with the exception of $v \in \{2,3,6\}$ and the possible exception of $v \in \{10,14\}$.

Australasian Journal of Combinatorics 10(1994), pp.45-50

For our purpose, we need the following construction which was devised by Wallis. A Latin square is symmetric if it is equal to its transpose. We denote by SOLSSOM(v) a self-orthogonal Latin square of order v with a symmetric orthogonal mate.

Lemma 1.2. ([7]) If there exists a SOLSSOM(v), then there exists a SODLS(v).

For SOLSSOM we have the known

Lemma 1.3. ([6, 9, 11]) A SOLSSOM of order v exists for all positive integers v, with the exception of $v \in \{2,3,6\}$ and the possible exception of $v \in \{10,14\} \cup E$, where

$$E = \{46, 54, 58, 62, 66, 70\}.$$

Now we need only consider the case $v \in E$. For our purpose, let OLS(v, n) denote OLS(v) with a sub-OLS(n) missing. Usually we leave the size n hole in the lower right corner. Similarly we define IOTLS(v, n), ISOLS(v, n), ISODLS(v, n) and ISOLSSOM(v, n). We also denote by $ISOLS^*(v, n)$ an ISOLS(v, n) in which the elements in the cells $\{(i, v - n + 1 - i) : 1 \le i \le v - n\}$ are distinct and different from the missing elements. Finally, we denote by SOLS(v, k) the SOLS(v) in which the cells $\{(v - k + i, v - i + 1) : 1 \le i \le k\}$ are a transversal about the elements a_1, a_2, \dots, a_k .

For subsequent use, we construct the following examples.

Example 1.4. There exists a SOLS(9,2).

Proof. Let $GF(9) = \{a_1 = 0, a_2 = 1, a_3, \dots, a_9\}$. Define the 9×9 square array $A = (c_{ij})$ by

$$c_{ij} = \lambda a_i + (1 - \lambda) a_j$$

where $\lambda \in GF(9) \setminus \{a_1, a_2\}$ and $2\lambda \neq 1$. It is easy to see that A is a SOLS(9, 2).

Example 1.5. There exists a SOLS(11, 6). Proof. Define the 11×11 square array $A = (c_{ij})$ by

$$c_{ij} = 2i - j \pmod{11}$$

 $1 \leq c_{ij} \leq 11$. It is easy to see that A is a SOLS(11, 6).

2 Main result

In this section we shall consider the case $v \in E$. For these values of v we use recursive constructions. These recursive constructions rely on the existence of other orthogonal arrays and on information regarding the location of transversals in certain Latin squares. To this end we need more notation.

Let $A = (a_{ij})$ be a Latin square. We call two transversals disjoint if they have no cell in common. A transversal T is symmetric if $(i, j) \in T$ if and only if $(j, i) \in T$. A pair of transversals T and S are symmetric if $(i, j) \in T$ if and only if $(j, i) \in S$. Finally, t transversals will be called *n*-intersecting if the only elements they have in common are the elements in their missing subsquares of side n.

For our purpose, we need ISOLSSOM(12,2) from a starter-adder type construction. This idea has been described by several authors (see, for example, [5, 10]). The plan is to construct an ISOLS(v,n) A and a symmetric orthogonal mate B from their first row (given by $\underline{e}_c = (e_c(1,1), e_c(1,2), \dots, e_c(1,v-n))$ and $\underline{f}_c = (e_c(1,v-n+1), e_c(1,v-n+2), \dots, e_c(1,v))$ and from the last n entries of the first column (given by $\underline{g}_c = (e_c(v-n+1,1), e_c(v-n+2,1), \dots, e_c(v,1))$, where C = Aor B. The entries of the array are $\{1, 2, \dots, v-n\} \cup X$, where $X = \{x_1, x_2, \dots, x_n\}$. The array is constructed modulo v - n, where the x_i act as "infinity" elements according to the following rules.

(a)
$$\begin{cases} e_c(s+1,t+1) = e_c(s,t) & \text{if } e_c(s,t) = x_i \\ e_c(s+1,t+1) \equiv e_c(s,t) + 1 \pmod{v-n} & \text{otherwise} \\ 1 \le s, \ t \le v-n; \end{cases}$$

(b)
$$\begin{cases} e_c(s+1,v-n+t) \equiv e_c(s,v-n+t)+1 \\ (mod \ v-n) \\ e_c(v-n+t,s+1) \equiv e_c(v-n+t,s)+1 \\ 1 \leq t \leq n, \ 1 \leq s \leq v-n. \end{cases}$$

Note that in case (a) all cell labels are determined modulo v - n, but in case (b) this applies only to the row and column labels respectively.

It is not difficult to determine the conditions that $\underline{e}_c, \underline{f}_c, \underline{g}_c, C = A$ or B, must satisfy, but we shall not concern ourselves with that. Simple calculations verify that they work. For example, an ISOLS(14, 1) can be constructed from

$$\underline{e}_A = (1, 9, 4, 13, 10, 3, 6, 11, 7, 12, 2, 5, x_1)$$

$$f_A = (8) \qquad \underline{g}_A = (9),$$

an ISOLSSOM(12, 2) can be constructed from

$$\begin{array}{rcl} \underline{e}_{A} & = & (1,8,2,9,6,3,x_{1},10,x_{2},4) \\ \underline{f}_{A} & = & (5,7) & g_{A} = (4,9) \\ \underline{e}_{B} & = & (x_{1},1,6,8,7,x_{2},3,5,4,10) \\ \underline{f}_{B} & = & (2,9) & \underline{g}_{B} = (2,9). \end{array}$$

We then have

Example 2.1. There exists an ISOLSSOM(12, 2) and a SOLS(14, 6).

Proof. It is easy to see that a SOLS(14, 6) comes from the above ISOLS(14, 1).

Now we want to construct a special ISODLS(12, 2) A and a special $ISOLS^*(12, 2)$ B from this ISOLSSOM(12, 2).

Lemma 2.2. A is an ISOLS(12, 2) with two pairs of symmetric transversals and a symmetric transversal, all six transversals (including the main diagonal) being 2 - intersecting and pairwise disjoint.

Proof. It is easy to see that the elements in the cells $\{(i, i + j) : 1 \le i \le 10\}$ (j = 1, 3, 5, 7, 9) are a transversal about the elements $1, 2, \dots, 10$, in which the cells $\{(i, i + 5) : 1 \le i \le 10\}$ are a symmetric transversal, the cells $\{(i, i + 1) : 1 \le i \le 10\}$ and $\{(i, i + 9) : 1 \le i \le 10\}$ and the cells $\{(i, i + 3) : 1 \le i \le 10\}$ and $\{(i, i + 7) : 1 \le i \le 10\}$ are two pairs of symmetric transversals.

Lemma 2.3. For the ISOLS(12, 2) A, any permutation, when applied simultaneously to the rows and columns of A, produces an ISOLS(12, 2) with two pairs of symmetric transversals and a symmetric transversal, all six transversals (including the main diagonal) being 2-intersecting and pairwise disjoint.

Lemma 2.4. For the incomplete symmetric Latin square B, there exists a permutation which, when applied simultaneously to the rows and columns of B, produces an incomplete Latin square with constant back diagonal.

Proof.
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & x_1 & x_2 \\ 1 & 8 & 9 & 7 & 5 & 6 & 4 & 2 & 3 & 10 & x_1 & x_2 \end{pmatrix}$$

Lemma 2.5. For the incomplete symmetric Latin square B, there exists a permutation which, when applied simultaneously to the rows and columns of B, produces a incomplete Latin square with constant value x_2 in cells $\{(i, 11 - i) : 1 \le i \le 10\}$.

By combining Lemma 2.3 and Lemma 2.4, we have

Example 2.6. There exists an ISODLS(12, 2) with two pairs of symmetric transversals and a symmetric transversal, all six transversals (including the main diagonal) being 2-intersecting and pairwise disjoint.

By combining Lemma 2.3 and Lemma 2.5, we have

Example 2.7. There exists an $ISOLS^*(12, 2)$ with two pairs of symmetric transversals, all five transversals (including the main diagonal) being 2-intersecting and pairwise disjoint.

We also need the following:

Lemma 2.8. ([4, 5]) If $v \ge 3n + 1$ and $v \ne 6$, then there exists an ISOLS(v, n) except possibly for (v, n) = (6m + 2, 2m).

In the remainder of this section we shall prove our main result. We shall assume that the reader is familiar with the various methods of constructing an ISOLS(v, n) starting with an ISOLS(s, t) (see, for example, [3,5]). We shall also assume that the reader is familiar with the various techniques of constructing an ODLS(v) from an

OLS(v) by permuting rows and columns (see, for example, [2,8]). So we state the following constructions without proof.

Lemma 2.9. If there exist an ISODLS(v,n) (v even) with t pairs of symmetric transversals and a symmetric transversal, all 2t + 2 transversals (including the main diagonal) being n-intersecting and pairwise disjoint, an OTLS(a), an $IOTLS(a + b_i, b_i)$, $i = 0, 1, \dots, t$, an ISOLS(a + b, b), and a SOLS(na + k, k), where $k = b + b_o + 2(b_1 + \dots + b_t)$ and k is even, then there is a SODLS(va + k).

Lemma 2.10. If there exist an $ISOLS^*(v, n)$ (v - n even) with t pairs of symmetric transversals, all 2t + 1 transversals (including the main diagonal) being nintersecting and pairwise disjoint, an OTLS(a), an $IOTLS(a+b_i, b_i)$, $i = 1, 2, \dots, t$, an ISOLS(a+b, b), and a SODLS(na+k), where $k = b+2(b_1+\dots+b_t)$ and na+kis even, then there is a SODLS(va+k).

From Lemma 2.9 we have the following Lemmas:

Lemma 2.11. If there exists a SOLS(a), an ISOLS(a+2,2) and a SOLS(a+k,k), then there is a SODLS(8a+k), where k is even and $k \leq 6$.

Proof. Apply Lemma 2.9 to an ISODLS(8, 1) with a pair of symmetric transversals, all three transversals (including the main diagonal) being 1-intersecting and pairwise disjoint.

Lemma 2.12. If there exist a SOLS(A), and ISOLS(a+1, 1), a SOLS(2a+k, k), then there is a SODLS(12a+k), where k is even and $k \leq 6$.

Proof. Apply Lemma 2.9 to the ISODLS(12, 2) in Example 2.6.

We then have

Lemma 2.13 There exists a SODLS(v) for $v \in \{46, 54, 58\}$.

Proof. $v \in \{46, 58\}$ comes from Lemma 2.11 with $a, k \in \{(5, 6), (7, 2)\}$. v = 54 comes from Lemma 2.12 with (a, k) = (4, 6). The conditions SOLS(a + k, k) and SOLS(2a + k, k) come from Examples 1.4, 1.5 and 2.1, others from Lemma 2.8.

From Lemma 2.10. we have

Lemma 2.14. There exists a SODLS(v) for $v \in \{62, 66, 70\}$.

Proof. Apply Lemma 2.10 with (v, n) = (12, 2), t = b = 2, $b_i = 0$ or 2, a = 5, and $k \in \{2, 6, 10\}$. The condition $ISOLS^*(12, 2)$ comes from Example 2.7, SODLS(nh + k) from Lemmas 1.2, 1.3 and 2.8.

By combining Lemma 2.13 and Lemma 2.14 we then have

Theorem 2.15. There exists a SODLS(v) for $v \in E$.

By combining Lemmas 1.2 and 1.3 and Theorem 2.15, we obtain Theorem 1.1.

References

- 1. K.J. Danhof, N.C.K. Phillips and W.D. Wallis, On self-orthogonal diagonal Latin squares, JCMCC, 8 (1990), 3-8.
- 2. B. Du, Some constructions of pairwise orthogonal diagonal Latin squares, JCMCC, 9 (1991), 97-106.
- 3. B. Du, On incomplete transversal designs with block size five, Utilitas Math., 40 (1991), 272-282.
- K. Heinrich, L. Wu and L. Zhu, Incomplete self-orthogonal Latin squares ISOLS (6m + 6, 2m) exist for all m, Discrete Math., 87 (1991), 281-290.
- K. Heinrich and L. Zhu, Incomplete self-orthogonal Latin squares, J. Austral. Math. Soc. (Series A), 42 (1987), 365-384.
- C.C. Lindner, R.C. Mullin and D.R. Stinson, On the spectrum of resolvable orthogonal arrays invariant under the klein group K₄, Aequations Math., 26 (1983), 176-183.
- 7. W.D. Wallis, *Three new orthongal diagonal Latin squares*, Enumeration and Design, Academic Press Canada, 1984, 313-315.
- 8. W.D. Wallis and L. Zhu, Some bounds for pairwise orthogonal diagonal Latin squares, Ars Combin., 17A (1984), 353-366.
- 9. S.M.P. Wang, On self-orthogonal Latin squares and partial transversals of Latin squares, Ph.D. thesis, Ohio State University, 1978.
- 10. L. Zhu, A short disproof of Euler's conjecture concerning orthogonal Latin squares, Ars Combin., 14 (1982), 47-55.
- 11. L. Zhu, A few more self-orthogonal Latin squares with symmetric orthogonal mates, Cong. Numer., 42 (1984), 313-320.

(Received 19/7/93)